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Abstract—Cellular-network operators are becoming increas-
ingly interested in knowing the Quality of Experience (QoE)
of their customers. QoE measurements represent today a main
source of information to monitor, analyze, and subsequently
manage operational networks. In this paper, we focus on the
analysis of YouTube QoE in cellular networks, using QoE and
distributed network measurements collected in real users’ smart-
phones. Relying on YoMoApp, a well-known tool for collecting
YouTube smartphone measurements and QoE feedback in a
crowdsourcing fashion, we have built a dataset covering about
360 different cellular users around the globe, throughout the
past five years. Using this dataset, we study the characteristics
of different QoE-relevant features for YouTube in smartphones.
Measurements reveal a constant improvement of YouTube QoE
in cellular networks over time, as well as an enhancement
of the YouTube video streaming functioning in smartphones.
Using the gathered measurements, we additionally investigate
two case studies for YouTube QoE monitoring and analysis
in cellular networks: the machine-learning-based prediction of
QoE-relevant metrics from network-level measurements, and the
modeling and assessment of YouTube QoE and user engagement
in cellular networks and smartphone devices. Last but not least,
we introduce the YoMoApp cloud dashboard to openly share
smartphone YouTube QoE measurements, which allows anyone
using the YoMoApp smartphone app to get immediate access to
all the raw measurements collected at her devices.

Index Terms—Mobile Network Measurements; Quality of Ex-
perience; YouTube; Crowdsourcing; Machine Learning.

I. INTRODUCTION

Today, access to the Internet is primarily carried out through

cellular networks, and smartphones are the most common way

to consume Internet content, from web browsing and video

streaming to a plethora of novel services offered through

apps. The increase in the volume and heterogeneity of content

accessed in cellular networks and smartphones forces cellular-

network Internet Service Providers (ISPs) to improve their per-

formance monitoring and assessment capabilities, in particular

with respect to understand the performance as perceived by

their customers. The Quality-of-Experience (QoE) paradigm

permits to understand and assess the functioning of networks

and services from the eyes of the end user. QoE-based network

measurements represent today a main source of information

for general network operation and management.

In this paper, we address the problem of YouTube-QoE

monitoring and analysis in cellular networks following a data-

driven approach, by analyzing a dataset of crowdsourced

measurements on YouTube QoE, passively collected in real

users’ smartphones. According to the official statistics of

YouTube, more than half of YouTube views today come from

smartphone devices, thus the relevance of our study.

The dataset is built from measurements collected with the

YoMoApp tool [1], an app that we have conceived in the

past to monitor network and QoE-relevant metrics related to

YouTube directly at the smartphone. YoMoApp is publicly

available and can be directly installed through the Google Play

Store. Using YoMoApp, we collected measurements related to

more than 3000 YouTube sessions worldwide, streamed on 70

different cellular-network providers to more than 360 differ-

ent customers, between 2014 and 2018. The YoMoApp tool

passively gathers multiple QoE-relevant metrics and network-

performance indicators related to YouTube, including mea-

surements at the player side (e.g., stalling events, changes in

video resolution, initial delay), the network side (throughput,

downlink/uplink bytes, radio access technology, etc.), as well

as at the user side, retrieving user feedback through QoE

surveys displayed by the app after completion of a session.

The analysis of this dataset reveals interesting findings

on the QoE of YouTube in cellular networks along the stud-

ied time period, including: (i) a sustained QoE improvement

of YouTube streaming in smartphones, (ii) an enhanced

performance of the YouTube video streaming protocol,

and (iii) a positive impact of these improvements on the

engagement of the users watching YouTube videos, with an

increase of over 30% on the video watching time.

Our work is not only unique in terms of the richness of the

measurements we analyzed, but also in terms of the different

perspectives from which we look at the overall problem. In

particular, we additionally investigate two problems linked to

the monitoring and analysis of YouTube mobile QoE: first, we

build machine-learning-based prediction models to estimate

application-layer QoE-related metrics collected by YoMoApp

from network-layer measurements only, which allows to ex-

tend and generalize the YouTube-mobile monitoring approach

without requiring users to actually use YoMoApp. Predictions

also include user engagement as a paramount target. Second,

we study the performance of multiple QoE-assessment models

previously proposed in the literature and standards, contrasting

their outcomes to the real user feedbacks.

Our last contribution is on opening the monitoring platform

offered by YoMoApp to the network measurement community.

In particular, we introduce the YoMoApp cloud dashboard

for openly sharing the full, raw measurements retrieved by

YoMoApp on registered devices. In a nutshell, through this

                          

71
                                                                                                                                              



dashboard, one can register a YoMoApp instance installed at

an Android device and get instant access to the measurements

collected on it. This has many implications and benefits for

those interested in the problems tackled in this paper; for

example, one could install multiple devices with YoMoApp

and run any sort of measurement campaigns to perform

tasks such as network-performance assessment, cellular-ISP

benchmarking, network monitoring, and many more.

Current work builds on top of our recent paper on

YouTube QoE analysis in smartphones [6], extending the data-

characterization part as well as the analysis through the ap-

plication of machine-learning models and QoE-based assess-

ment techniques. As such, this paper offers a comprehensive

perspective on the problem of YouTube-QoE monitoring and

analysis in cellular networks through the eyes of the end user,

and presents highly relevant use cases for machine-learning-

based data analytics in networks. The work is complete and

unique in terms of the addressed perspectives of the problem,

from the data collection, characterization, and analysis, to the

application of QoE modeling and machine-learning techniques

to enable a broader visibility on YouTube QoE in cellular

networks and smartphone devices.

The remainder of the paper is organized as follows: Sec-

tion II reports on related papers, in particular around the

topic of YouTube QoE in cellular networks and smartphones.

Section III describes in detail the YoMoApp application and

the YoMoApp cloud dashboard for open data collection and

sharing, and explains the main concepts behind the measure-

ments. Section IV presents and discusses the results of the

data characterization and analysis, particularly studying the

behavior and improvement of QoE-relevant metrics during

the five years spanned by the dataset. Section V studies in

detail two interesting applications of the YoMoApp system

for network monitoring and analysis, including the prediction

of QoE-relevant metrics and the modeling and assessment of

user QoE and user engagement. Finally, Section VI presents

some future outlook and concludes this work.

II. RELATED WORK

QoE-relevant KPI monitoring has been widely addressed in

the literature, mostly focused on fixed networks and consid-

ering in-network or network-side measurements. In [2], au-

thors provide an overview on QoE-based network-monitoring

approaches and their associated challenges. Focusing on the

problem of QoE monitoring for video streaming, there are dif-

ferent proposed techniques and models translating in-network

measurements and/or in-device application measurements to

QoE-relevant metrics. Among multiple mapping models stud-

ied in the literature, we refer to a recently standardized

QoE assessment model for adaptive video streaming – ITU-T

P.1203 [4], which predicts the Mean Opinion Score (MOS)

of a video session from direct analysis of both network- and

application-layer measurements.

In [5], we have proposed YoMo, an in-device, application-

and DPI-based tool for YouTube-QoE monitoring, capturing

video player activity and buffering conditions to infer re-

buffering events. In [7], [8], [9], we extended YoMo and its

overall concept to monitor YouTube QoE in cellular and fixed-

line networks at scale, using DPI approaches. Others [10],

[11], [12] adopted similar in-application measurements for

YouTube-QoE monitoring, relying on application-side tools

to directly collect KPIs such as playback delay, re-buffering

events, video resolution, or quality switches. Application-

side monitoring provides accurate measurements for QoE

assessment, as these can be directly observed, without the need

of additional estimation or mapping approaches.

The wide adoption of end-to-end encryption has turned

previous DPI-based approaches unreliable or even unfeasible,

motivating a surge of papers focusing on the analysis of in-

network measurements through machine-learning models. For

example, in [3], [13], authors apply different machine-learning

approaches to estimate QoE-relevant metrics for YouTube by

extracting features from the stream of encrypted packets, using

simple features such as packet times and sizes, or throughput.

Similarly, authors in [14] follow a machine-learning-based

analysis to infer QoE metrics for YouTube streaming over cel-

lular networks. Other recent papers propose to reconstruct the

evolution of the buffered video playtime [7], but analyzing the

encrypted stream of packets through heuristics and statistical

modeling approaches [15].

When dealing exclusively with cellular networks and smart-

phones, there are many tools to monitor QoE-relevant KPIs,

including Netalyzr [17] and Mobilyzer [16]. Smartphone-app

QoE can be monitored with QoE Doctor [18], an active-

measurement tool analyzing both network and application fea-

tures. Other tools for measuring YouTube QoE in smartphones

are introduced in [20] and [19]. YoMoApp [1] is an extension

of our previous YoMo tool, but implemented as an Android

app to passively measure YouTube QoE-relevant features in

smartphones. Last, previous papers have also presented results

on machine learning for QoE prediction in smartphones: our

previous work [22], [23] as well as [21] use machine-learning

models to infer the QoE of smartphone apps, relying on in-

device and/or in-network measurements.

III. USING YOMOAPP FOR YOUTUBE MOBILE ANALYSIS

YoMoApp [1] provides a distributed monitoring platform

for YouTube QoE, collecting user feedback in a crowdsourced

manner, and passively measuring a large set of QoE-relevant

KPIs at the player and network side. Metrics such as stallings,

initial playback delay, and video resolution are retrieved at

play time. All YoMoApp measurements are periodically up-

loaded to a remote server, building a comprehensive database

of YouTube performance- and QoE-related measurements. It

is possible to access these measurements for further analysis

using the YoMoApp dashboard service, which is presented

and described below. Next, we describe the basic concepts of

YoMoApp, the considered KPIs, and the incentives offered to

users to motivate them using the app.
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Log-file type Parameters

Data Current playtime Buffer Available playtime

Events

Video ID Quality Network Received bytes Transmitted bytes
Cell ID Signal SSID BSSID RSSI
Location Title Duration Screen orientation Player size

Player mode Volume MSE Supported codecs Player state
Dialog Content rating Quality rating Streaming rating Acceptability rating

YouTube loading time Advertisement Video end App behavior Hyperlink

Statistics

Date Time Device ID Mobile operator Country
Network switches Networks Screen size Screen density Orientation changes

Orientations Player resizes Player sizes Handovers Cell ID
Video ID Video title Log time Length of video User engagement

Initial delay Quality switches Qualities Stalling events Total stalling time
Average stalling time Maximum stalling time Average buffer Maximum buffer Pause events

Content rating Quality rating Streaming rating Acceptability rating

Table I: Monitored KPIs per log file in YoMoApp.

A. YoMoApp Basics and KPIs

YoMoApp is an Android app (freely available at the Google

Play Store) which replicates the original YouTube app in

functionality and design. An Android WebView is embedded

to display the YouTube mobile website, using an HTML5

video element relying on adaptive-streaming technology for

the video playback. Additional functions perform the monitor-

ing of the application-level parameters in the application. The

monitoring is done at runtime via JavaScript, which queries

the HTML5 video element.

We use JavaScript event listeners to monitor changes of

the player state (e.g., playing, paused, buffering, ended), and

the resolution of the video element. The app monitors the

current playback time and the buffered playtime every second.

Additionally, we retrieve metadata, e.g., the YouTube video

ID, title, duration of the watched video. The gathered data

is then sent to and processed by the Android app. As the

usage of JavaScript is prone to inconsistencies and errors, e.g.,

missing/incorrect values or non-equidistant data queries, the

data is post-processed locally by YoMoApp.

Besides playback events, YoMoApp measures both network

and context features. Moreover, it collects device features such

as size of the screen, orientation, playback audio volume, size

of the player, and playing mode (e.g., full screen). Lastly, the

application gathers network-traffic statistics such as per-second

uploaded/downloaded bytes, as well as information such as

GPS-based location, cellular operator, ID of the cell, Radio

Access Technology (RAT), or strength of the signal.

YoMoApp additionally collects QoE feedback provided by

the user, once a video is fully watched or aborted. A simple

questionnaire with multiple questions allows the user to rate

the QoE of the video session according to a standard ACR

MOS scale [24], ranging from bad (MOS = 1) to excellent

(MOS = 5). Questions include the user’s feedback on the

quality of the video, the quality of the streaming, the user’s

opinion on the video content, as well as the service accept-

ability (yes/no). The QoE-feedback questionnaire is presented

to the user only if she wishes to provide such feedback,

which is specified at the YoMoApp starting time. All these

measurements and user-QoE feedbacks are structured over

three different text files, logged for each video session: the

data log file keeps those metrics related to the playback buffer

of the video; the events log file tracks a rich number of KPIs

which are reported in an event-based manner, including states

of the video player, loading times, transmitted bytes, as well

as all QoE-related answers from the user; last, the statistics

log file is computed from the processing of both the data

log and event log files, once a video session has ended. This

log aggregates multiple application- and network-performance

KPIs, such as stallings, initial playback delay, quality switches,

and many more. The file also includes other metadata related

to the video session, such as mobile operator and handovers,

cell IDs, or video content details. Log files are identified by

a unique session ID, which includes a device ID, the session

date, and the starting time.

A complete list of the KPIs collected for the individual

log files are presented in Table I. Measurements belonging

to data and event log files are synchronized through Unix

timestamps. KPI monitoring is done either at every second

– for example, when tracking the video playtime – or just

when a specific event happens, such as a change in the played

video resolution. In contrast, the statistics log file offers an

overview/aggregation of the video streaming session. Further

details on the measurements collected through YoMoApp can

be found at the official YoMoApp documentation – http:

//yomoapp.de/documentation.pdf.

B. Incentives and the YoMoApp Dashboard

The large-scale usage of in-device monitoring tools such as

YoMoApp is subject to the incentives a user receives to install

such tools on his smartphone. Measurement tools operating

at the end devices are more useful to the ISP when these

are installed and used at large scale, offering representative

and meaningful information. To provide incentives for using

YoMoApp, the user can access several aggregate statistics for

each of her video sessions. A QoE map-view is also included

within the app, which displays all the geolocalized QoE ratings

and the corresponding network operators, for the full set of

collected ratings across all YoMoApp users. Results can be

displayed by ISP, allowing the user to compare, through easy-

73



(a) Cumulative # of sessions. (b) Cumulative # of users.

Figure 1: Number of sessions and distinct users over time.

to-understand heatmaps, which operator performs best in cer-

tain locations in terms of YouTube mobile QoE performance

– see http://www.yomoapp.de for examples.

A second and strong incentive for using YoMoApp is

introduced in this paper: the YoMoApp cloud dashboard, avail-

able at http://yomoapp.de/dashboard. Through this dashboard,

users can access at any time the aforementioned log files

containing all the raw measurements and KPIs collected by

YoMoApp at their own devices. A user has access to the

data retrieved at any device for which she has the YoMoApp

device ID (available through YoMoApp), by simply creating

a user account at the dashboard, and associating all the

YoMoApp device IDs she has access to. There is no limit

on the number of different devices a user can associate to

her user account, turning YoMoApp and the dashboard into a

powerful distributed monitoring platform for YouTube mobile

measurements analysis. We stress again the fact that the data

which can be accessed through the dashboard includes the

full, raw, fine-grained measurements collected by YoMoApp

as described in Table I. This is highly useful for deep analysis

on multiple relevant problems associated to YouTube mobile

video streaming in the wild.

Besides full raw measurements access, the dashboard allows

any user to browse over the complete database of measure-

ments covering all YoMoApp users, in the form of aggregated

and anonymized statistics, maps, and heatmaps, providing

additional visibility. We are currently working on different

incentive-driven approaches to allow and motivate users to

install more YoMoApp instances and perform further measure-

ments, as well as additionally sharing their own (anonymized)

measurements with others; for example, we are testing an

approach inspired on Peer-to-Peer (P2P)-based file sharing,

providing access to anonymized measurements from other

devices in equal volume to the measurements generated by the

device(s) under the control of a user: the more measurements

she generates with his devices, the more measurements she

can access from devices of other users.

The combined usage of YoMoApp and the dashboard offers

multiple network QoE monitoring and analysis opportunities

to the network-measurement community: for example, it al-

lows for field testing, distributed cellular-network performance

monitoring, YouTube mobile QoE modeling and assessment in

operational environments, analysis of the impact of different

mobile-network technologies on YouTube mobile QoE, long

Figure 2: Worldwide usage of YoMoApp.

term characterization of YouTube streaming strategies and

even controlled QoE analysis. Next, we analyze the set of

measurements so far collected through YoMoApp, and address

some of the aforementioned monitoring and analysis direc-

tions.

IV. YOUTUBE MOBILE QOE ANALYSIS

We now study the measurements collected with YoMoApp

during the last five years. We analyze the evolution of YouTube

in smartphones along time, regarding QoE metrics, user

engagement and network performance. The dataset contains

more than 3000 complete video sessions, captured between

July 2014 and June 2018. Sessions correspond to 366 different

users worldwide. Figs. 1a and 1b report the accumulated

number of YoMoApp video sessions streamed over time and

the cumulative number of unique devices, respectively. A surge

of new users is clearly observed starting in 2016, which comes

as a consequence of a stronger advertisement of YoMoApp and

an increased dissemination through different research com-

munities and conferences. The number of streamed sessions,

new users, and collected measurements has more than doubled

since January 2017. Interestingly, there were more than 900

new video sessions during the first half of 2018, largely

exceeding the number of video sessions monitored in 2017. We

conclude that the usage trend for YoMoApp is very positive.

The distribution of collected measurements worldwide is

depicted in Fig. 2, in the form of a heatmap diagram. Mea-

surements are distributed on 58 different countries. About 38%

of the measurements come from Germany, 17% from Greece,

9% from India, and 5% from France. Measurements gathered

in other countries represent a share equal or less than 3%

each. We want to stress again that YoMoApp measurements

are performed at the end devices of the users, using their

corresponding mobile operators, resulting in a diverse set of

measurements in terms of devices and network properties.

YouTube QoE in smartphones has improved over the past

years: we now focus on the analysis of different QoE-related

metrics along time. In particular, we study the evolution of:

initial delays, re-bufferings, stalling times, and re-buffering

ratios. Fig. 3 depicts the empirical distribution of these metrics

per year. A first observation is that there is a clear enhancement

of all QoE-related metrics along time, 2018 being the year

with best performance in terms of initial playback delays

and re-buffering events. Next, we also show that such an

improvement is reflected by the QoE feedbacks reported by

the end users (cf. Fig. 7). About 90% of the sessions in 2018
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(a) initial delay (b) number of stallings (c) total stalling time (d) stalling ratio

Figure 3: Temporal evolution of the performance of YouTube mobile streaming in terms of QoE-relevant KPIs.

Figure 4: Video-quality levels and quality switches.

have an associated initial delay below 5 seconds, and a similar

fraction corresponds to videos streamed and displayed without

stalling. On the other hand, initial delay for video sessions in

2016 was below 5 seconds for about 80% of the videos, and

only 60% of the videos were displayed without re-buffering

events. Furthermore, more than 15% of the videos in 2016

suffered from a re-buffering ratio higher than 10%, whereas

this fraction falls to about 5% in 2017/2018.

YouTube mobile video distribution is more efficient today

than in the past: the played out video quality levels grouped

by year and the distribution of the number of quality switches

per year are illustrated in Fig. 4. The distribution of requested

video qualities by the YoMoApp video player reveals that,

in contrast to the period from 2016 to 2018, the played out

video qualities varied much more back in 2014 and 2015, with

a higher prevalence of higher quality levels as compared to

today. The YouTube streaming service has been evolving over

time, not only for the fixed-line network scenario, but mainly

in mobile networks. When YouTube started playing in mobile

devices, the adaptive-streaming policy was less conservative

and higher quality levels would be requested in adaptive

streaming mode. From 2016 onwards, the most dominant

video quality changed to 360p, which is a more conservative

quality level, imposing less bandwidth requirements. There

are also videos with lower video qualities like 144p or 240p,

but almost no HD content was streamed within the last three

years with YoMoApp. This is perfectly aligned to our previous

findings on YouTube QoE in smartphones [25], where we

observed that lower vertical resolutions result in the same

subjective experience as higher resolutions when dealing with

smartphones, due to the small screen sizes. Thus, it makes less

(a) Radio Access Technology.
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Figure 5: Radio access and video download throughput.

sense and is less efficient to stream HD content on YouTube

in smartphones.

As a consequence, it is also not surprising that the number

of quality switches observed within the last three years is much

lower compared to 2014 and 2015. Fig. 4 displays the distri-

bution of the number of quality switches per session. In more

than 80% of the sessions, no quality switch could be observed

for the period of 2016 to 2018, meaning that the initial quality

selected by YouTube was matching the underlying network

performance. In contrast, in 2014, only 43% of the sessions

showed no quality switch, around 53% observed one quality

switch, and the remaining sessions resulted in two or more

quality switches.

Mobile network technology and performance have also im-

proved, potentially resulting in increased user engagement:

the distribution of the underlying RAT per year is displayed

in Fig. 5a. We differentiate between 2G (GSM/EDGE), 3G

(UMTS/HSDPA) and 4G (LTE). RAT information started

being collected only from 2016 on. In 2016, UMTS/HSDPA

was the dominant RAT, with a prevalence of about 66% of all

sessions with cellular access. In 2017, the balance shifted and

LTE became the dominant RAT with a share of 59%. This

dominance increased even more in 2018, where sessions with

LTE make up to 90% of all streaming sessions with cellular

access. As a consequence, we observe better network perfor-

mance over time. For example, Fig. 5b shows the distribution

of the maximum download throughput achieved by YoMoApp

video sessions before and after December 2016. The average

max. download throughput increased from about 2Mbps to

more than 10Mbps, and the median has also increased from
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Figure 6: Evolution of user engagement.

about 600kbps to 1Mbps.

User engagement is defined as the fraction of the total video

length a user watched before the video was aborted or the

video ended (100% user engagement). The user-engagement

distribution per year is depicted in Fig. 6. User engagement

started being measured in 2015, we therefore have no results

for 2014. Results show how user engagement has systemat-

ically increased over time, and significantly in 2018. More

than 60% of the videos were watched completely and only

20% of the users aborted the video at 20% or less of the

video playback. This indicates that YoMoApp is increasingly

being used as a standard video player. The increased user

engagement can also be explained by the improvement of the

network performance in terms of higher downlink throughputs.

We note that video-duration averages and distribution are

similar across the different years, ruling out potential bias on

user engagement.

V. YOUTUBE MONITORING WITH YOMOAPP

We now show how YoMoApp can be used for network

monitoring and YouTube QoE analysis purposes, tackling two

different and highly relevant problems. Firstly, we focus on the

problem of YouTube QoE modeling and assessment, calibrat-

ing different YouTube QoE models available in the literature

as well as standardized models – in particular the ITU-T

P.1203 model for adaptive video streaming [4]. We compare

the outputs obtained from these models to the actual QoE

feedbacks provide by YoMoApp users. Secondly, we tackle the

prediction of QoE-relevant metrics as well as user experience

and user engagement through the application of machine-

learning models, using only network-layer measurements as

input. As we said before, such machine-learning models enable

an extended monitoring of YouTube mobile QoE, as one could

still obtain the KPIs currently collected by YoMoApp, but

without even requiring to use the app – for example, by just

having a general purpose network-measurement app running

in the background of the device.

A. QoE Modeling and Assessment

Fig. 7 depicts the distribution of (a) the subjective MOS

scores as provided by the users and (b) an estimation of the

MOS scores, obtained by the P.1203 model. Recall that QoE

feedback is provided in terms of MOS scores, using a 5-level

ACR scale [24]. For the sake of comparison to other objective

QoE models, we focus on the QoE of the users regarding their

opinion on the video streaming performance. As observed in

(a) Subjective ratings. (b) P.1203 scores.

Figure 7: Distribution of MOS scores per session.

(a) P.1203 vs. subjective ratings.
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(b) QoE model vs. user feedback.

Figure 8: Modeled MOS scores vs. actual user feedback.

Fig. 7a, MOS scores were reported by the users through a

continuous scale before 2017, and using a discrete scale from

2017 on. As reported before, there is a clear QoE improvement

during the last two years, with more than 80% of the videos

rated with MOS scores equal or above 4; this fraction drops

to a value between 40% to 60% in previous years. As shown

in Fig. 7b, results are accurately captured by the P.1203 model

predictions.

Besides the application of the P.1203 model, we additionally

investigate simpler QoE models available in the literature [26],

[27]. These models are of exponential nature, under the form

f(α, β, γ, δ, L,N) = α×e−(β×L+γ)×N+δ, where α, β, γ, and

δ are parameters that need to be calibrated through the specific

dataset under analysis, and L and N correspond to the average

stalling length and number of stallings respectively. We take

a simple manual calibration approach to set α = 4 and δ = 1
to be within MOS range, and set the other parameters by a

non-linear-least-squares regression.

Another family of models we look at are referred to

as simple additive QoE models, which are expressed as a

linear combination of individual models: Q(x1, . . . , xn) =∑n
i=1 wi×Qi(xi), where weights wi are ≥ 0 and

∑n
i=1 wi =

1 [26]. We rely on non-linear-least-squares regression to

determine the values of the parameters to tune. Our evaluation

revealed that the additive QoE model expressed as 0.49×(4×
e−0.14×#stallings+1)+0.17× (4×e−47.7×initialDelay+1)+
0.34× (4× e−0.44×#qualitySwitches +1) is the one which fits

best the data.

Fig. 8 depicts two scatter plots reporting the modeled MOS

scores vs. the actual user subjective feedbacks. Fig. 8a reports

the results for the P.1203 model, whereas Fig. 8b considers

the best model of the two tested ones [26], [27], which

corresponds to the additive QoE model. In both cases, we
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observe that both QoE models tend to overestimate the actual

QoE ratings reported by the users. This suggests that users

might be actually more annoyed than what one could perceive

by directly using these QoE models in practice.

Last, Fig. 9 depicts the linear correlations observed between

both the subjective ratings and the P.1203 estimations and

application-layer metrics such as stalling, initial delay, quality

switches and up to user engagement. While correlations tend

to be rather low, there is a clear negative impact of stalling

duration, initial delay, and number of stallings on both QoE

values (feedback and P.1203), as observed in past studies.

B. QoE Prediction through Machine Learning

We focus now on the prediction of QoE-relevant metrics

which are normally measured directly by YoMoApp, but

assuming only access to the smartphone general network-

level measurements, available through the Android APIs. The

rationale is that we would like to monitor YouTube mobile

KPIs such as initial delay, stalling, quality switches, QoE

(MOS scores), and even user engagement, but without using

an app like YoMoApp. These predictors could be applied in

a more generic smartphone-based monitoring system, where

users would not be forced to run an app with an embedded

player such as YoMoApp to measure relevant KPIs, and

where such KPIs could be actually forecasted for any user

watching YouTube videos at her smartphone, independently

of the YouTube player being used.

We tackle the prediction of four QoE-relevant metrics, the

prediction of the MOS scores (as provided by the P.1203

model), and the prediction of the user engagement. We build

predictors using machine-learning models, treating each prob-

lem as a classification task, where targets are discretized.

The targets are as follows: (i) whether initial delays (ID)

are above or below a pre-defined QoE-relevant threshold –

based on previous work on initial delay tolerance, we set

this value to 4 seconds; (ii) whether a video quality switch

has occurred during the session or not (cf. Fig. 4); (iii) the

number of stalling events (NS), considering three classes –

zero-stalling, mild-stalling: one or two stalling events, and

severe-stalling: more than two stallings; and (iv) the stalling

frequency or re-buffering rate (RR), considering again three

classes – stalling-free; mild-stalling: stallings occurred and

lasted for less than 10% of the total duration of the video

session, and severe-stalling: stallings occurred for more than

10% of the whole video session. For the prediction of QoE

scores, we use as target a binary discretization of the MOS

scores provided by the P.1203 model, and consider a two-

class classification problem, either better or worse than MOS

= 4. Finally, we turn the prediction of user engagement into

a three-class classification task, predicting whether a user has

watched less than 50% of the video, between 50% and 70%,

or more than 70%. For each metric, we evaluate a random

forest model with 10 trees through 10-fold cross validation.

We rely on simple bootstrapping techniques to balance classes

for learning purposes.

Figure 9: Linear correlations – subjective ratings and P.1203.

For all these prediction tasks, we rely on the network-

layer features captured by YoMoApp, which can actually be

measured by simply accessing the Android developer APIs.

The full feature set encompasses 275 features, including

information about the received signal strength, the number

of handovers, the number of network switches, and multiple

statistics about the incoming and outgoing traffic, aggregated

at different time windows of 1, 5, 10, 30, and 60 seconds.

The traffic is measured on three different levels: the total traffic

transmitted/received by the device, the traffic captured over the

mobile network, and the traffic sent/received by the application

itself. We use feature-selection techniques to identify the most

relevant features for each target. We find that about 30 features

out of the 275 are needed to obtain highly similar accuracies

to the ones achieved with the full feature set.

Fig. 10 reports the obtained results for the prediction of the

four QoE-relevant KPIs in terms of ROC curves. ROC curves

help understand the performance of binary-classification mod-

els at all classification thresholds and show the different

false positive rates (FPRs) and true positive rates (TPRs).

Our results are fairly accurate for the four prediction targets,

achieving good classification rates for most of the classes.

For example, the initial delay discrimination as well as the

quality-switching detection can be done with a false positive

rate below 5% for more than 90% of the sessions. Results

are even better when predicting the re-buffering ratio, with an

almost perfect performance for detecting bad-quality sessions

with a high stalling ratio. Inferring the exact number of stalling

events is clearly more challenging.

For the prediction of user engagement and MOS scores,

we also consider random forests, but additionally evaluate

other models such as a single decision tree (DT), SVM, k-

nearest neighbors (KNN), and Naı̈ve Bayes (NB). We also

consider ensemble learning approaches, covering the three

basic paradigms available in the ensemble-learning domain:

bagging, boosting (AdaBoost (ADA) and gradient boosting

(GRAD)), and stacking. Instead of constructing the most accu-

rate model to interpret the data, ensemble learning approaches

combine multiple models to improve analysis performance.

Ensemble methods use multiple learning algorithms to obtain

better predictive performance than could be obtained from any

of the constituent learning algorithms alone. Models built this
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Figure 10: QoE-metrics prediction performance. ROC curves evidence high recall for the considered classes.

(a) Prediction of user engagement. (b) Prediction of P.1203 MOS.

Figure 11: Prediction of user engagement and P.1203 MOS.

way are in general more robust to uncertainties and noise in

the data, which helps in generalizing the obtained results.

Fig. 11 summarizes the obtained results in terms of preci-

sion and recall for all the tested models, obtained through 10-

fold cross-validation. As before, high prediction performance

can be achieved for both targets, particularly when using

more complex, ensemble-based approaches, like stacked trees

(STACKED). Prediction of P.1203 MOS classes and user-

engagement discrimination can be realized with an overall

accuracy of around 90%.

VI. CONCLUSION

In this paper, we have studied the problem of YouTube

mobile QoE monitoring and analysis in a data-driven manner,

by relying on a very rich and fairly large dataset of QoE

measurements passively collected at users’ smartphones with

the YoMoApp monitoring framework. We introduced and

discussed the different YoMoApp tools which grant open ac-

cess to highly rich measurements retrieved at mobile devices.

Through the analysis of these measurements, we are able to

observe a systematic performance and QoE improvement of

YouTube in mobile devices since 2014 till today, additionally

evidencing that these enhancements might have a direct im-

pact on the user engagement in YouTube mobile. We have

additionally studied and discussed different network monitor-

ing and analysis problems which can be tackled by relying

on YoMoApp, showing its great potential. In particular, we

presented different machine-learning approaches to monitor

and predict QoE-relevant metrics for YouTube in smartphones,

as well as to predict user engagement and QoE, using as

input only those measurements which can be directly accessed

through Android APIs – i.e., without the need of accessing

any application-level KPI to perform the analysis. Besides

noting the good performance of random forest models for QoE

prediction, we have also presented evidence on the advantages

of relying on more complex, ensemble techniques, to properly

predict end user QoE and engagement.
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