
eCommons@AKU eCommons@AKU

Book Chapters / Conference Papers

7-2017

A software development process for freshman undergraduate A software development process for freshman undergraduate

students students

Catherine Higgins

Fredrick Mtenzi

Ciaran O’leary

Orla Hanratty

Claire McAvinia

Follow this and additional works at: https://ecommons.aku.edu/book_chapters

 Part of the Software Engineering Commons

http://www.aku.edu/Pages/home.aspx
http://www.aku.edu/Pages/home.aspx
https://ecommons.aku.edu/
https://ecommons.aku.edu/book_chapters
https://ecommons.aku.edu/book_chapters?utm_source=ecommons.aku.edu%2Fbook_chapters%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ecommons.aku.edu%2Fbook_chapters%2F465&utm_medium=PDF&utm_campaign=PDFCoverPages

HAL Id: hal-01762907
https://inria.hal.science/hal-01762907

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

A Software Development Process for Freshman
Undergraduate Students

Catherine Higgins, Fredrick Mtenzi, Ciaran O’leary, Orla Hanratty, Claire
Mcavinia

To cite this version:
Catherine Higgins, Fredrick Mtenzi, Ciaran O’leary, Orla Hanratty, Claire Mcavinia. A Software
Development Process for Freshman Undergraduate Students. 11th IFIP World Conference on Com-
puters in Education (WCCE), Jul 2017, Dublin, Ireland. pp.599-608, �10.1007/978-3-319-74310-3_60�.
�hal-01762907�

https://inria.hal.science/hal-01762907
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

584

A Software Development Process for Freshman
Undergraduate Students

Catherine Higgins1, Fredrick Mtenzi1, Ciaran O’Leary1, Orla Hanratty1 and
Claire McAvinia1

1Dublin Institute of Technology, Aungier St, Dublin 2, Ireland
{catherine.higgins, fredrick.mtenzi, ciaran.oleary,

orla.hanratty, claire.mcavinia}@dit.ie

Abstract. This conceptual paper presents work which is part of an ongoing research
project into the design of a software development process aimed at freshman,
undergraduate computing students. The process of how to plan and develop a
solution is a topic that is addressed very lightly in many freshman, undergraduate
courses which can leave novices open to developing habit-forming, maladaptive
cognitive practices. The conceptual software development process described in this
paper has a learning process at its core which centres on declarative knowledge (in
the form of threshold concepts) and procedural knowledge (in the form of
computational thinking skills) scaffolding freshman software development from
initial planning through to final solution. The process - known as Computational
Analysis and Design Engineered Thinking (CADET) - aims to support the structured
development of both software and student self-efficacy.

Keywords. Introductory software development process ∙ computational thinking ∙
threshold concepts

1. Introduction

A software development process is a mechanism which informs a software developer
of the steps and stages involved in developing quality software from initial analysis to
final design and implementation [1]. Even though there are many software
development processes available for experienced developers, very little work has been
carried out on developing appropriate processes for freshman, 3rd level learners [2].
This lack of appropriate software development processes presents a vacuum for
educators which means that software analysis and design is typically taught very
informally and implicitly on introductory courses at 3rd level with an emphasis instead
on teaching a programming language [3-6]. Unless they are guided to do otherwise,
novices will often jump straight into implementing some aspect of a solution without
any planning because they can find it difficult to separate ideas for solutions from the
implementation of those ideas [7, 8]. This can lead to novices adopting maladaptive
cognitive practices in software development, particularly surface practices (e.g.
coding by rote learning) which can be very difficult to unlearn and can ultimately
prohibit student progression in the acquisition of software development skills [9]. It
has also been found that problems in designing software solutions can persist even to

585

graduation [10]. Therefore, it follows that if a software development process is
incorporated explicitly in an appropriate way into introductory courses to scaffold
students in software development, this could limit the development of such
maladaptive practices.

This paper describes a conceptual and dynamic software development process
which has been devised for undergraduate freshman learners. Section 2 describes
related research while section 3 gives a short overview of the framework on which the
process is based. Section 4 describes the factors that guided the operationalision of the
framework into a software development process. Section 5 describes the process and
section 6 concludes the paper with a discussion of the contribution this paper makes
to software engineering educational research.

2. Related research

There has been a wealth of research over many decades into software development
education within the context of improving retention and development proficiency at
3rd level. Research has focused on many areas such as reviewing the choice of
programming languages and paradigms suitable for novice learners with a wide
variety of languages suggested from commercial, textual languages through to visual
block-based languages [11]; the development of visualisation tools to create a
diagrammatic overview of the notional machine as a user traces through programs and
algorithms [12, 13]; and the use of game based learning as a basis for learning
programming and game construction [14, 15].

Research that specifically looks at software development processes for
introductory courses at 3rd level have a tendency to focus attention on a particular
stage of the development process. Examples are the STREAM process [2] which
focuses on design in an object oriented environment; the P3F framework [16] with a
focus on software design and arming novice designers with expert strategies; a
programming process by Hu et al [17] which focuses on generating goals and plans
and converting those into a coded solution via a visual block-based programming
language; POPT [18] which has a focus on supporting software testing; and Morgado
& Barbosa’s process [19] which aims to support students from problem presentation
to the development of a solution though the use of template forms coupled with an
instructor supplied prototype. The process described in this paper is similar to
Morgado & Barboso’s process in that it aims to support all stages of developing
software but the focus here is based on the provision of a process that can grow with
students’ experience. The process is not tied to any particular programming paradigm
but its use is assumed to be in the context of imperative, commercial programming
languages which are commonly taught at 3rd level [20].

3. Computational Analysis and Design Engineered Thinking
(CADET) Framework

Prior to the development of a software development process, it was important to
formulate a framework on which the process will be based. The role of this

586

framework is to guide the context and content of the resulting software development
process. The first issue that required attention was in understanding the context in
which the software development process would be used. This is an environment
where freshman undergraduate students typically have little or no programming
experience and are learning how to develop software solutions in a systematic
fashion. This brought up an interesting question – should students be taught how to
program first and then be introduced to a software development process or should
programming concepts and skills be taught as part of a process? This research takes
the latter view as teaching students how to program independently of process runs the
risk of students developing poor development habits that become ingrained by the
time they learn a process. Therefore, the software development process is scaffolded
so that it inherently encompasses a learning process which can slowly fade as students
gain expertise of developmental concepts, practices and grow their self-efficacy. The
relationship between learning process and software development process is visualised
in figure 1 where the 4 stages of competence model [21] is used to timeline the
progression of learning.

Fig. 1. From Learning Process to Software Development Process (Source: Author)

Initially, the learner is categorised as an unconscious incompetent who doesn’t
know what they need to know so the software development process is heavily
scaffolded as a learning process where students are guided to use the software
development process to solve a suite of problems that are appropriate to each stage of
their learning. By the time the user has gained experience of the foundational
developmental concepts and practices, the scaffolding of the learning process will be
removed to allow the learner continue to use the software development process in
solving new and more complex problems as they expand their learning and continue
their journey towards becoming unconscious competents.

Once the context of the environment was understood, a conceptual framework was
devised and developed in order to fully identify the components and activities in the
learning process. The full details of the background, rationale for - and development
of - the framework can be found in reference [22]. A diagrammatic overview of the
framework is given in figure 2.

Fig. 2. The CADET Framework (Source: Author)

587

In summary, the concepts represent the declarative knowledge that students need
in order to be able to understand and use programming constructs. These concepts are
categorised as four threshold concepts stages [18]. TC1 State and Sequential Flow
involves gaining an understanding of “simple” data items (e.g. characters, numbers
and strings) and how their state changes when sequential actions are carried out on
them. TC2 Non-sequential Flow Control keeps the focus on state but adds complexity
to this idea by presenting more complex actions such as iteration and how these
actions affect state and flow control. TC3 Modularity introduces modularity and how
that affects state and especially flow control. Finally, TC4 Object Behaviour - which
is optional and is only used in an object-oriented environment - examines the idea of
objects and the connection between state and behaviour and how objects interact and
activate each other’s behaviour.

The practices represent the procedural knowledge that students need in order to
be able to apply the above concepts when solving problems. These practices are
categorised as computational thinking skills and are codified as skills CT1 – CT6 in
column 2 of figure 2. Finally, the perspectives are the affective issues that impact
learning which are considered to be embodied in self-efficacy.

This framework marries current research into threshold concepts, computational
thinking and affective learning to produce a framework that supports declarative
knowledge (threshold concepts), procedural knowledge (computational thinking) and
affective learning issues [18]. Learning these knowledge areas is facilitated by
instruction and by repeatedly solving problems using Pólya’s problem solving model
[23] which has been adapted to suit the context of this research [18]. The framework
(and subsequent process) is known as computational analysis and design engineered
thinking (CADET).

4. Operationalisation of Framework to Process

As part of the operationalisation and development of the framework into a software
development process, current best practice in both the teaching of software
development and in software development processes for professional developers is
considered for inclusion into the process.

4.1 Best Practice in Teaching Software Development

There are two basic approaches to teaching software development – top-down and
bottom up. The top-down stepwise refinement approach originated in the 1970s by
Wirth [24] and involves breaking down a problem into a series of levels with tasks.
One advantage of the top-down approach is that a high-level overview of the solution
is first constructed which can then be slowly broken down into its constituent parts.
However, critics of top-down design state that it involves creating a monolithic design
where coding cannot begin until the design is fully complete [25]. The bottom-up
approach starts from a finely granulated specification of the problem which is
generated by identifying and implementing the smallest tasks. These tasks are then
combined to form larger tasks with this successive amalgamation of smaller tasks into
larger tasks continuing until the entire solution is implemented. A very high level
view of the solution is not available at the start of the process which can prove

588

problematic for novices who typically find it difficult to reassemble tasks back into a
full solution [26].

In comparing expert developers to novices, experts have a breadth first, top down
approach to formulating solutions whereas novices tend to have a depth first, bottom
up approach where they focus on specific aspects of the problem [26, 27]. However,
as noted above, novices can then find it difficult to re-integrate the different parts of
the problem into a final solution and may revert to trial and error approaches to find
something that works [26]. On the other hand, experts use strategies based on their
experience to avoid trial and error [16] which suggests that novices need to be
supplied with scaffolded strategies to help them problem solve as they gain
experience.

This research suggests a hybrid approach - between top down and bottom up
development - as an attempt to keep novices focused on the big picture while
allowing them to use a depth first approach. This approach has been coined by this
researcher as a “design down, code up” approach where solutions are visually
designed by students in a scaffolded, top down fashion; code is produced for low level
designs which gives feedback to the students who are then supported in combining
these tasks to effectively code up to a final solution.

In the context of applying an appropriate learning theory, research into computer
science education has several successes using constructivist and constructionist theory
[28-30]. Social constructivism occurs when learning is perceived as an active process
and where individual knowledge is constructed through solving problems in a
collaborative exercise. This theory forms the basis of the development process
described in this paper as the students will carry out extensive problem solving to
construct their own individual knowledge and will engage in Vygotsky’s theory of the
“more able other” [31] by participating in paired development and in articulating
solutions to the class cohort. Therefore, the learning process for this software
development process has been designed with the aim of facilitating constructivist
learning.

4.2 Best Practice in Software Development Processes

As well as ensuring that best practice in the teaching of software development is
incorporated into the software development process described in this paper, it is also
important to consider and include current best practice in existing software
development processes. One way of incorporating best practice is to align this process
with the philosophy of verifiably successful software development processes. Given
that most modern software development projects use Agile processes [32], this is the
category of process chosen to represent best practice. Kastl et al [33] has
demonstrated how the philosophy and general characteristics of Agile processes can
be adapted as a guide for best practice. This means that the core characteristics that
govern all Agile processes will be used to guide the operation of this process. These
characteristics include the use of iterative and incremental development, adaptive
modelling, refactoring of development artefacts and paired programming.

589

5. Computational Analysis and Design Engineered Thinking
(CADET) Software Development Process

The software development process operates as a 4 stage problem solving model based
on an adapted version of Pólya’s model as described in the CADET framework [22].
The four stages of the model are 1. Understand the problem, 2. Break into tasks, 3.
Design and Code, 4. Evaluate solution and learning. During the learning process
stage, learners will work in pairs and will be taught the threshold concept stages
which make up the declarative knowledge. This learning aspect of the software
development process is represented as a ladder of learning where each concept is
ordered and is a prerequisite to learning the next concept. Each concept is taught via
instruction and the computational thinking skills required to ustilise the concept are
acquired by solving a suite of problems using the 4 stage adapted problem solving
model which is supported by an Agile philosophy. Each stage of the problem solving
model will use a subset of computational thinking skills. The process is summerised
in figure 3.

Fig. 3. CADET Software Development Process (Source: Author)

When all 4 threshold concept stages have been taught and practiced, students will
continue to use the 4 stage problem solving model with associated computational
thinking practices as the basis for the software development process. The software
development process is augmented by a support tool which will provide a platform to
provide learners with problems to solve as well as diagrammatic tools to support their
analysis, design and reflective work. While it is expected that student’s self-efficacy
will grow and wane as they attempt to solve problems, it is hoped that the scaffolded
environment based on social constructivist learning will allow the student’s self-
efficacy to generally grow in tandem with their knowledge (identified as A1 in the
vertical arrow beside the ladder of learning in figure 3). This will be measured by
student reflection. Each of the 4 stages of the problem solving model are now
described in more detail.

1. Understand the problem - Using the support tool, learners will be invited to
articulate their understanding of either a problem that they have provided or a
problem that is provided to them as part of the learning process stage. This
articulation of understanding is achieved by employing the computational thinking
skills of functional abstraction to generate a high-level summary of the problem
and pattern recognition to see if the problem is similar to any previous problems

590

that the learner may have solved. This high level summary is recorded in the
support tool.

2. Break into tasks - This stage employs decomposition to convert the high-level
summary and specification from stage 1 into an intermediate set of constituent
tasks and to further refine those tasks into more basic tasks if required. In order to
make this stage visual, the tool supports students brainstorming candidate tasks
using a mind map where their problem summary is the central task. Mind mapping
has been shown to be successful in helping learners to brainstorm and specifically
in analysing software solutions [34]. The map will be refined into ordered tasks
and subtasks. The support tool will facilitate leaners to utilise abstraction to
visually trace backwards and forwards from the high-level summary from stage 1
into this stage to ensure consistency between the stages. Pattern recognition will
be employed by learners to identify any tasks that have been used in previous
problems and colour coding will be employed to identify any complex tasks that
need to be designed.

3. Design and Code - This stage employs decomposition to take a task and generate
an algorithm represented as a flow chart (or optionally a class diagram if operating
in an object oriented paradigm) for the task. This stage also involves data
representation and algorithm writing to represent the computational steps needed
to represent a task solution as a flowchart with a level of detail to make it easy for
the task to be converted into program code. All tasks will be designed, coded and
evaluated in an iterative manner until correct and then reintegrated into a growing
final product. The support tool will facilitate leaners to visually utilise abstraction
to oscillate between tasks identified in the mind map and any associated designs
and code to ensure consistent mapping between stages.

4. Evaluate Solution and Learning - This stage allows learners to reflect on their
solution from start to finish and employ abstraction to zoom in and out of the
solution to understand it at the various functional and data abstraction levels. The
support tool will prompt learners to employ critiquing mechanisms to see if any
aspect of the solution could have benefited from using analysis, design or coding
artefacts from previous problems or if the solution can be optimized by identifying
any duplication. Learners will be required to reflect on and articulate their
learning.
When the process is being employed solely as a software development process,

learners will be able to use both the process and associated support tool by providing
their own specification for a problem and working through each of the above stages to
systematically develop their final solution.

6. Discussion

Despite the acknowledged importance of using software development processes both
in the software industry and in education, this research has identified a gap in
software engineering education in the provision of appropriate software development
processes for freshman, undergraduate computing students in a context where learners
predominately have no prior programming experience. One reason for this gap is due

591

to the problematic nature of teaching software processes to novices. A software
development process gives guidance to developers in the development of software
solutions from analysis through to final product but for commercial processes, it is
assumed that the developer has pre-existing programming knowledge. This makes the
use of such processes difficult for educators of introductory software development
courses and produces a conundrum in how to support students in the use of
development processes in the absence of programming knowledge. In such an
environment, it is natural that the focus of such courses will gravitate towards the
teaching of programming concepts first with the topic of development process coming
later in the course or in later years. The problem with such a strategy is that it allows
students to potentially develop maladaptive cognitive practices which can prohibit
student progression in such courses.

This paper aims to contribute to this gap by presenting a conceptual software
development process which utilities the affordances of computational thinking to
create a software development process that encompasses a learning process. The
process combines current research into computational thinking as a problem solving
process underpinned by the focus of threshold concepts and an Agile philosophy to
support students learning how to develop software solutions from problem
specification through to the final tested product. The aim of the process is to provide
scaffolding to students as they learn how to develop software in a systematic fashion.
It is the contention of this research that the provision of such a process could provide
a structured and scaffolded environment to directly address the maladaptive cognitive
habits that students often form and find hard to unlearn. The next stage of this
research will involve the development of a support tool and the deployment and
evaluation of the software development process.

References

1. Boehm, B. A view of 20th and 21st century software engineering. in Proceedings of the
28th international conference on Software engineering. 2006. ACM.

2. Caspersen, M.E. and Kolling, M., STREAM: A First Programming Process. Trans.
Comput. Educ., 2009. 9(1): p. 1-29.

3. Kazimoglu, C., Kiernan, M., Bacon, L., and MacKinnon, L., Developing a game model
for computational thinking and learning traditional programming through game-play, J.
Sanchez and K. Zhang, Editors. 2010, AACE: Chesapeake, USA. p. 1378-1386.

4. Liu, C.-C., Cheng, Y.-B., and Huang, C.-W., The effect of simulation games on the
learning of computational problem solving. Computers & Education, 2011. 57(3): p.
1907-1918.

5. Xiaoyuan, S., Toward more effective strategies in teaching programming for novice
students. Teaching, Assessment and Learning for Engineering (TALE), 2012 IEEE
International Conference on, 2012: p. T2A-1-T2A-3.

6. Coffey, J.W., Relationship between design and programming skills in an advanced
computer programming class. J. Comput. Sci. Coll., 2015. 30(5): p. 39-45.

7. Kokotovich, V., Problem analysis and thinking tools: an empirical study of non-
hierarchical mind mapping. Design Studies, 2008. 29(1): p. 49-69.

8. Fornaro, R.J., Heil, M.R., and Tharp, A.L., What Clients Want - What Students Do:
Reflections on Ten Years of Sponsored Senior Design Projects. 19th Conference on
Software Engineering Education & Training (CSEET'06), 2006: p. 226-236.

592

9. Huang, T.-C., Shu, Y., Chen, C.-C., and Chen, M.-Y., The development of an innovative
programming teaching framework for modifying students' maladaptive learning pattern.
International Journal of Information and Education Technology, 2013. 3(6): p. 591.

10. Loftus, C., Thomas, L., and Zander, C., Can graduating students design: revisited, in
Proceedings of the 42nd ACM technical symposium on Computer science education.
2011, ACM: Dallas, TX, USA.

11. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,
and Paterson, J., A survey of literature on the teaching of introductory programming.
ACM SIGCSE Bulletin, 2007. 39(2): p. 19.

12. Guo, P.J. Online python tutor: embeddable web-based program visualization for cs
education. in Proceeding of the 44th ACM technical symposium on Computer science
education. 2013. ACM.

13. Gautier, M. and Wrobel‐Dautcourt, B., artEoz‐dynamic program visualization. ISSEP
2016, 2016: p. 70.

14. Mozelius, P., Shabalina, O., Malliarakis, C., Tomos, F., Miller, C., and Turner, D. Let the
Students Contruct Their own fun And Knowledge-Learning to Program by Building
Computer Games. in European Conference on Games Based Learning. 2013. Academic
Conferences International Limited.

15. Trevathan, M., Peters, M., Willis, J., and Sansing, L. Serious Games Classroom
Implementation: Teacher Perspectives and Student Learning Outcomes. in Society for
Information Technology & Teacher Education International Conference. 2016.

16. Wright, D.R. Inoculating Novice Software Designers with Expert Design Strategies. in
American Society for Engineering Education. 2012. American Society for Engineering
Education.

17. Hu, M., Winikoff, M., and Cranefield, S., A process for novice programming using goals
and plans, in Proceedings of the Fifteenth Australasian Computing Education
Conference - Volume 136. 2013, Australian Computer Society, Inc.: Adelaide, Australia.

18. Neto, V.L., Coelho, R., Leite, L., Guerrero, D.S., and Mendon, A.P., POPT: a problem-
oriented programming and testing approach for novice students, in Proceedings of the
2013 International Conference on Software Engineering. 2013, IEEE Press: San
Francisco, CA, USA.

19. Morgado, C. and Barbosa, F., A structured approach to problem solving in CS1, in
Proceedings of the 17th ACM annual conference on Innovation and technology in
computer science education. 2012, ACM: Haifa, Israel.

20. Siegfried, R.M., Greco, D., Miceli, N., and Siegfried, J., Whatever happened to Richard
Reid’s list of First Programming Languages? Journal of Information Systems Education,
2012. 10(4): p. 7.

21. Maslow, A.H., Frager, R., Fadiman, J., McReynolds, C., and Cox, R., Motivation and
personality. Vol. 2. 1970: Harper & Row New York.

22. Higgins, C., Mtenzi, F., O'Leary, C., Hanratty, O., and McAvinia, C., A Conceptual
Framework for a Software Development Process based on Computational Thinking (In
Print). in 11th International Technology, Education and Development Conference. 2017:
Valencia, Spain.

23. Polya, G., How To Solve It. 2nd ed. 1957: Princeton University Press.
24. Wirth, N., Program development by stepwise refinement. Communications of the ACM,

1971. 14(4): p. 221-227.
25. Pizka, M. and Bauer, A. A brief top-down and bottom-up philosophy on software

evolution. in Software Evolution, 2004. Proceedings. 7th International Workshop on
Principles of. 2004. IEEE.

26. Liikkanen, L.A. and Perttula, M., Exploring problem decomposition in conceptual design
among novice designers. Design studies, 2009. 30(1): p. 38-59.

593

27. Robins, A., Rountree, J., and Rountree, N., Learning and Teaching Programming: A
Review and Discussion. Computer Science Education, 2003. 13(2): p. 137-172.

28. Abelson, H. and DiSessa, A.A., Turtle geometry: The computer as a medium for
exploring mathematics. 1986: MIT press.

29. Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y., Scratch:
Programming for All. Communications of the ACM, 2009. 52(11): p. 60 - 67.

30. Thevathayan, C. and Hamilton, M. Supporting diverse novice programming cohorts
through flexible and incremental visual constructivist pathways. in Proceedings of the
2015 ACM Conference on Innovation and Technology in Computer Science Education.
2015. ACM.

31. Vygotsky, L., Interaction between learning and development. Readings on the
development of children, 1978. 23(3): p. 34-41.

32. Bustard, D., Wilkie, G., and Greer, D. The maturation of agile software development
principles and practice: Observations on successive industrial studies in 2010 and 2012.
in Engineering of Computer Based Systems (ECBS), 2013 20th IEEE International
Conference and Workshops on the. 2013. IEEE.

33. Kastl, P., Kiesmüller, U., and Romeike, R. Starting out with Projects: Experiences with
Agile Software Development in High Schools. in Proceedings of the 11th Workshop in
Primary and Secondary Computing Education. 2016. ACM.

34. Li, C.L., Yang, L.P., and Wang, W. Application of mind mapping to improve the teaching
effect of Java program design course. in Computing, Control, Information and Education
Engineering: Proceedings of the 2015 Second International Conference on Computer,
Intelligent and Education Technology (CICET 2015), April 11-12, 2015, Guilin, PR
China. 2015. CRC Press.

	A software development process for freshman undergraduate students
	1. Introduction
	2. Related research
	3. Computational Analysis and Design Engineered Thinking (CADET) Framework
	4. Operationalisation of Framework to Process
	4.1 Best Practice in Teaching Software Development
	4.2 Best Practice in Software Development Processes

	5. Computational Analysis and Design Engineered Thinking (CADET) Software Development Process
	1. Understand the problem - Using the support tool, learners will be invited to articulate their understanding of either a problem that they have provided or a problem that is provided to them as part of the learning process stage. This articulation o...
	2. Break into tasks - This stage employs decomposition to convert the high-level summary and specification from stage 1 into an intermediate set of constituent tasks and to further refine those tasks into more basic tasks if required. In order to make...

	6. Discussion
	References

