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Abstract—Orchard tree inventory has been an essential
step to obtain up-to-date information for effective tree treat-
ments and crop insurance purposes. Inventorying trees is
often performed manually through fieldwork surveys, which
are generally time-consuming, costly, and subject to errors.
Motivated by the latest advances in UAV imagery and deep
learning, we propose a new framework for individual tree
detection and health assessment. We adopt a divide-and-
conquer approach to address the problem of orchard trees’
health assessment in two stages. First, we build a tree detection
model based on a hard negative mining strategy to improve
object detection. In the second stage, we address the health
classification problem using a new convolutional autoencoder
architecture mainly designed to extract relevant features. The
performed experiments demonstrate the robustness of the
proposed framework for orchard tree health assessment from
UAV images. In particular, our framework achieves an F1-
score of 86.24% for tree detection and an overall accuracy of
98.06% for tree health assessment. Moreover, our work could
be generalized for a wide range of UAV applications involving
a detection/classification process.

Keywords-Hard Negative Mining (HNM); Autoencoder;
semi-supervised learning; UAV; YOLO; DeepForest.

I. INTRODUCTION

The agriculture industry has always been concerned about
tree diseases due to their significant and negative impact on
crop quality and production. Impacts of crop stress, such as
diseases and pests, range from minor side effects to severe
losses of entire yields, resulting in significant costs for agri-
cultural businesses. Traditional tree inventorying methods
mainly rely on human expertise and are often performed
manually, which is labor-intensive, time-consuming, costly,
and subject to errors. Recent advances in remote sensing
have produced new instruments, providing new alternatives
to conventional approaches, such as satellites, airplanes, and
unmanned aerial vehicles (UAVs). On the other hand, deep
neural networks (DNNs) [1] have considerably advanced
the state-of-the-art in a variety of visual recognition tasks.
Motivated by the latest advances in deep learning-based
computer vision systems, we propose a new framework
to automatically detect trees and assess their health. The
proposed framework adopts a divide-and-conquer approach

through two main stages. The first stage addresses the tree
localization problem using visual object detection, while the
second deals with the tree health assessment through image
patch classification.

In the field of object detection, extensive studies [2]–
[7] have been devoted to aerial imagery applications. Most
of the proposed methods have adopted approaches based
on fine-tuning networks, pre-trained on large-scale image
datasets (e.g., ImageNet [8] and MSCOCO [9]) for de-
tection in the UAV domain. While such fine-tuning-based
approaches achieved interesting results, we argue that UAV
images exhibit particular challenges compared to conven-
tional object detection tasks. First, UAV images often have a
large field of view, with more complex background regions,
which may substantially disturb object detection. Second,
objects of interest are often not uniformly distributed with
respect to background regions, which may cause an im-
balance between positive and negative examples. The data
imbalance problem can also be observed between easy and
hard negative examples, as with UAV images, a large part of
the background shows regular patterns and can be analyzed
easily for detection. We believe that existing deep learning
algorithms are not mainly designed for these situations [10],
as they mostly assign the same weight to all the examples, so
that during training, easy examples may dominate the total
loss, reducing training efficiency.

In order to improve the network’s robustness against
complex backgrounds, we propose a dedicated detection
procedure based on a hard negative mining strategy. This
allows the model to focus on hard examples during the
training phase, which helps reduce detection errors caused
by complex backgrounds.

Following the detection stage, we formulate the health
status assessment of each detected tree as a classification
task of tree image patches. With visual classification, a key
challenge is to find the relevant feature representation that
best describes the data in the feature space. Traditional au-
toencoders [11]–[13] have been studied and used for feature
extraction tasks. However, because standard autoencoders
generally do not use label information, the extracted repre-



sentation may be limited in handling discriminative tasks. To
address the feature relevance problem, we instead propose
a semi-supervised discriminant convolutional autoencoder,
where the encoder part is trained on both labeled and
unlabeled data to learn a compact and relevant representation
of input data. This approach allows the classification network
to exploit both labeled and unlabeled data to learn a more
robust feature representation for classification.

By using the hard negative mining approach and the
semi-supervised autoencoder discussed above, we propose
an effective framework to automatically detect orchard trees
and perform health assessment. The main contributions of
this paper are summarized as follows:

• We propose a novel framework for automatic tree
detection and health assessment from UAV images,
according to a divide-and-conquer approach. The pro-
posed framework could be generalized for a wide range
of other UAV applications involving a detection/classi-
fication process.

• We adopt a hard negative mining approach to address
the problem of negative hard-easy examples imbalance.

• We present a semi-supervised convolutional autoen-
coder to address the tree health assessment problem,
taking advantage of both labeled and unlabeled data,
to ensure the relevance of feature representation for the
health classification task.

II. RELATED WORKS

A. Tree health assessment

In this section, we present related works devoted to
tree health assessment using UAV images and computer
vision. The study in [14] proposes a framework for the
detection and quantification of Eucalyptus Longhorned Bor-
ers (ELB) damages in eucalyptus stands. Treetops were
calculated using the local maxima filter of a sliding window
algorithm. Afterward, large-scale mean-shift segmentation
was performed to extract the crowns and classify them
using random forest. The work of [15] presents a two-
step solution. First, the authors use a candidate selection
technique to find the potential regions corresponding to trees.
In the second phase, a convolutional neural network (CNN)
architecture is used to predict the fir tree damage stage in
each candidate region. In [16], the authors propose an ap-
proach for species classification and assessment of the vital
status of forest stands, by using automated individual tree
crowns delineation. They use preprocessing techniques for
tree segmentation. They then employ an ensemble algorithm,
known as error-correcting output codes (ECOC) to carry out
pixel-by-pixel classification of images by spectral features.
Vegetation indices were explored in [17] to train and validate
a support vector machine (SVM) model to classify each tree
pixel into one of the two categories: healthy and stressed.
Based on UAV-based hyperspectral images, [18] introduces a

spectral-spatial classification framework combining an SVM
with an edge-preserving filter (EPF) to automatically extract
tree crowns damaged by Dendrolimus tabulaeformis.

B. Hard negative mining

Object detectors often face the issue of data imbalance,
where training datasets include a large number of negative
examples. Generally, most of the negative data samples are
easily identified by the detector (easy negative examples)
while only a few are difficult (hard negative examples).

To mitigate this issue, hard negative mining (HNM) can
be adopted. Various HNM approaches [19]–[21] involve
iteratively bootstrapping a small set of negative examples,
by selecting those that trigger a false positive alarm in the
detector. For example, [22] presented a training process of a
state-of-the-art face detector by exploiting the idea of hard
negative mining and iteratively updating the Faster R-CNN-
based face detector with hard negatives harvested from a
large set of background examples. Their method outperforms
state-of-the-art detectors on the Face Detection Data Set
and Benchmark (FDDB). Similarly, an improved version of
faster R-CNN is proposed in [23], by using hard negative
sample mining for object detection. Likewise, [24] used the
bootstrapping of hard negatives to improve the performance
of CNN-based detectors. The authors pre-trained Faster R-
CNN to mine hard negatives, before retraining the model.
The work of [25] presented a cascaded Boosted Forest,
which performs effective hard negative mining and sample
reweighting, to classify the region proposals generated by
RPN. The A-Fast-RCNN method, described in [26], adopts
a different approach for generating hard negative samples, by
using occlusion and spatial deformations through an adver-
sarial process. Another approach to apply HNM using Single
Shot multi-box Detector (SSD) is proposed in [27], where
the authors use medium priors, anchor boxes with 20% to
50% overlap with ground truth boxes, to enhance object
detector performance. The proposed framework updates the
loss function so that it considers the anchor boxes with
partial and marginal overlap.

In our method, we propose a HNM approach for the tree
detection stage, where the mined hard negative samples are
used to introduce a new class. Then, we retrain the object
detector using the true positive and false positive examples
to enhance the discrimination power of the model.

C. Semi-supervised autoencoder

Autoencoders and their extensions [12], [13], [28] have
been important in various fields such as computer vision, and
natural language processing (NLP). A standard Autoencoder
is an unsupervised model made up of an encoder network
that maps the input data to a latent space representation, and
a decoder network mapping the latent space representation
back to the original input data. The goal is to learn a compact
representation capturing the most important features, by



minimizing the reconstruction loss. However, representations
extracted by conventional autoencoders may not be useful
for discriminative tasks [29], as label information is not used
by unsupervised autoencoders.

There are some novel semi-supervised autoencoders that
are able to learn from both labeled and unlabeled data [30]–
[32]. The basic idea is to use the autoencoder to learn
an efficient representation of the input data, and then use
the learned representation for training on a specific task
using labeled data. Semi-supervised autoencoders have been
applied in various domains, including computer vision and
NLP. For example, the work in [30] introduces a semi-
supervised version of the Variational Autoencoder (VAE)
model for image classification. The authors use a VAE to
learn a latent representation of the input images, and then
use a classifier to predict the label of the image based on the
latent representation. The model is trained on both labeled
and unlabeled data, with the objective of maximizing the log-
likelihood of the labeled data and the marginal likelihood
of the unlabeled data. The authors demonstrate that their
model outperforms existing semi-supervised methods on the
MNIST dataset. Similarly, a dual-objective framework is
presented in [32] for feature extraction in fault diagnosis.
The work of [31] proposes a semi-supervised variant of the
Generative Adversarial Network (GAN) model for image
classification. A GAN is used to learn a generator network
and a discriminator network. The network is used to generate
images and the discriminator network is used to predict the
label of the image. The model is trained on both labeled and
unlabeled data, with the objective of minimizing the cross-
entropy loss of the labeled data and the Wasserstein distance
of the unlabeled data.

For our tree health classification stage, we adopt a semi-
supervised autoencoder using both labeled and unlabeled
data to provide relevant features that best determine the tree
damage status. Our proposed autoencoder-based solution
uses a dual-objective framework, where the autoencoder and
the classifier are jointly trained to optimize both reconstruc-
tion and classification objectives.

III. PROPOSED METHOD

A. Motivation and overview

The objective of this work is to develop an automated
framework for tree health assessment using UAV RGB
images. The proposed framework, shown in Figure 1, adopts
a divide-and-conquer strategy to solve two sub-problems:
tree detection and tree health classification.

The task of tree detection is challenging due to the
presence of complex backgrounds that may distract object
detectors. As depicted in Figure 2, the color, shape, and
texture of some objects belonging to the background (yellow
rectangles) are visually similar to the target tree objects
(blue rectangles), leading to false positives. To overcome
this challenge, we adopted a hard negative mining approach

Figure 1. Overview of the proposed framework

Figure 2. Detection results of a baseline model without the use of hard
negative mining approach. Yellow rectangles are false detections (FP) and
blue rectangles are correct detections (TP). When using a hard negative
mining strategy, most of the false detections are not detected

to improve the detector’s ability to discriminate between
trees and background regions. By iteratively introducing
false positives as hard negative examples during training, the
detector can learn to better differentiate between the objects
of interest and background regions.

For tree health assessment, we aim to extract the most
relevant low-dimensional features to improve the perfor-
mance of tree damage classification. To deal with this
issue, we proposed a semi-supervised autoencoder that goes
through unsupervised training and supervised training to take
advantage of both labeled and unlabelled data. This semi-
supervised training is performed to optimize both the recon-
struction loss and the binary cross-entropy loss, which helps
extract the most relevant features discriminating between the
two classes.

B. Individual tree detection

The proposed method for tree detection, shown in Figure
3, involves training a baseline object detector with our
manually annotated tree dataset. This baseline model is
then evaluated to identify hard negative examples, which
generally correspond to the areas causing false positives.
The identified examples are used to introduce a second class.
Once hard negative samples are harvested, we include them



in the training set and perform fine-tuning of the baseline
tree detector. The motivation behind using false positive (FP)
detections as a new class is that FP is generally a source
of noise in the training data, which may cause inaccurate
detection. By including these samples and retraining the
object detector, the model learns to distinguish between true
positives and false positives. We use the focal loss [33] as an
objective function during fine-tuning of the object detector
to address the issue of class imbalance between the target
class (tree) and the hard negative class.

The process of mining hard negatives and fine-tuning is
performed iteratively, by continually refining the training set,
which gradually improves the tree detection accuracy. The
detection method steps are outlined in Algorithm 1.

Algorithm 1 Hard negative mining algorithm for object
detection
Require: Training dataset with manual annotation
Ensure: Improved model for object detection

1: Train a baseline detector using the annotated dataset
2: Perform qualitative and quantitative evaluation
3: while Performance is unsatisfactory do
4: Identify false positive detections
5: Define new negative class using false positives
6: Add false positives to the training dataset
7: Fine-tune model using focal loss and updated train-

ing dataset
8: Evaluate
9: end while

C. Tree health assessment

To deal with tree health classification, we introduce a
semi-supervised autoencoder. The proposed network archi-
tecture, shown in Figure 4, is similar to that of a tradi-
tional autoencoder, except for the training process and the
loss function. The training process could be separated into
unsupervised training and supervised training. Thanks to
supervised training, a semi-supervised autoencoder makes
full use of label information to provide a more appropri-
ate representation than traditional autoencoders. The loss
function (Eq. 1) is a combination of reconstruction loss and
binary cross-entropy loss.

Ltotal = Lrecons(x, x̂) + Lbinary(y, ŷ), (1)

where Lrecons(x, x̂) = ||x− x̂||22 is the reconstruction loss,
x is the input tree image, and x̂ is the reconstructed image
from the autoencoder. Lbinary(y, ŷ) = −y log(ŷ) − (1 −
y) log(1 − ŷ) is the binary cross entropy, where y is the
true binary label, and ŷ is the predicted probability of the
positive class.

The training process is made up of two types of training:

1) Unsupervised training: During this step, the architec-
ture and the loss function of our semi-supervised autoen-
coder are the same as that of the traditional autoencoder. Its
architecture consists of an encoder that maps the input data
into a lower-dimensional latent space representation and a
decoder that maps the encoding back into the original input
space.

2) Supervised training: In the supervised training, the
architecture of the encoder is the same as the traditional
autoencoder with an altered head designed for binary classi-
fication. The optimal values of parameters obtained through
the unsupervised training process are set as the initial values
of the encoder during the supervised training process.

IV. EXPERIMENTS

A. Dataset

Images were collected over two apple orchards in Souris,
Prince Edward Island, Canada (Lat. 46.44633N, Long.
62.08151W). Our dataset consists of UAV images of four
orchards containing both healthy and damaged trees. To
prepare the data for object detection models, the orthomosaic
is split into small patches of 515x512 pixels using a regular
grid. These patches are then divided into three subsets:
training, validation, and testing using 3-fold cross-validation
to ensure an unbiased evaluation of object detection models.

Trees have been annotated by indicating bounding box
locations, as well as their health status (healthy or damaged)
based on fieldwork inventories. The total number of trees in
the dataset is approximately 2,828, out of which 2,240 are
healthy, and 588 are unhealthy. The tree images were divided
into training, validation, and testing sets using stratified 10-
fold cross-validation, ensuring that the ratio of healthy and
damaged trees remains consistent across subsets.

B. Experimental setup

To evaluate the performance of our framework for tree
detection, we use the following metrics.

• Precision Pd (Eq. 2) is the percentage of correct detec-
tions among all the detected trees.

Pd =
TPd

TPd + FPd
(2)

• Recall Rd (Eq. 3) is the percentage of correctly detected
trees over the total number of trees in the ground truth.

Rd =
TPd

TPd + FNd
(3)

• F1-scored (Eq. 4) is the harmonic average of precision
and recall.

F1-scored = 2 ∗ Pd ∗ Rd

Pd + Rd
(4)

In equations 2, 3, and 4, the subscript d denotes detection,
TPd is the number of true positives (i.e. correctly detected
trees), FPd is the number of false positives (i.e. regions



Figure 3. Tree Detection using hard negative mining approach

Figure 4. Semi-supervised autoencoder for tree health assessment. The red box illustrates the unsupervised learning using a traditional autoencoder, and
the blue box represents the supervised training for tree health classification

incorrectly detected as trees), and FNd denotes the number
of false negatives (i.e. number of missed trees). On a test
image, a detection is considered as correct if the Intersection
Over Union (IOU) between the detected tree and the tree
region in the ground truth is greater than 50%.

To evaluate the performance of our framework for tree
health classification, we use the following metrics.

• Precision Pc (Eq. 5) is defined as the ratio of correct
classifications for a given class to the total number of
classifications made for that class.

Pc =
TPc

TPc + FPc
(5)

• Recall Rc (Eq. 6) is defined as the ratio of correct
classifications for a given class to the total number of
instances that actually belong to that class.

Rc =
TPc

TPc + FNc
(6)

• F1-scorec is the harmonic average of Pc and Rc of a
given class.

• Accuracy (Eq. 7) is defined as the ratio of the correct
classifications to the total number of tree instances

classified.

Accuracy =
Number of correct classifications
Total number of trees classified

(7)

In equations 5, 6, and 7, the subscript c denotes classifica-
tion, TPc is the number of correctly classified instances of
a given class, FPc is the number of instances incorrectly
classified as belonging to a given class, and FNc is the
number of instances incorrectly classified as not belonging
to a given class.

C. Detection results
The goal of this experiment is to evaluate the effectiveness

of the proposed HNM approach for tree detection. We use
the DeepForest object detector [34] as a baseline model. The
choice of DeepForest is motivated by its domain-specific
knowledge, as it is trained on a large dataset that includes
images of different tree species, ages, and environmental
conditions. We apply our HNM strategy on DeepForest
using its prebuilt model trained on The National Ecological
Observatory Network (NEON [35]) crowns dataset. Table
I shows the detailed and overall cross-validation results
for the proposed approach. From the table, we can see
that the proposed detection method achieves an overall F1-
score of 86.24%. We can also notice that the method is



Table I
DETAILED AND OVERALL CROSS-VALIDATION RESULTS OF THE TREE

DETECTION STAGE IN TERMS OF PRECISION, RECALL, AND F1-SCORE.

Folds Pd(%) Rd(%) F1-scored(%)
Fold1 82.25 87.24 84.67
Fold2 87.57 88.06 87.82
Fold3 87.87 84.73 86.27

Average 85.85 86.67 86.24

stable across folds. This demonstrates the robustness of our
model, which is able to perform well and consistently on
different partitions. Further, in the ablation study section,
we will demonstrate the importance of our HNM strategy in
improving detection results.

D. Health assessment and comparison with state-of-the-art
methods

We addressed the problem of tree health classification
using a discriminative semi-supervised autoencoder and
compared its performance with other widely used classifiers
including ResNet, VGG, and DenseNet. We trained ResNet,
VGG, and DenseNet on the same training set, using standard
supervised learning. These classifiers were pretrained on the
ImageNet dataset and fine-tuned on our tree dataset.

We evaluated the performance of all classifiers on the
test set, using the defined classification metrics. Our re-
sults in Table II showed that the proposed semi-supervised
autoencoder approach outperformed the other classifiers in
all metrics, achieving an accuracy of 98.06%. The ResNet,
VGG, and DenseNet classifiers achieved lower accuracy,
precision, recall, and F1-score, with the best-performing
model being ResNet with an accuracy of 90.85%. From the
table, we can see also that the compared classifiers achieved
unsatisfactory results for the unhealthy class compared to
the healthy class.

The outperformance of the proposed semi-supervised au-
toencoder over VGG, ResNet, and DenseNet for tree health
classification can be attributed to several factors. One of the
key advantages of the semi-supervised approach is its ability
to leverage both labeled and unlabeled data to learn robust
and discriminative features. This is achieved by enforcing
a reconstruction loss preserving the model input structure,
while also learning informative features for the classification
task. However, the compared models rely solely on labeled
data and use more complex and computationally intensive
architectures that may struggle to generalize to rare classes,
leading to a low performance for the class unhealthy. Over-
all, our results demonstrate the effectiveness of the proposed
discriminant semi-supervised autoencoder approach for tree
health classification.

Table II
OVERALL CROSS-VALIDATION RESULTS OF OUR MODEL COMPARED TO

OTHER DEEP LEARNING-BASED APPROACHES FOR HEALTH
ASSESSMENT IN TERMS OF PRECISION, RECALL, F1-SCORE, AND

ACCURACY. VALUES IN BOLD FONT CORRESPOND TO THE
BEST-ACHIEVED RESULTS

Health Status Pc(%) Rc(%) F1-scorec(%) Accuracy(%)
Resnet-101

Healthy 96.52 93.68 95.07 90.85Unhealthy 30.65 43.75 35.46
DenseNet-121

Healthy 96.78 92.56 94.61 90.07Unhealthy 28.46 48.75 35.74
VGG-16

Healthy 96.02 93.05 94.41 89.75Unhealthy 25.26 35 25.58
Discriminant semi-supervised autoencoder

Healthy 98.05 99 98.25 98.06Unhealthy 95.78 96.45 96.03

Table III
ABLATION STUDY RESULT OF THE DETECTION STEP. VALUES IN BOLD

FONT CORRESPOND TO THE BEST RESULTS

Baseline Model Pd(%) Rd(%) F1-scored(%)
Our detection model without HNM

DeepForest 84.82 86.18 85.46
YOLO 79.40 88.05 82.64

Our detection model with HNM
DeepForest 85.85 86.67 86.24

YOLO 82.01 88.99 84.81

V. ABLATION STUDY

• Importance of mining hard examples for tree de-
tection: In order to evaluate the performance of the
hard negative sampling strategy for tree detection, we
reported the results of training a baseline object detector
without hard negative samples by comparison to our
HNM-based approach. Table III reports the overall 10-
fold cross-validation results using two baseline mod-
els: DeepForest and YOLO-v5. The reported results
show that both YOLO and DeepForest benefited from
hard negative mining, with significant improvements
in F1-score. However, DeepForest consistently outper-
formed YOLO in all experiments, achieving higher
results. YOLO fine-tuned with the mined hard negatives
achieved an F1-score of 84.81%, outperforming the
YOLO baseline by 2.17%, which means that the de-
tector learns to eliminate a number of false detections.
Using the DeepForest model, the inclusion of hard neg-
atives in training improves the performance compared
to the baseline, with an improvement of 0.78% based
on the F1-score.

• Importance of unsupervised feature learning using
the auto-encoder module for tree health assessment:
We also conducted an ablation study to investigate
the contribution of unsupervised training using the
autoencoder component of the proposed approach. In



Table IV
ABLATION STUDY OF THE CLASSIFICATION STEP. VALUES IN BOLD

FONT CORRESPOND TO THE BEST RESULTS

Health Status Pc(%) Rc(%) F1-scorec(%) Accuracy(%)
Our classification model without the autoencoder

Healthy 97.57 96.56 97.06 95.35Unhealthy 87.49 90.69 88.97
Our classification model with the autoencoder

Healthy 98.05 99 98.25 98.06Unhealthy 95.78 96.45 96.03

Table IV, we report the results of our classifier without
and with the use of the autoencoder. We can see that
the unsupervised pretraining of the autoencoder is a
key component of the proposed approach, contributing
to its superior performance. Training the autoencoder
using unlabeled data, followed by supervised training
on labeled data for the specific task of tree classification
resulted in a 2.71% improvement in overall accuracy.
The improvement can also be seen through the other
metrics, precision, recall, and F1-score. This demon-
strates the effectiveness of our approach to extract
relevant features

Overall, the results of the ablation study highlight both the
significance of adopting the hard negative mining (HNM)
approach for object detection in complex backgrounds, as
well as the effectiveness of using a discriminant semi-
supervised autoencoder to extract relevant features for tree
health classification.

VI. CONCLUSION

In this paper, an effective framework is proposed to
address the problem of tree health assessment from UAV
images. The first stage addresses the tree detection problem
using a hard negative mining approach to improve tree
detection performance. The second stage deals with tree
health classification, where we propose a discriminative
semi-supervised autoencoder as a binary classifier to identify
damaged trees. Through our experiments, it has been shown
that significant detection performance gains can be achieved
by learning a baseline detection model with hard negative
mining, and that the semi-supervised autoencoder allows the
extraction of relevant features from damaged trees, which
significantly improves classification performance.

Our future work aims to investigate the use of other
bands such as red edge and near-infrared. These bands
have been shown to provide valuable information about
vegetation structure, to distinguish between trees and non-
tree objects. Additionally, the use of vegetation indices such
as the Normalized Difference Vegetation Index (NDVI) can
provide insights into tree health and stress levels. We thus
consider incorporating these modalities into our tree detec-
tion and health assessment approach for further performance
improvement.
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