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Abstract. Explainable Artificial Intelligence (XAI) techniques can pro-
vide explanations of how AI systems or models make decisions, or what
factors AI considers when making the decisions. Online social networks
have a problem with misinformation which is known to have negative
effects. In this paper, we propose to utilize XAI techniques to study
what factors lead to misinformation spreading by explaining a trained
graph neural network that predicts misinformation spread. However, it
is difficult to achieve this with the existing XAI methods for homoge-
neous social networks, since the spread of misinformation is often associ-
ated with heterogeneous social networks which contain different types of
nodes and relationships. This paper presents, MisInfoExplainer, an XAI
pipeline for explaining the factors contributing to misinformation spread
in heterogeneous social networks. Firstly, a prediction module is pro-
posed for predicting misinformation spread by leveraging GraphSAGE
with heterogeneous graph convolution. Secondly, we propose an explana-
tion module that uses gradient-based and perturbation-based methods,
to identify what makes misinformation spread by explaining the trained
prediction module. Experimentally we demonstrate the superiority of
MisinfoExplainer in predicting misinformation spread, and also reveal
the key factors that make misinformation spread by generating a global
explanation for the prediction module. Finally, we conclude that the
perturbation-based approach is superior to the gradient-based approach,
both in terms of qualitative analysis and quantitative measurements.

Keywords: Misinformation Spread, Graph Neural Networks, Explain-
able Artificial Intelligence

1 Introduction

Explainable Artificial Intelligence (XAI) [2] is a set of techniques used to make
AI more explainable and understandable to humans. By using XAI techniques,
developers and users of AI can understand how AI makes decisions or produces

⋆ Corresponding author: hongbo.bo@bristol.ac.uk
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outputs, including the factors considered when making the decisions. XAI has be-
come popular because AI techniques are now prevalent in people’s daily lives [30,
36], and it is important to know how AI makes decisions that can increase trust
and confidence in AI systems by making AI more understandable to humans
which can lead to better acceptance of and improvements in AI methods [12].
XAI methods can be divided into local explanation methods and global expla-
nation methods. The local explanation methods [29, 20] provide the explanation
for a specific decision or output of the system, while the global XAI methods [2]
explain the behavior of the system as a whole.

Misinformation, which can cause negative effects, is pervasive on social me-
dia. A research question of interest to us is to understand the factors, for exam-
ple, the content of the misinformation or the relationships between users, that
enable the spread of misinformation on online social networks. Previous stud-
ies [33, 24] on this topic have largely cooperated with social scientists, relying on
specialized knowledge for subjective analysis, which is not efficient when social
media data is huge. However, a global explanation may be able to identify which
factors enable misinformation spread, but this relies on an accurate underlying
machine learning model. Graph Neural Networks (GNNs) have seen increasing
use in many applications, including social network analysis [27, 6, 7], and have
been demonstrated success at classifying misinformation on social networks [4,
21]. Several explainable approaches for GNNs have been explored, such as GN-
NExplainer [37], GraphLIME [16], and GraphSHAP [25].

However, these existing methods are insufficient to explain the misinforma-
tion spread. Social networks are often studied as homogenous networks between
users [39, 5], but it can be argued that they are better modeled as heteroge-
neous networks of different types of nodes [23]. Some of these methods, such as
GraphLIME [16], can only generate explanations for a homogeneous graph that
contains the same types of nodes and edges. Some other explanation methods are
limited to classification tasks and may not be suitable for explaining the spread
of misinformation, such as PGM-Explainer [34] which is designed for node and
graph classification tasks. To address the limitations of the existing XAI meth-
ods, this paper explores two research challenges. Firstly, how to train an effective
graph neural network that can accurately predict the spread of misinformation
on large complex heterogeneous social networks. Secondly, given this model, how
to explain the factors contributing to misinformation spread.

To address these two challenges, this paper presents MisInfoExplainer, an
XAI pipeline designed to explore the factors contributing to the spread of misin-
formation. The key contributions of this paper are as follows: First, we provide
a new formulation of the spread of misinformation problem where the objective
is to predict the spread value of each source of misinformation quantitatively.
Second, we introduce a misinformation spread prediction approach that lever-
ages the GraphSAGE model with the heterogeneous graph convolution (Het-
eroGraphConv) to accurately predict the spread of misinformation on hetero-
geneous social networks. Third, we propose a GNN-based explanation approach
that uses both gradient-based and perturbation-based methods to identify what



What Will Make Misinformation Spread: An XAI Perspective 3

node feature types and edge types contribute to the spread of misinformation.
Furthermore, we apply MisInfoExplainer to a large social network dataset to
demonstrate how it can be used to identify the node feature types and edge
types that contribute to the spread of misinformation. Finally, we conclude that
the explanations generated by the perturbation-based approach are superior to
those produced by the gradient-based approach by conducting both qualitative
analysis and quantitative measurements.

2 Related Work

Our study closely relates to two distinct topics of interest. The first topic cen-
ters around the analysis of misinformation spread, aiming to gain insights into
its dynamics and effects. The second topic explores the domain of GNN-based
Explainable AI (XAI), with a focus on interpreting and providing transparent
insights into the decision-making process of Graph Neural Networks.

2.1 Misinformation Spread

Misinformation is false or inaccurate information by concealing the correct facts,
also called ‘fake news’ or ‘rumor’. Misinformation has the potential to spread
rapidly through social media due to users’ behaviors, leading to various negative
effects. Consequently, the detection of misinformation has emerged as an impor-
tant research topic. One category of studies involves using Natural Language
Processing (NLP) technology to determine whether a post contains misinfor-
mation [17, 9] and the explanations are also involved during detection, such as
dEFEND [31] which is to capture the features from the comments on a message
to explain why a message is considered as fake. Other studies have used infor-
mation propagation models for graph structures or GNNs to detect the spread
of false information [4, 21].

Our study, however, focuses on the spread of known misinformation rather
than whether a message is misinformation. Some research studies the spread of
misinformation by using propagation models [33, 22], while few have used GNN
models. However, the spread of known misinformation can be framed as an infor-
mation propagation problem and GNNs are currently the most commonly used
approach for modeling the relationships between users in information spread pre-
diction models for social networks. Examples of such models include CasCN [11],
MUCas [10], and coupledGNN [8], which all focus on homogeneous graphs rather
than heterogeneous graphs.

There are also studies that aim at explaining the misinformation spread. For
instance, [33] examined why fake information spreads faster than true informa-
tion, and [24] provided a psychological framework for understanding the spread
of misinformation. However, none of them used the XAI method to explain a
prediction model. To the best of our knowledge, we are the first to explore the
prediction and explanation of misinformation spread with the model-based XAI
method.
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2.2 GNN-based XAI

Graph Neural Networks (GNNs) have demonstrated their effectiveness in numer-
ous graph machine learning tasks, as many real-world problems can be naturally
represented as graphs [14]. The XAI approaches to explaining GNNs are broadly
categorized into the following groups. Gradient-based methods leverage the in-
put gradient, representing the rate of change of input features in a deep learning
model, to quantify the importance values of the input features. Initially proposed
for image explanation, these methods have been successfully extended to graphs,
exemplified by techniques like Grad-CAM and Guided BP [26]. Perturbation-
based methods assess the significance of input features by introducing pertur-
bations to the inputs and observing the subsequent changes in model predic-
tions. Several examples of perturbation-based Graph Neural Networks (GNNs)
for Explainable AI (XAI) are GNNExplainer [37], GraphSHAP [25], and Graph-
Mask [28]. Surrogate-based methods involve employing a simple surrogate model
to approximate the outputs of a complex GNN model, and the feature impor-
tance in the surrogate model is utilized to explain the original model. Examples
of surrogate-based Graph Neural Networks (GNNs) for Explainable AI (XAI)
include GraphLIME [16] and PGM-Explainer [34]. These GNN-based XAI meth-
ods are designed for GNNs with homogeneous graphs, if the explanations are re-
quired for heterogeneous GNNs, extensions to these methods would be needed.

3 Problem Formulation

The social network with misinformation is represented as a heterogeneous graph
that consists of multiple types of nodes, such as users, misinformation, claims,
etc. and different types of relationships between nodes. For example, a user fol-
lowing another user, a user posting a misinformation tweet, a reply tweet reply-
ing to a misinformation tweet, a misinformation tweet belonging to a particular
claim, etc. where following, posting, replying are edge types.

Definition 1 Heterogeneous Social Network. A heterogeneous social net-
work is defined as a heterogeneous graph G = (V,E), consisting of a node set
V and an edge set E. A heterogeneous graph is also associated with a node type
mapping function ξ : V → RV and an edge type mapping function ψ : E → RE.
RV and RE denote the predefined sets of node types and edge types, respectively,
with |RV |+ |RE | > 2.

A heterogeneous graph can also be represented as G = (X,A), where A =
{A1, A2, .., A|RE |} is the set of adjacency matrices corresponding to the edge
types RE and X = {x1, ..., xv, ..., } denotes the node feature vectors of nodes v ∈
V . A heterogeneous graph is also associated with a node feature type mapping
function ζ : X → RX , where RX denotes the predefined set of node feature
types and |ζ(xv)| >= 1. In a heterogeneous graph representing a social network,
the misinformation (i.e., misinformation tweets) can be represented as a type of
nodes M ⊂ V .
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The first challenge this paper solves is to quantitatively predict the spread
value, yi, of each misinformation tweet, mi ∈ M , on a social network G, which
functionally depends on the number of reply tweets rpi, the number of retweets
rti, and the number of quote tweets qti for mi:

yi = log(rpi + rti + qti + 1), (1)

where yi is the spread value of a source of misinformation mi ∈M .

Research Challenge 1 Misinformation Spread Prediction. The objective
of misinformation spread prediction is to use a learned misinformation spread
prediction model ϕ to predict the spread value of a misinformation node mi ∈M
on a social network G. The model predicts the spread value of mi on G which is
represented as yi = ϕ(mi, G) approximating the true spread value yi.

The second research challenge this paper solves is to analyze what causes a
misinformation tweet to spread by explaining ϕ. The explanation focuses on the
node feature types RX and edge types RE , specifically which node feature types
in RX and which edge types in RE contribute to the misinformation spread.

Research Challenge 2 Misinformation Spread Explanation Given the
social network G and the trained misinformation spread prediction model ϕ, the
objective of the misinformation spread explanation is to calculate a set of impor-
tant values Imi ∈ [0, 1] for i = 1, ..., |RX |+ |RE | with each Imi representing the
contribution of an Inputi ∈ {RX ∪RE}, which is an input node feature or edge
type to ϕ.

4 Methodolodgy

In this section, we describe MinInfoExplainer, our proposed GNN-based ex-
planation pipeline for predicting and explaining the spread of misinformation
on social networks. The pipeline begins with training a misinformation spread
prediction model ϕ to solve the problem of misinformation spread prediction
(Research Challenge 1) using a heterogenous convolutional graph neural net-
work (see Section 4.1). Then two XAI methods, a gradient-based method and
a perturbation-based method, are used to explain the misinformation spread
(Research Challenge 2), which is predicted by the model ϕ (see Section 4.2).

4.1 Misinformation Spread Prediction Module

We have implemented an extended version of GraphSAGE [13] to solve the
misinformation spread prediction in Research Challenge 1, which is to predict
the spread values yi of the misinformation node mi, which approximates the
corresponding ground truth yi. GraphSAGE is a GNN for node representation
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learning by aggregating information from each node’s neighborhood. For a ho-
mogeneous graph, a GraphSAGE layer updates the hidden representation for
each node v based on the features of its neighbors N (v):

h
(l+1)
N (v) = aggregate({hlu,∀u ∈ N (v)}), (2)

h(l+1)
v = σ(W · concat(hlv, h

(l+1)
N (v) )), (3)

where l represents the l-th layer and W is the weight matrix. When l = 0, we
have the h0v = xv, where xv ∈ X representing the features of v. The aggregate
process in Eq. 2 determines how to combine the representations of v’s neighbors
and we use the LSTM (Long Short-Term Memory) [15] function as the aggregate
function. Then the aggregated representation of N (v) and the representation of
v are concatenated to generate a new representation for v (as shown in Eq. 3).

However, when the social network G used to predict the misinformation
spread is heterogeneous, hence the different types of nodes and edges need to be
taken into consideration. Each node is connected to its neighbor nodes by differ-
ent types of edges and a heterogeneous graph convolution (HeteroGraphConv)
provided by the Deep Graph Library [35] is used to initiate the GraphSAGE
layer for each edge type r ∈ RE . The different GraphSAGE layers in the same
HeteroGraphConv module do not share the parameters and the HeteroGraph-
Conv module passes the message from a source node to a target node based on
the GraphSAGE layer given for the corresponding edge type. HeteroGraphConv
updates the hidden representations for the nodes that are connected by the same
type of edges and then a function conv agg aggregates the representations for
each node v that is connected by the different types of edges:

h
(l+1)
Nr(v)

= aggregate({hlu,∀u ∈ Nr(v)}), (4)

h(l+1)
v,r = σ(Wr · concat(hlv, h

(l+1)
Nr(v)

)), (5)

h(l+1)
v = conv agg(

∑
r∈RE

h(l+1
v,r )), (6)

where Eq. 4 and 5 are the GraphSAGE layer for the the edge type r ∈ RE and
Nr(v) represents the set of neighbors of node v with edge type r. We use a sum
function as the conv agg function in this work.

The entire prediction module is called HeteroGraphSAGE which outputs the
prediction on the spread value, yi = ϕ(mi, G), yi ∈ Y , for each misinformation
node mi ∈ M , with the MSE loss between yi and yi calculated as the feedback
for the optimisation process. The prediction module is formally described in
Algorithm 1.
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Algorithm 1 HeteroGraphSAGE

Input: Social network G; Misinformation Nodes M ; Spread Values Y
Output: The trained ϕ for predicting the spread values of M .
1: Initial ϕ;
2: while Training do
3: for Each HeteroGraphConv layer in ϕ do
4: for Each relation type in RE do
5: Initiate a GraphSAGE layer;
6: Calculate the hidden representation for each node based on Eq. 4 and 5;
7: end for
8: Aggregate multiple relations to nodes by conv agg (Eq. 6);
9: end for
10: Update weights in ϕ based on the loss between Y and Y .
11: end while

4.2 GNN-based Explanation Module

With the prediction model ϕ trained, we propose a GNN-based explanation
module that incorporates treating both node feature types RX and edge types
RE together as the input to the model to identify the factors that contribute to
the prediction on the spread of misinformation by the model. Gradient-based and
perturbation-based methods are the two most common methods for explaining
deep learning models. We extend these two methods to heterogeneous GNNs to
explain the prediction model ϕ. Gradient-based methods use the gradients of
the inputs in the deep learning model to measure the importance of the inputs,
while perturbation-based methods perturb the inputs to measure the importance
of the inputs. Both gradient-based and perturbation-based methods can output
the importance values Imi ∈ [0, 1] that represents the contribution of the input
feature or edge type Inputi ∈ {RX ∪RE} to the model ϕ.

Gradient-based Method We use a widely used gradient-based attribution
method, called Integrated Gradient (IG) [32], to help us understand which fea-
tures are more important in making predictions. As we need to explain a het-
erogeneous graph model with different types of node features and edges, the IG
method needs to be extended to compute the importance value of each node
feature type and edge type. Given a trained model ϕ and the node feature set
X, IG takes as input k different versions of the modified {X̂1, .., X̂k} which only
modified the node features values of the type that needs to be calculated. For
each type of node feature, IG calculates the change in the output of the model
as each feature xi ∈ X in the input is gradually changed. Then IG output the
attribution score for each xi by integrating the gradients of the model output
with respect to xi:

IGi = (xi − x̂i)

k∑
j=1

(
∂ϕ(M, (A, X̂j + j/k(X − X̂j)))

∂xi
) (7)
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where X̂j + j/k(X − X̂j) is the combined modified node feature input and

∂ϕ(M, (A, X̂j + j/k(X − X̂j)))/∂x
i is the gradient of output with respect to

feature xi, where M is the misinformation nodes set and A is the adjcency
matrices set.

The explanation of edge types is based on a general principle of GraphSAGE,
that training a model without edge weights is equivalent to training the model
with all edge weights we = 1, we ∈We equal to 1, which is ϕ(M, (A,X,We)). For
each edge type, we first need to generate an edge weight vector we with values
set to 1 for each type of edge and then use a similar equation to calculate the
IG value for each edge type:

IGe = (we − ŵe)

k∑
j=1

(
∂ϕ(M, (A,X, ŵej + j/k(we − ŵej))

∂we
)) (8)

Since the explanation of misinformation spread in our proposed pipeline
needs to be meaningful, we integrate the IGi and IGe absolute values into Imi

which corresponds to Inputi. This is done by mapping the node features corre-
sponding to IGi to the node feature types RX and the edges corresponding to
IGe to edge types RE , using the mapping functions ζ and ψ respectively. After
this integration, Imi is normalized so that

∑N
i=1(Imi) = 1.

Perturbation-based Method We use a similar idea in GNNExplainer [37],
to iteratively mask the node features and edges to identify the impact on the
output of a GNN model. Given the trained ϕ, we use the node feature mask
Xm ∈ [0, 1] and edge mask Am ∈ [0, 1] to perturb the node feature X and the
set of adjacency matrix A, by X̂ = X ⊙Xm and Â = A⊙Am, where ⊙ denotes
element-wise multiplication. The intuition is that if a node feature or edge is not
important to the model ϕ (with a low Imi), even with a large perturbation (with
small values in the masks), the model output Ŷ = ϕ(M, (Â, X̂) will not change
much from the original output Y = ϕ(M, (A,X)). We want to obtain Xm and
Am that can perturb the unimportant node feature or edge as much as possible
that makes little change to the model output, then the elements in Xm and Am
can indicate the importance of the node feature or edge types Inputi, based on
the mapping functions ζ or ψ.

To generate an explanation module, the Xm and Am are trained by opti-
mizing the following objective function:

Lall = L(Ŷ , Y ) + α1||Xm||1 + β1||Am||1 + α2H(Xm) + β2H(Am), (9)

where L(Ŷ , Y ) is to calculate the MSE loss of output changing after perturba-
tion, ||Xm||1 and ||Am||1 is to make as many elements in two masks change as
possible, H(·) is the entropy function which can make the masks as stable as
possible, and α1, α2, β1, β2 are hyper-parameters.

For each node feature type or edge type, the Imi is integrated using Xm
and Am, which is the same operation used in the gradient-based method for
integrating IGi and IGe.
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5 Experimental Results

This section shows the experimental results of predicting misinformation spread
and exploring factors contributing to the spread using our proposed MisinfoEx-
plainer on a misinformation-labeled social network dataset. We also perform the
evaluation of the two proposed XAI methods described in the previous section
on this dataset.

5.1 Dataset

We perform our experiments on a large-scale misinformation social network
dataset, MuMiN [23], to quantitatively evaluate the proposed MisinfoExplainer.
The MuMiN dataset is a public misinformation graph dataset with three dif-
ferent versions that contain multimodal information from Twitter. Specifically,
MuMiN associates multitopic and multilingual tweets with fact-checked claims,
and it also includes textual and visual content from tweets. We only keep the
data that are fact-checked tweets discussing misinformation and filter out the
tweets discussing factual claims. The statistics of the different node types RV

in the MuMiN dataset after filtering are shown in Table 1. The data we use
contains 9 types of node features, denoted as ‘n1’ to ‘n9’ in Table 2, which con-
sist of the node feature type set RX and 12 different types of edges, denoted
‘e1’ to ‘e12’ shown in Figure 1, which are the edge type set RE . In our experi-
ment, we predict the misinformation spread which is to predict the spread value
Y of the misinformation type of nodes, and reveal the key factors that make
misinformation spread which is to measure the importance values Imi for each
Inputi ∈ {RX ∪RE}.

Table 1. Three versions of the dataset. The 6 node types in RV and the numbers of
nodes in these node types are shown in the table. Misinformation is a type of nodes
representing tweets that have been labelled as discussing a non-factual claim, a claim
is a short description of the misinformation provided by a fact-checker and a reply is a
tweet that replies to a tweet.

Dataset Misinformation Claim User Hashtag Image Reply

MuMiN-Small 3,589 2,049 140,113 25,472 986 163,113
MuMiN-Medium 9,326 5,318 290,199 49,575 2,397 356947
MuMiN-Large 22,835 12,509 564,789 85,501 6,309 754,097

4 The claim reviewer is the URL for the fact-checking website that reviewed the claim
and the ‘lang’ is an abbreviation of ‘language’.
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Fig. 1. The edge types RE present in the data we use, denoted as e1 to e12. The figure
shows a metagraph that consists of the nodes representing all 6 different node types in
the dataset and all the edge types between them.

5.2 Prediction Module Evaluation

To comprehensively evaluate the performance of our prediction module, Hetero-
GraphSAGE, we conducted a series of comparative experiments on the MuMiN
dataset. These experiments allow us to assess the effectiveness and efficiency of
HeteroGraphSAGE in comparison to other state-of-the-art methods, providing
valuable insights into its capabilities for handling heterogeneous graph data.

Experiment Setup This experimental evaluation aims to measure the effec-
tiveness of HeteroGraphSAGE. We selected two GNNs that are commonly used
in the field of social network analysis, Graph Convolutional Networks (GCN)
and Graph Attention Networks (GAT), as the baseline methods. Since both
GCN and GAT are designed for homogeneous graphs, we extended them to
HeteroGCN and HeteroGAT, respectively, by applying HeteroGraphConv. The
performance is evaluated in terms of Mean Absolute Percentage Error (MAPE),
Mean Squared Error (MSE), and R-squared (R2).

The baseline methods and our proposed method are all based on 2-layer
HeteroGraphConv and the dimension of each layer is set to 512. All parameters
are trained using the AdmaW [19] optimizer with a learning rate 3e−4 and a
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Table 2. The node feature types4RX and node types.

Input Features Types Associated Node Types

n1 misinformation text Misinformation
n2 misinformation lang Misinformation
n3 claim embedding Claim
n4 claim reviewer Claim
n5 image embedding Image
n6 hashtag embedding Hashtag
n7 user profile User
n8 reply text Reply
n9 reply lang Reply

dropout rate 0.2. For HeteroGAT, each layer contains 3 attention heads. We
used the pre-set train/valid/test splits provided by the MuMiN dataset, which
claims that these pre-set splits can better cover distinct events [23] and thus
better measure the ability of the model to generalise to unseen misinformation
topics. The number of training epochs is set to 100.

Comparison Results The results of the experiments are shown in Table 3.
HeteroGraphSAGE has significant advantages for misinformation spread predic-
tion tasks on all three versions MuMiN dataset. The quality of our proposed
regression model was assessed using three metrics, with the best performance
on MAPE and MSE indicating the accurate prediction of the misinformation
spread values yi, and the best performance on R2 showing the good fit of the
data.

Table 3. Performance of the prediction module based on different GNN models. For
the MSE and MAPE evaluation metrics, a smaller value indicates better performance,
whereas, for R2, a larger value indicates better performance.

Data Model MAPE MSE R2

MuMiN-Small
HeteroGCN 0.1752 0.5412 0.7684
HeteroGAT 0.1660 0.5558 0.7622
HeteroGraphSAGE 0.1511 0.4214 0.8197

MuMiN-Medium
HeteroGCN 0.1351 0.3213 0.8241
HeteroGAT 0.1436 0.4000 0.7810
HeteroGraphSAGE 0.1239 0.3091 0.8308

MuMiN-Large
HeteroGCN 0.1321 0.2692 0.8372
HeteroGAT 0.1308 0.2792 0.8312
HeteroGraphSAGE 0.1134 0.2091 0.8735
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5.3 What Factors Make Misinformation Spread?

We then trained the HeteroGraphSAGE on the MuMiN-small dataset to obtain
the trained model ϕ and then explained ϕ by using our gradient-based and
perturbation-based XAI methods respectively. We considered the 9 types of node
features and 12 types of edges as shown in Table 2 and Figure 1 as the Inputs
which are the factors we aim to measure the Im.

Experiment Setup The HeteroGraphSAGE was trained with the same set-
tings as in the previous experiments in Subsection 5.2. For the gradient-based
method, the number of modified inputs k is set to 50. For the perturbation-based
method, the number of training epochs is set to 100, the learning rate is set to
0.1. The purpose of hyper-parameters in Eq. 9 is to make the terms of the loss
function balance during optimizing, and we set α1, α2, β1 and β2 to 0.05, 1.0,
1.0 and 0.1.

Experiment Results and Qualitative Analysis The explanation results
using perturbation-based and gradient-based methods are shown in Figure 2.
Both methods consider the text of the misinformation (n1: misinformation text)
to be the most important factor in the spread of misinformation, which is also
corroborated by marketing research, for example [3], which claims the message
content itself can contribute to the virality.

The perturbation-based explanation considers that the four important factors
after the text of the tweet are the text of reply (n8: reply text), the embedding of
the claim (n3: claim embedding), the embedding of image (n5: image embedding)
and the users description (n7: user profile). The reply text can include other
users’ opinions, stimulating engagement, which can amplify the original tweet
and then contribute to spreading further, engaging more users. The claim is a
short description of the misinformation, which can be seen as a summary of
the misinformation. The explanation considers that images can help the spread
of related misinformation, where a similar conclusion is also found in market-
ing research [18] that high-quality images can lead to engagement with related
Tweets.

The gradient-based explanation considers four different types of edges as im-
portant factors for spreading misinformation: a user follows another user (e11:
User follows User), a user retweeted misinformation (e10: User retweeted Mis-
information), a user has a hashtag (e3: User has hashtag Hashtag), and a mis-
information tweet has a hashtag (e2: Misinformation has hashtag Hashtag). In
contrast to the perturbation-based approach, the gradient-based approach gives
a less plausible explanation. The following relationship and retweeting interac-
tions are utilized in many studies [27, 1] about information diffusion, but it is
difficult to explain intuitively how the hashtag relationship contributes to the
spread of misinformation.

In summary, the perturbation-based method considers node features to be
more important, while the gradient-based method considers edges to be more
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Fig. 2. Im values calculated by two different explanation methods. The top five Inputs
which are considered as important in each method are marked.

important. In the following subsection, we compare the two explanation methods
quantitatively to see which one is more plausible.

5.4 Which Explanation Shall We Believe?

While visualizations can provide insights regarding whether the explanations
are reasonable to humans, such evaluations are not entirely trustworthy due to
the lack of ground truth. In this subsection, we calculate the fidelity which can
quantitatively measure the explanation methods.

The Fidelity+ metric was originally proposed in [26, 38] based on the intu-
ition that if the important factors identified by explanation methods are dis-
criminative to the model, the predictions should change significantly when these
features are removed. In this study, we extend Fidelity+ to be defined as the
difference between the original predictions ϕ(M,G) and the new predictions

ϕ(M,G1−
∑N

i=1
Inputi) after masking out N important Inputs, as follows:

Fidelity+ =
1

N
(ϕ(M,G)− ϕ(M,G1−

∑N

i=1
Inputi)), (10)

where i is the ith most important Input indicated by the explainer, N is the

number of Inputs to be removed and G1−
∑N

i=1
Inputi indicates the graph re-

moved N most important Inputs. For Fidelity+, higher values indicate better
explanations, and more discriminative Inputs are identified.

In contrast, the Fidelity− [26, 38] was proposed to study prediction change
by keeping important input features and removing unimportant features. The
Fidelity− is defined as the difference between the original predictions ϕ(M,G)

and the new predictions ϕ(M,G
∑N

i=1
Inputi) where G only contains the impor-
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tant Inputs:

Fidelity− =
1

N
(ϕ(M,G)− ϕ(M,G

∑N

i=1
Inputi)) (11)

For Fidelity−, lower values indicate less important Inputs are removed so that
the explanations results are better.

For the measurement of Fidelity+, we conducted experiments by removing
the top 1 to top 7 most important Inputs, with N ranging from 1 to 7. However,
for the Fidelity− measurement, it was challenging to keep only a few Inputs and
still construct a graph. Therefore, we set N from 12 to 18 for this measurement.
The results are shown in Figure 3. We can observe that the perturbation-based
approach works better, which supports the previous intuitive observation in Sub-
section 5.3.
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Fig. 3. Fidelity. For Fidelity+, the higher values indicate better explanations, and for
Fidelity−, the lower values mean the explanations are better.

6 Conclusion and Future Works

In this paper, we proposed a novel XAI pipeline, called MisinfoExplainer, to
explore the factors contributing to misinformation spread on social networks.
The proposed MisinfoExplainer made use of the heterogenous convolutional
GraphSAGE (HeteroGraphSAGE) to predict the misinformation spread with
the trained model explained by XAI methods. We provided two XAI methods
for explaining the trained model: a gradient-based method that exploits the gra-
dients of the input in the model, and a perturbation-based method that perturbs
the input of the model to obtain explanations. The experimental results showed
that our proposed pipeline can obtain an accurate model for misinformation
spread prediction, and that HeteroGraphSAGE is superior to other methods on
a large-scale misinformation-labelled social network dataset. We obtained the
factors that contribute to misinformation spread by explaining the prediction
model using the two proposed XAI methods. Through qualitative analysis and
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quantitative measurement, we concluded that the perturbation-based method
provides better explanations than the gradient-based method.

Limitations and Future Work All experiments in this study are conducted under
the assumption that the dataset has classified certain tweets as misinformation.
Our XAI method is constrained by the model of misinformation spread, which
incorporates the use of spread indicators, such as the number of retweets. In
future work, we aim to develop more precise models of misinformation spread
and explore advanced XAI techniques to provide comprehensive explanations
for the spread process. Nonetheless, we firmly believe that the current research
approach in this study, which involves modeling the spread and utilizing XAI
to investigate the factors contributing to its occurrence, is a valid and valuable
research direction.
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