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Abstract

This paper presents an efficient deep neural network model for diagnosing
Parkinson’s disease from gait. More specifically, we introduce a hybrid ConvNet-
Transformer architecture to accurately diagnose the disease by detecting the
severity stage. The proposed architecture exploits the strengths of both Con-
volutional Neural Networks and Transformers in a single end-to-end model,
where the former is able to extract relevant local features from Vertical Ground
Reaction Force (VGRF) signal, while the latter allows to capture long-term
spatio-temporal dependencies in data. In this manner, our hybrid architecture
achieves an improved performance compared to using either models individu-
ally. Our experimental results show that our approach is effective for detecting
the different stages of Parkinson’s disease from gait data, with a final accuracy
of 88%, outperforming other state-of-the-art AI methods on the Physionet gait
dataset. Moreover, our method can be generalized and adapted for other clas-
sification problems to jointly address the feature relevance and spatio-temporal
dependency problems in 1D signals. Our source code and pre-trained models
are publicly available at https://github.com/SafwenNaimi/1D-Convolutional-
transformer-for-Parkinson-disease-diagnosis-from-gait.
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1 Introduction

Parkinson’s disease is a progressive neurological disorder mainly affecting the ability of
the patient to control movement, in addition to the risk of causing mental and cognitive
disorders depending on patients and severity stages. It is named after the British doctor
James Parkinson, who first described the condition in 1817 [1]. Parkinson described
the characteristic symptoms of the disease, including tremors, stiffness, and difficulty
with movement. The exact cause of Parkinson’s disease is not known, but it is believed
to be related to a combination of genetic and environmental factors. The disease is
associated with a loss of cells in a specific area of the brain called the substantia
nigra, which is involved in the production of a neurotransmitter called dopamine. The
loss of dopamine in the brain leads to the characteristic symptoms of Parkinson’s
disease. Over the years, many treatments have been developed for Parkinson’s disease,
including medications, surgery, and physical therapy [2]. Despite these treatments,
there is no cure for the condition, and it is generally a chronic and progressive disease.
In recent years, research into the causes and potential treatments for Parkinson’s
disease has intensified, and new discoveries are being made at a regular pace. As a
result, the outlook for people with Parkinson’s disease has improved, and many are
able to live full and active lives with the condition.

Staging Parkinson’s disease relates to the process of determining its severity in a
patient. It is a way to classify the progression of the disease and help guide treatment
decisions. There are several ways to stage Parkinson’s disease, including clinical evalu-
ation surveys, such as the Unified Parkinson’s Disease Rating Scale (UPDRS) [3] and
the Hoehn and Yahr (H&Y) scale [4]. Both methods are based on surveys and are
carried out by a healthcare professional. The UPDRS is a commonly used scale for
evaluating the severity of PD symptoms. The evaluation is done through a series of
questions and tasks that are designed to assess various aspects of the disease, including
motor symptoms, non-motor symptoms, and overall functional ability. The UPDRS is
an important tool in the management of Parkinson’s disease, providing crucial infor-
mation to both patients and healthcare professionals [5]. The Hoehn and Yahr (H&Y)
scale is another tool that is often used to assess the severity of PD. This scale is based
on a clinical examination and is used to determine the stage of the disease. The scale
ranges from stage 1 (mild symptoms) to stage 5 (severe symptoms), and the results
are used to guide treatment decisions and to help predict the course of the disease [6].

Several decision-support methods have been proposed to detect Parkinson’s dis-
ease. These methods aim to assist in the early detection and diagnosis of PD by
identifying characteristic patterns or abnormalities in signals that are indicative of
the disease. Generally, the proposed methods learn to classify input data and find
patterns that indicate PD. Some of them involve designing and implementing algo-
rithms to extract handcrafted features from a person’s gait or other movement data
that are indicative of the disease. Spectral analysis [7, 8] and wavelet analysis [9, 10]
are examples of handcrafted signal processing methods that have been used to detect
Parkinson’s disease by decomposing signals into frequency components. They can be
useful in identifying characteristic changes in the frequency content of physiological
signals, such as Electroencephalogram (EEG) and Electromyography (EMG) that are

2



indicative of the disease. Time-domain analysis is another approach that involves ana-
lyzing the time-domain representation of a signal, such as a person’s gait data, to
identify specific features that may be indicative of PD. Changes in stride length or
walking speed over time can be used as features for detecting the disease [11–13].

Handcrafted features can be used as inputs to train machine learning algorithms
such as support vector machines (SVMs) [14], decision trees, and deep learning algo-
rithms to classify a given signal as belonging to a PD patient or a healthy individual.
However, handcrafted methods are often limited in their ability to extract distinc-
tive representations. To address this, other methods use deep learning architectures
to learn relevant features directly from the signal as they are able to better represent
the distinctive characteristics of the disease [15].

In this paper, we focus on how to diagnose PD while predicting disease severity.
Previous works [16–18] have shown that it is possible to analyze foot signals, captured
during a walk, to detect characteristic patterns or abnormalities related to PD. In
several studies, the signals collected from the feet of a patient represent the vertical
ground reaction force (VGRF) in function of time, as measured by 18-foot sensors
[19–21]. The VGRF is the force exerted by the ground on the feet of a person as they
walk, and it can provide valuable information about the patient’s gait and physical
condition. Therefore, in this work, we are using 1-dimensional (1D) VGRF signals to
classify the stage of PD based on the H&Y scale.

Our method relies on a novel hybrid end-to-end architecture, where a Convolu-
tional Neural Network (ConvNet) is used to extract relevant local features from VGRF
signals, followed by Transformers to align these features, in order to classify the stage
of PD. To ensure a precise diagnosis, the signals are first divided into segments. These
segments are then classified by the model into corresponding PD stages. The final
patient classification is determined by a majority voting process, which takes into
account the most occurring stage among all segments of the patient’s walk.

The key contribution of this work is a new neural network architecture designed
for detecting PD and staging disease severity. Our Hybrid ConvNet-Transformer com-
prises two main components, to capture both local and global features from signal. The
ConvNet captures local patterns, while the Transformer captures long-term depen-
dencies and temporal relationships. By exploiting these two aspects, our model can
learn complex relationships in the signal that are indicative of PD. Through experi-
ments, we demonstrate that this method is more accurate than existing methods for
detecting and staging PD. Moreover, the proposed architecture can be generalized for
other signal classification problems, to jointly address the feature relevance and spatio-
temparal dependency issues. The source code of this project is publicly available to
ensure reproducibility for future research.

2 Related Work

Previous research on PD stage classification has used various machine learning and
deep learning models to analyze gait data, which can be collected using wearable sen-
sors or vision-based systems. These models have been used to investigate the potential
of gait data for accurately classifying PD patients into different stages of the disease.
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Caramia et al. [16] studied the use of inertial sensors, consisting of 8 Inertial Mea-
surement Units (IMUs), to collect gait data from 25 patients with Parkinson’s disease
(PD). They extracted spatio-temporal gait features from the data, which were then
used as input for different classifiers. Mirelman et al. [22] also used IMU to classify PD
stages based on H&Y scale. They applied a RUSBoost classifier to the data. However,
the authors noted that the classification rates of PD stages with IMU were not satis-
factory, due to issues such as sensor drift and noise contamination. This means that
the accuracy of these classifiers can be affected by changes in the sensor over time and
by noise in the data, leading to lower classification rates.

The use of computer vision techniques to predict the severity of PD from markerless
RGB / RGBD cameras has gained attention. These techniques involve extracting
2D/3D poses of the PD patient from videos and then using machine learning or deep
learning models to classify the PD stages based on the extracted poses. Sabo et al. [23]
used this approach to extract both 2D and 3D skeletons of PD patients from videos and
applied multivariate ordinal Logistic Regression (LR) models to classify the patients
based on their poses. While this approach showed some promise, it has been found
that the results are not always accurate. Further research is thus needed to improve
the detection of Parkinson’s disease from videos and more advanced techniques are
needed to achieve better results.

El Maachi et al. [18] and Veeraragavan et al. [17] studied the use of machine learn-
ing techniques to classify Parkinson’s disease stages from gait data. El Maachi et al.
used a 1D-Convolutional Neural Network (1D-ConvNet) to stage PD, while Veerara-
gavan et al. used an Artificial Neural Network (ANN). Both methods achieved good
performance in staging PD based on the physiological data. However, there are still
some limitations in using only ConvNets to capture the relationship between sensors.
ConvNets are known to be effective in capturing local spatial information, but they
are not the best option for capturing global patterns or relationships between different
sensors. On the other hand, using only ANNs to capture local information may not
be sufficient, as it may not be able to fully capture the complex patterns in physiolog-
ical data. Additionally, both methods may not be able to effectively handle missing
or noisy data, and may not be able to fully capture the complex temporal patterns in
physiological data. These limitations highlight the need for further research and devel-
opment in this field, such as utilizing more advanced architectures or incorporating
domain knowledge. Our work is in line with this research axis, with the objective of
improving the robustness of PD diagnosis and the accuracy of severity prediction.

3 Proposed Approach

In this study, we address the issue of identifying Parkinson’s disease stages using
gait information from foot sensors. The overall architecture of our proposed model is
depicted in Figure 1. Our input data are S VGRF 1D signals from a patient’s walk,
which represent the vertical ground reaction force as a function of time recorded by
foot sensors. We first divided each walk into smaller segments of p elements to obtain
more data. The number of elements is chosen so that enough information is stored in
each segment.
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Fig. 1 Overall Architecture of our Hybrid ConvNet-Transformer model. It is made of a Feature
Extractor (1D-ConvNet/Temporal Transformer Encoder/FC Layer/Spatial Transformer Encoder)
and a Classifier (Two FC Layers followed by an Output Layer divided into the four stages of PD).

The feature extractor is made up of S parallel 1D-ConvNets. Each network accepts
a segment as input and processes it through convolutional layers. This 1D-ConvNet
parallelization enables the independent treatment of every signal, which is recom-
mended since they have different characteristics because each sensor collects a specific
VGRF from a specific position of the foot. Therefore, each time series has its own
deep features.
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The temporal dependencies, which are the connection between two values of a vec-
tor spaced apart in time, can be captured using the Transformers. The output vector
of each 1D-ConvNet is thus passed through a temporal transformer encoder. The spa-
tial dependencies between each set of vectors emanating from the foot sensors can
likewise be captured using the spatial transformers after performing a dimension reduc-
tion. Such dependencies can be the relative position between sensors and co-occurring
VGRFs. The classifier is a fully connected network operating on the concatenation
of the features extracted by the spatial transformer encoder. The final walk classifi-
cation is decided according to the majority classification of all the subject segments.
Our proposed architecture is detailed in the following subsections.

3.1 1D-ConvNet

The network starts with S parallel 1D-ConvNet layers, designed to analyze the gait
patterns of each foot sensor by identifying patterns over time in the time series data,
thereby allowing the extraction of distinct features. This is because each sensor records
data from a specific point, resulting in different time series with diverse deep features
that need to be analyzed separately.

The model is made up of Bc convolutional blocks, each consisting of 2 convolutional
layers followed by 1 max pooling layer, as illustrated in Figure 2. This design is used
to extract important features and reduce the computational complexity [24]. The 1D-
convolutional layers apply filters to the 1D-gait VGRF signals, creating a feature map
that summarizes the detected features. The convolution is applied using the following
equation:

y[i] =

n−1∑
j=0

x[i+ j] ∗ w[j] + b, (1)

where x is the input data, w is the kernel (or filter), b is the bias, and y is the output.
The symbol ∗ represents the element-wise multiplication, and the sum is taken over
the filter window of size n.

The advantage of this approach is that it takes into account the local structure
of the data while maintaining the sequential information of the input sequence and

Fig. 2 Internal structure of a 1D-ConvNet block
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learning local correlations simultaneously. By adjusting the number of convolutional
blocks and the size of the filters, it is possible to adjust the level of abstraction and
the robustness of the model.

3.2 Temporal Transformer Encoder

In our model, we employ temporal transformer encoder architecture to reduce intra-
class variance and capture long-term dependencies in the data. The encoder is a crucial
component of the temporal transformer model. It is responsible for encoding the input
sequence and generating a set of representations that capture the dependencies within
the data [25]. We opted for S parallel temporal transformer encoders, each contain-
ing Btt blocks to enhance the performance of the model. Each temporal transformer
encoder block in our architecture is composed of one multi-head attention layer with
two heads and a feed-forward network, similar to the architecture proposed in BERT
for natural language processing [26].

To capture temporal dependencies, we used a fixed positional encoding with a
constant step according to the appropriate segment length. This is motivated by the
fact that gait data was separated into fixed and constant segments. Moreover, the use of
a fixed positional encoder allowed for effective modeling of the temporal dependencies
within these segments. The fixed positional encoder used in our model is a variation
of the original transformer positional encoder. It is designed to work with fixed-length
inputs. Additionally, we normalized the positional encoding to prevent the complete
masking of information in the original vector.

3.3 Spatial Transformer Encoder

The main role of the spatial transformer is to identify dependencies between sensors,
by taking into account the spatial distribution of sensors on the foot and potentially
discovering correlations between them.

The outputs of the S parallel temporal transformer encoders are concatenated
after performing dimension reduction with the S parallel Fully Connected Layers.
This helps to obtain a more compact data representation and remove any redundant
information. This concatenated vector is used as input for the Bst spatial transformer
encoder blocks, which are supplemented with another fixed positional encoder used to
provide the spatial transformer encoder with information about the relative position of
the input elements in the concatenated vector. Similarly to the temporal transformer
encoders, we opted for one multi-head attention layer with two heads and a feed-
forward network.

3.4 Classifier Block

To predict the PD stage, we used a classifier composed of two fully connected layers and
an output layer as the final components of our hybrid ConvNet-Transformer model.
This block takes in the output of the spatial transformer encoder and produces a
probability distribution over classes of PD severity. We trained the classifier using
a categorical cross-entropy loss function [27] to update the weights and biases. The
probabilities were then used to determine the predicted PD stage for each input data.
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4 Experimental results and evaluation

In the following subsections, we present the results of our experiments and provide a
detailed analysis of our findings. First, we describe the dataset used in our experiments.
Next, we explain the evaluation metrics used to measure the performance of our model.
We also provide the technical details of our model implementation. We then present
the results of our experiments, discuss them in details and compare them to other
methods. Finally, we conduct an ablation study to further analyze the impact of
different components of our model on performance.

4.1 Dataset

For our study, we used the publically available Physionet gait dataset [31]. The gait
dataset was created by three groups of researchers, namely Yogev et al. [28], Hausdorff
et al. [29] and Toledo et al. [30]. It contains three gait patterns acquired through
walking on a level ground, walking with rhythmic auditory stimulation (RAS), and
walking on a treadmill. The dataset contains the gait pattern from 93 patients affected
with PD and 73 healthy subjects. The dataset collected by [28] consists of a gait
pattern for normal walking on a level ground. The dataset contributed by [29] contains
the gait cycle for walking at a comfortable pace with RAS. The contribution from [30]
comprises a gait time series data for walking on a treadmill.

Table 1 gives the demographics of the participating subjects, from whom gait data
was collected. Table 2 presents the total number of healthy and PD subjects with their
level of severity in each dataset, determined according to the H&Y scale.

Figure 3 illustrates the difference in VGRF reading for control versus PD subjects.
The plots of the right foot VGRF signal of a control patient and a Parkinson’s disease
patient may differ in terms of amplitude, shape, and signal timing. The recurrence
plots of Control subjects display orderly and consistent texture patterns. The VGRF
signal in these plots has a steady amplitude and a regular shape, with predictable
timing. As the severity of Parkinson’s disease increases, the deviations in the VGRF
signal may become more pronounced. The VGRF signal shows greater asymmetry
in the gait pattern and reduced force applied to the left foot compared to a control
patient. These deviations may impact mobility and functional ability to a greater
extent and may require more intensive treatment and management.

4.2 Evaluation Metrics

We tested our algorithm on 300 walks using 10-Fold cross-validation. At the subject
level, we separated both the Parkinson’s and the control groups into 10 folds. As a
result, we were able to maintain the same dataset balance for each fold (70% Parkinson

Table 1 Demographics of healthy subjects and PD subjects in three datasets

Dataset Group Subjects Male Female Age (Yrs) Height (Meter) Weight (Kg)
Mean±SD Range

Yogev et al. [28] Healthy 18 10 8 57.9±6.7 37-70 1.68±.08 74.2±12.7
PD 29 20 9 61.6±8.8 36-77 1.67±.07 73.1±11.2

Hausdorff et al. [29] Healthy 26 12 14 39.31±18.51 20-74 1.83±.08 66.8±11.07
PD 29 16 13 66.80±10.85 44-80 1.87±.15 75.1±16.89

Toledo et al. [30] Healthy 29 18 11 64.5±6.8 53-77 1.69±.08 71.5±11.0
PD 35 22 13 67.2±9.1 61-84 1.66±.07 70.3±8.4
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Table 2 Number of subjects in the three datasets based on severity rating

Dataset Healthy Severity 2 Severity 2.5 Severity 3

Yogev et al. [28] 18 15 8 6

Hausdorff et al. [29] 26 12 13 4

Toledo et al. [30] 29 29 6 0

Fig. 3 Plots of the left foot VGRF signal of a Control patient and patients with different Parkinson’s
disease stages

- 30% Control). The utilized performance metrics are given below, and include TP as
the number of true positives, TN as the number of true negatives, FP as the number
of false positives, and FN as the number of false negatives.

Accuracy (%):Acc =
TP + TN

TP + TN + FP + FN
× 100% (2)

Precision:Pr =
TP

TP + FP
(3)

Recall:Re =
TP

TP + FN
(4)

F1-Score = 2× Pr ×Re

Pr +Re
(5)

The accuracy shows the degree of all truly classified observations. Precision is a
measure of how many of the positive predictions made are correct (true positives). The
recall is a measure of how many of the positive cases the classifier correctly predicted,
over all the positive cases in the data. The F1-score may be thought of as a harmonic
mean of accuracy and recall, with the highest value being 1 and the lowest being 0.
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Table 3 1D-ConvNet parameters used in our approach

Layer Type Stride Kernels Padding
1 Convolutive 1 8 ’valid’
2 Convolutive 1 16 ’valid’
3 Max-Pooling 2 16 ’valid’
4 Convolutive 1 16 ’valid’
5 Convolutive 1 16 ’valid’
6 Max-Pooling 2 16 ’valid’

4.3 Implementation details

Before analyzing the 1D signals extracted from the Physionet gait dataset, we applied
data preprocessing techniques. For the control patients, we noticed that some data
values were missing and replaced them with zeroes. We also normalized the signals
to have a mean of zero and a standard deviation of one, and divided each walk into
smaller segments of p = 100 time steps with 50% overlap. These segments were labeled
with the subject category and were initially created from the 1D signals.

The 1D-ConvNet layers are made of Bc = 2 blocks. Since we are processing data
from 18 sensors, we use S = 18 parallel processing streams. The parameters of each
1D-ConvNet layer are given in Table 3.

The temporal transformer encoder is made of Btt = 1 block. Its input is a vector
of p = 100 elements resulting from the 1D-ConvNet layers, and the output is a vector
of 10 elements obtained by applying global average pooling, a dropout regularization
layer, and a FC layer. This last FC layer is used to scale down the output vectors from
100 elements to 10 elements to reduce its dimensionality and make it easier to extract
meaningful information from data. The spatial transformer encoder is made of Bst = 1
block. The corresponding input is composed of 18 outputs of 10 elements from the
S = 18 parallel temporal transformers that have been dimensionally reduced. Except
for the output, where we utilized a Softmax activation function, every fully connected
layer is using the SeLU activation function (scaled exponential linear units) [32].

The proposed hybrid ConvNet-Transformer model is trained, validated, and tested
separately, using a batch size of 150 samples for each iteration. We trained for 30
epochs. The proposed model is trained using the Nadam [33] stochastic optimization
method with the following parameters: α = 0.001, β1 = 0.9, β2 = 0.999, where α is
the learning rate, β1 and β2 are the exponential decay rates for the first and second-
moment estimations, respectively. To improve the model performance and reduce
overfitting, we opted for a dropout rate of 0.1 and early stopping.

4.4 Results and Discussion

In Table 4, we compare the results of our proposed architecture with those of
other studies to stage PD. Based on the results of this table, our hybrid ConvNet-
Transformer achieved the highest accuracy among the compared methods. It was
able to effectively classify different stages of Parkinson’s disease, resulting in an accu-
racy of 87.89%. This suggests that the combination of the ConvNet and Transformer
can successfully detect and classify Parkinson’s disease by taking advantage of their
strengths.
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Table 4 Comparison of Classification Algorithms for Parkinson’s Disease

Selected Study Detection Algorithm Stages Accuracy
Caramia et al. [16] SVM-RBF H&Y Scale 75.60%

Veeraragavan et al. [17] ANN H&Y Scale 76.08%
El Maachi et al. [18] 1D-ConvNet UPDRS 85.30%

Our Work Hybrid ConvNet-Transformer H&Y Scale 87.89%

The support vector machine with a radial basis function kernel (SVM-RBF) algo-
rithm used in the study of Caramia et al. [16] had the lowest accuracy of 75.6% when
evaluated using the H&Y scale. This method is a type of supervised learning algo-
rithm that can be used for classification tasks. It works by finding a hyperplane in
feature space that maximally separates different classes. SVM-RBFs are often effec-
tive for classification tasks but can be sensitive to the choice of kernel parameters. The
study conducted by El Maachi et al. [18] achieved the second-highest accuracy among
the four selected studies, using a 1D-ConvNet detection algorithm only and UPDRS
scale stages. In this study, the ConvNet method was able to identify and classify differ-
ent stages of Parkinson’s disease, resulting in an accuracy of 85.30%, although not as
accurate as our hybrid ConvNet-Transformer architecture. Finally, the study by Veer-
aragavan et al. [17] had an accuracy of 76.08% for 10-fold cross-validation, using an
ANN detection algorithm and H&Y scale. This could be due to the limitations of the
ANN algorithm in accurately detecting and classifying the stages of Parkinson’s dis-
ease. Overall, these results indicate that the use of our hybrid ConvNet-Transformer
model improved the accuracy of detecting PD and classifying its severity stages.

The detailed confusion matrix obtained from the 10-Fold Cross-Validation method
of our architecture is displayed in Figure 4. It has an accuracy of 93% for class 0
(Healthy), an accuracy of 85% for class 1 (H&Y stage 2), an accuracy of 89% for class
2 (H&Y stage 2.5), and an accuracy of 74% for class 3 (H&Y stage 3). Overall, the
classifier seems to perform well for the majority classes (class 0, class 1, and class 2),
but less for the minority class (class 3). This might be attributable to the dataset
imbalance, which can unfairly distort results because more data are available for stages
2 and 2.5 than for stage 3 in the Physionet gait dataset as mentioned in Table 2.

The global accuracy rate of our classifier is 87.89%, which corresponds to the
classification of a patient based on his/her entire walk in the validation set. It is worth
noting that some healthy individuals may walk in a way that appears similar to the
characteristic shuffling gait often seen in people with Parkinson’s disease. This can
lead to incorrect classifications in our algorithm, as it may mistake a healthy person’s
abnormal walk for a Parkinsonian walk. Detailed 10-Fold Cross-Validation results of
the severity level prediction per class are shown in Table 5 below.

Our model has higher precision and recall for the severity 2 (label 1) and severity 2.5
(label 2) classes. For the severity 3 (label 3) class, the model has a slightly lower recall
but a relatively high precision. For the Healthy (label 0) class, the model has a high
recall but a relatively low precision. Overall, the macro average and weighted average
F1-score of the model are both around 0.87, indicating that the model performs well
in general. We can observe that the F1-score is quite stable across classes, indicating
that the algorithm predictions are generally accurate.
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Fig. 4 Confusion Matrix for the H&Y staging. 0: Healthy (Severity 0), 1: Mild (Severity 2), 2:
Medium (Severity 2.5), 3: High (Severity 3)

Table 5 10-Fold Cross-Validation results for the H&Y staging

Label #Subjects Precision Recall F1-Score Accuracy

0 (Healthy) 90 0.80 0.93 0.86

0.88
1 (Severity 2) 110 0.86 0.85 0.85
2 (Severity 2.5) 73 0.88 0.89 0.88
3 (Severity 3) 27 0.95 0.74 0.83

Macro Avg 300 0.87 0.85 0.86
Weighted Avg 300 0.87 0.88 0.88

Figure 5 illustrates the accuracy and loss for the training and validation plots. We
can observe that we were able to prevent overfitting between training and validation.
As the training accuracy improves, the accuracy of the validation set also improves.
Additionally, the same pattern is observed for the loss curves, as the training loss
decreases, the validation loss also decreases, indicating a strong correlation between
the two.

4.5 Ablation Study

In this section, we investigate ablation scenarios by comparing the proposed hybrid
ConvNet-Transformer model to some closely related model designs in order to iden-
tify its important properties. By conducting an ablation study, we can gain a better
understanding of how different components of the architecture contribute to the over-
all performance of the model and identify potential improvements that could be made
to enhance its accuracy.

Table 6 shows the principal components of each model used in the ablation study.
In model A, we removed the Temporal Transformer Blocks and kept the rest of the
components. In model B, we removed the Spatial Transformer Block and the previous
parallel fully connected layers. In model C, we removed the Transformer part (Tempo-
ral Transformer Encoder and Spatial Transformer Encoder) and kept the 1D-ConvNet
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Fig. 5 Training and Validation Plots for Parkinson’s severity level prediction

Table 6 Summary of the ablation study. Boldface is used to highlight the best results

1D-ConvNet Spatial
Transformer

Temporal
Transformer

Label Precision Recall F1-Score Accuracy

Model A ✓ ✓ ×

Healthy 0.89 0.8 0.84

0.83
Severity 2 0.77 0.92 0.84
Severity 2.5 0.89 0.81 0.85
Severity 3 0.91 0.52 0.68

Weighted Avg 0.85 0.83 0.83

Model B ✓ × ✓

Healthy 0.72 0.93 0.81

0.84
Severity 2 0.85 0.84 0.85
Severity 2.5 0.85 0.87 0.86
Severity 3 0.94 0.6 0.73

Weighted Avg 0.85 0.84 0.84

Model C ✓ × ×

Healthy 0.75 0.9 0.82

0.84
Severity 2 0.84 0.86 0.85
Severity 2.5 0.87 0.86 0.87
Severity 3 0.9 0.67 0.77

Weighted Avg 0.85 0.84 0.84

Model D × ✓ ✓

Healthy 0.58 0.97 0.72

0.79
Severity 2 0.82 0.81 0.82
Severity 2.5 0.88 0.71 0.78
Severity 3 0.9 0.73 0.82

Weighted Avg 0.82 0.79 0.79

Final Model ✓ ✓ ✓

Healthy 0.8 0.93 0.86

0.88
Severity 2 0.86 0.85 0.85
Severity 2.5 0.88 0.89 0.88
Severity 3 0.95 0.74 0.83

Weighted Avg 0.87 0.88 0.88

Block. The obtained architecture is similar to that in [18]. In model D, we removed
the 1D-ConvNet and we maintained all the transformer blocks. We obtained a similar
model to that in [34].

Based on a comparison between the results of the final model and those of other
versions, we can observe that our final model achieved the best overall performance.
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While the efficiency of different models varies across different labels, our model gener-
ally performs better across most labels. This demonstrates that the proposed hybrid
ConvNet-Transformer architecture is able to ensure better stability of the model per-
formance across different labels, resulting in a more robust model overall. This ablation
study shows that removing or replacing components of our model leads to a decrease
in performance. This demonstrates that each component of our model is important to
ensure optimal overall performance.

5 Conclusion

In this paper, we proposed a method for detecting Parkinson’s disease stages using
a novel hybrid ConvNet-Transformer architecture. By using a Convolutional Neural
Network to extract local features and a Transformer Network to capture long-range
dependencies, our method is able to effectively model the complex nature and dynam-
ics of the parkinsonian gait. We evaluated our method on the public Physionet gait
dataset using VGRF data and demonstrated its effectiveness in detecting the dif-
ferent stages of the disease. Compared to existing methods, our approach showed
an improved performance with an accuracy of 87.89%. The increasing availability of
biomedical sensors represents an important opportunity for widespread implemen-
tation of our approach in the future, particularly for monitoring gait abnormalities
in elderly populations. In conclusion, our hybrid ConvNet-Transformer architecture
marks an advancement towards the development of AI-based tools for Parkinson’s
disease diagnosis. The source code and pre-trained models for this study are publicly
available on GitHub, making it possible for other researchers to reproduce the results
and build upon our work.
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