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Abstract. Explainable artificial intelligence (XAI) has gained increas-
ing attention in the medical field, where understanding the reasons for
predictions is crucial. In this paper we introduce an interactive and dy-
namic visual interface providing global, local and counterfactual expla-
nations to end-users, with a use case in healthcare. The dataset used
in the study is about predicting an individual’s coronary heart disease
(CHD) within 10 years using the decision tree classification method. We
evaluated our XAI system with 200 participants. Our results show that
the participants reported an overall good assessment of the user inter-
face, with non-expert users showing a higher satisfaction than users who
have some degree of knoweldge of AI.

Keywords: XAI · non-expert users · interactive XAI system · global,
local, counterfactual explanation.

1 Introduction

1.1 Background

Artificial intelligence (AI), the intelligent technology of machines [30], has made
significant progress in performing tasks that traditionally require human intelli-
gence. Recent advances in both hardware and high-performance computing have
enabled the development of increasingly complex AI models that achieve high
accuracy by continuously turning their parameters.

However, the increasing complexity and the lack of transparency of AI mod-
els, especially black-box models, make it difficult to convey security and trust-
worthiness to users in how and why decisions are made in different applications
[9]. The lack of transparency has led to ethical concerns in various fields, such
as medical diagnosis and legal judgment. The ability to explain why a certain
decision was made, became a vital property of AI systems. Derived from the
emerging demand for explaining the deployed AI systems, the topic of Explain-
able Artificial Intelligence (XAI) emerged recently, and has since became an
active research area. XAI aims to make AI more understandable by providing
details and reasons for its decisions and actions [3].
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The concepts of explainability and interpretability: In the community
of XAI, the concepts of explainability and interpretability are equated in some
cases but there does exist a subtle difference between them. According to the
paper by Biran and Cotton [5], systems are interpretable if their operations can
be understood by a human, either through introspection or through a produced
explanation. In general, the process of interpretation for a model tends to be
revealing the working structure and the rationale, while explanation mostly fo-
cuses on providing post-hoc explanations for existing machine learning models.
The AWS Whitepaper 3 gives a brief summary. Interpretability focuses more on
the inner mechanics of models, which are about how and why the predictions are
generated, raising the question How does the model work?. Explainability is the
ability to explain the model’s behaviours in human terms, which can usually be
achieved by model-agnostic methods, raising What else can the model tell me?.
There exists a tradeoff between interpretability and model performance given
common AI/ML models.

1.2 The methods of XAI

While there has been an explosive growth of XAI methods, they have two com-
mon broad aims: transparency and post-hoc interpretation [23]. Transparency
refers to how a model works intrinsically, while post-hoc interpretation concerns
how a model behaves after the model training.

Based on a comprehensive and holistic analysis of previous surveys [1], XAI
methods are organized into three categories: (1). Complexity-related methods
(2). Scope-related methods (3). Model-related methods.

Table 1. XAI methods categories

Visualization:	Surrogate	models,	Partial	Dependence	Plot,etc
Knowledge	Extraction:	Rule	extraction,	etc
Influence	Methods:	Sensitivity	analysis,	Feature	importance,etc
Example-based	Explanation:	Counterfactual	explanations,	etc

Complexity Related Methods
Scope Related

Methods
Global Methods
Local Methods

Model Related
Methods

Model-specific Methods

 Model-
agnostic
Methods

In this study, we place emphasis on the following explanation approaches:

– Global explanation: global explanations focus on the overall logic
of a model and the entire decision-making process that lead to all
the different outcomes. This class of methods are applied when the
macro-level decisions are crucial. A general strategy is to display the

3 https://docs.aws.amazon.com/whitepapers/latest/model-explainability-aws-ai-
ml/interpretability-versus-explainability.html
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decision-making process by symbolic and graphical representations.
For example, [10] introduced the algorithm of TREPAN, to gener-
ate symbolic representations for given neural networks and extract
decision-tree structures. Partial Dependence plot (PDP) is a model-
agnostic explanation method [12]. PDP displays the marginal effect
of attributes to the output of models. Attributes can have either a
linear or a more complex effect on the predicted outcome. The limi-
tation of PDP derives from its assumption of independence that the
attributes for which partial dependence are computed are not cor-
related with each other. Also, it is not able to describe the hetero-
geneous effects of attributes. The method of Individual Conditional
Expectation (ICE) extends PDP. ICE plots reveal interactions and
individual differences by disaggregating the partial dependence func-
tion, which enables a deeper understanding of the level of individual
observations [1].

– Local explanation: local explanations aim at explaining why a partic-
ular decision was made. [29] presented the algorithm of LIME (Lo-
cal Interpretable Model-agnostic Explanations), which is a model-
agnostic method explaining the local decisions of any interpretable
classifier or regressor. It can also approximate black-box models in
a local neighborhood of any prediction. Given the goal of exploring
the reason why the black-box model made a certain decision, LIME
attempts to find out how the outcomes change when variations were
added to the input data [24]. It feeds the black-box models by per-
turbed samples and generates a new dataset of perturbed samples
plus the outcomes of models. Based on the new dataset, an inter-
pretable model will be built up, which is weighted by the proximity of
perturbed samples to the original [24]. LIME calculates and outputs
how much each attribute contributes to the predication of a single
sample. Another similar algorithm, Shapley Additive Explanations
(SHAP), proposed by [19] in 2017, is a method from cooperative
game theory, which assumes that each attribute value of the sample
is a player in a game where the prediction outcome is the payout
[24]. For each data sample, the algorithm computes the SHAP value
of each attribute showing how much effect each attribute has on the
prediction.

– Counterfactual explanation: counterfactual explanations describe the
minimum alterations to the input data that are needed to obtain a
different decision. Counterfactual methods do not touch the overall
logic of the model, but focus on explaining individual predictions.
Counterfactual explanations are useful when addressing questions
such as “why the outcome is P rather than Q?”. Therefore, coun-
terfactual explanations can be understood as aiming to find data
samples that can produce Q as the outcome while revealing which
attributes’ values will need to be changed (from the original data
sample) in order to achieve this. In this sense, counterfactual expla-
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nation approaches can be extended to provide contrastive explana-
tions for non-classification problems.

XAI tools and applications: XAI methods have been applied to develop
interpretive systems. In many fields, smart systems that incorporate domain
knowledge and XAI are mostly used to assist experts. For example, Clinical
Decision Support Systems (CDSSs) enhancing communication efficiency and as-
sisting in the diagnosis by physicians [31]. Apart from those systems designed
for professional and practitioners, there is a strong need to provide explanations
to non-experts to facilitate the adoption and gain the public trust of AI in the
wider society. Several interactive interfaces have been developed to address this
need, including InterpretML [28], AIX360 [4], which both offer global and local
explanations. [11] conducted a user study on eXplanation through Plan Prop-
erties (XPP) tools, and the evaluations indicate that these explanations enable
users to find better trade-offs.

1.3 What constitutes a good explanation?

Though there are a great many ways to provide explanations, what constitutes
a good explanation is still an issue requires considering. Recent works on XAI,
which focused on simplified models that approximate the true criteria to make
decisions, can lead to a gap of expectations between AI/ML and the fields of
philosophy [23]. Given the questions such as “Are the explanations useful?”, “Is
the model understandable?”, or “Is the decision-making sensible”, people with
different backgrounds may have opposite opinions. A good explanation in the
view of a machine learning specialist may be unconvincing to the context of
philosophy, sociology and cognitive sciences.

[22] provided a comprehensive review of social sciences on human explana-
tion and discussed if and how these works can be applied to XAI. According
to [22], humans have certain biases in their cognitive processes, which means
they generate, select and evaluate explanations in a biased manner. When ex-
plaining a phenomenon, people are more likely to bias explanations towards
inherent attributes, rather than extrinsic attributes. That bias towards inher-
ence is thought to derive from prior knowledge, cognitive ability and so on [22].
As human explanations are selected, an explanation provider may not provide
complete causes of an event, but can still convey useful information by emphasiz-
ing the key attributes or evidence in explanation based on their relevance to the
recipients’ interests. Explanations are social activities involving an interaction
between explainers and explainees [23]. Explanations of AI/ML models can be
conceived as generated by an iterative process, selected and evaluated based on
presuppositions and beliefs [23].

[8] introduced their online experiment where participants use different in-
terfaces to get explanations of an algorithm for making decisions on university
admissions. By measuring users’ understanding of the algorithm, it is found that
interactive explanations are more effective than static explanations while “white-
box” explanations are more effective than the “black-box”. Those conclusions
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can be conceived as the design principle of user interfaces, which enable users
to explore the system’s behaviours freely through interactive explanations and
“white-box” (defined as the visualization of the inner working of the system in
the paper) [8]. [6] conducted a controlled user study using 4 different systems to
investigate if contextualizing and allowing the exploration of explanations based
on local attribute importance could improve users’ satisfaction. The results of
analysis of variance demonstrated that by providing users with missing contex-
tual information (ML knowledge, domain knowledge, external/real-life knowl-
edge), and providing interactive attributes to test their hypotheses (interactive
display and example-based explanations), the objective understanding scores of
users are increased.

Therefore, those related works provide strong motivations for a user study
with an interactive contextualized interface. Interacting with the interface, users
engage in the communication through dialogue, textual description and graphical
presentation which leads to their own understanding of the model.

2 Preliminaries

2.1 Global and Local Explanation for Decision Trees

Global Explanation: Global explanation is to explain how a model makes de-
cisions by considering all the attributes. Decision tree [27] is a tree-like algorithm
that recursively splits the data into smaller subsets and uses the tree leaves to
represent the final classification result. In some decision tree algorithms, the
maximum depth of the tree can be specified. In our experiments, we set the
maximum tree depth to 6. One of the main criterion for splitting a node (D)
in a tree into sub-branches (D1, D2, ...) is the GINI index, which calculates the
effectiveness of a split based on an attribute at node D.

A commonly used formula for the GINI index is Equation 1, where |D| (or
|Di|) represents the cardinality of set D (or Di)

GiniIndex(D) =

n∑
i=1

Di

D
Gini (Di) (1)

Equation 2 is the definition of GINI, where cj is the number of records in Di

with class label as j (for total of n class labels)

Gini(Di) = 1−
n∑

i=1

(
cj
Di

)2 (2)

Figure 1, referenced from xoriant4, presents an example of decision tree al-
gorithm. The decision tree considers age, eating habits, and exercise preferences
to determine whether a person is fit. The first layer is whether a person’s age is
less than 30. The second layer decides whether the person eats a lot of pizza or
exercises in the morning. The leaf nodes are the final judgment result (fit/unfit).

4 https://www.xoriant.com/blog/decision-trees-for-classification-a-machine-learning-
algorithm
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Fig. 1. A simple decision tree determining if a person is fit

Local Explanation: Local explanation is an explanation of how a model pre-
dicts a decision for a specific record. In the decision tree model, the specific
decision path from the root to the leaf corresponding to that specific record can
be regarded as a local explanation. For example, we can draw following local
explanations about whether a person is fit or not by following each branch from
root to node in the decision tree of Figure 1.

Example 1: if a person’s age<30 AND person eats lots of pizzas THEN the
person is unfit.

Example 2: if a person’s age>30 AND person exercises in the morning THEN
the person is fit.

2.2 Counterfactual Explanations

Counterfactual explanations aim to explain why a model predicted one result
P instead of another result Q. Some early works in AI are closely related to
counterfactuals, such as [14], [32]. However, the explanations provided by these
expert-focused or rule-based systems do not offer insight into the internal logic
of classifiers. Later counterfactual explanations took an end-to-end integrated
approach. For data-driven classification[21], a heuristic method was proposed to
explain classified documents. Meanwhile, adversarial perturbations[13], such as
Deepfool attacks[25], have been studied for generating counterfactual explana-
tions for deep neural networks. To overcome challenges in interpretability and
accountability, researchers like [33] explored unconditional counterfactual expla-
nations of automated decisions. Diverse Counterfactual Explanations(DiCE)[26]
extends the work of [33] and provides a method that can be applied to any
differentiable machine learning classifier.

Generate Counterfactual Records by DiCE: Equation 3 presents the orig-
inal counterfactual explanation framework proposed by [33]. Given F as the
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predictive ML model, it generates a counterfactual record c that has a different
predicted outcome than that for the original record x by minimizing the loss
function yloss.

c = argmin
c

yloss(F (c), F (x)) +Dis(x, c) (3)

Where Dis(x, c) is the distance between x and c. Dis(x, c) keeps the counter-
factual close to the original record and can be achieved with distance measures
like Euclidean, Cosine and Manhattan distance.

DiCE introduces diversity and proximity constraints and optimises the above
equation by presenting Equation 4, where λ1 and λ2 are hyperparameters used
for balancing the weights of three parts in the equation.

Proximity and Diverse are defined as Equation 5 and Equation 6.

C(x) = argmin
c1...,ck

1

k

k∑
j=1

yloss (F (ci), F (x)) + λ1 · Proximity + λ2 ·Diverse (4)

Proximity is quantified as the (negative) distance between the attributes of
the original input and the generated record. In DiCE, the proximity of a set of
counterfactual records is defined as their average proximity.

Proximity = −1

k

k∑
i=1

Dis(ci, x) (5)

Equation 6 says that the diversity of a set of counterfactuals {c1, c2, ...ck}
is defined as det(K), where the elements of matrix K equal to Ki,j . det(K) is
the determinant of K. It shows diversity constraints in subset selection problems
implemented by Determinantal Point Processes (DPP)[17]. DPP-based diversity
facilitates the selection of subsets containing more diverse elements, and results
in higher probabilities for these subsets.

Diverse = det(K),Ki,j =
1

1 +Dis(ci, cj)
(6)

3 XAI System Design and Implementation

3.1 Architecture Design

This paper therefore reports the findings of Interactive Graphical User Interfaces
(GUIs) of explainable Artificial Intelligent systems oriented to non-expert users,
and to discuss how to improve the quality of explanations by means of user study.
Given the dataset of cardiovascular, users are asked to explore a classification
problem based on the model of decision tree. The interface provides explana-
tions generated by global, local and counterfactual methods for users, helping
them comprehend how and why the decision tree makes predictions. Based on
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the existing methodologies of XAI and motivated by works that apply cognitive
sciences, the design of interface takes advantage of the achievements from pre-
vious user studies, conforming to the principles of “interactive”, “selective” and
“contextualization”.

Figure 2 displays the overall structure of the design. The web application is
based on the Flask[15] framework. Bootstrap and LayUI templates are used to set
the CSS styles. Tree visualizations are generated using Echarts[18] in Javascript.
Data interactions are created using Jinja and Ajax requests. The front-end web
pages and back-end implementations are packaged as Docker containers and
deployed to a cloud server (Ubuntu 20). Nginx acts as a reverse proxy between
users and cloud server, forwarding requests to the backend server application
and returning its response to the user.

Global
Explanation

Local
Explanation

Counterfactual
Explanation

Questionnaire
Evaluation

Decision Tree Model
Path Generation

DiCE
Records Generation

③ ④ ⑤ ⑥

Cloud Sever

Preprocessed Dataset

① ②

Microsoft Form
Iframe

Docker

Back-end Techniques

Interface Functions

Fig. 2. System overview ((1) Maximum decision tree depth; (2) Decoded global path;
(3) Maximum decision tree depth and selected record; (4) Decoded local path; (5) Orig-
inal data sample and actionable counterfactual attributes; (6) Prediction and counter-
factual data samples)

3.2 Dataset

Cardiovascular study5 is a public data source with 4,237 records. Each record
covers 15 attributes, containing information on people’s demographic, behavioural,
and medical status. We leverage these attributes to predict and explain whether
individuals are at risk of developing coronary heart disease (CHD) within 10
years. Table 2 shows the dataset descriptions, where Z for Integer, R for real
number and Bool for Boolean type.

The attributes age, BMI, cigs/day, cholesterol, diaBP, sysBP, heart rate,
and glucose are categorized and encoded using OneHotEncoder. The remaining
attributes are processed numerically using StandardScaler. Two of these pro-
cesses are packaged in a ColumnTransformer and applied to the raw dataset for
preprocessing.

5 https://www.kaggle.com/datasets/christofel04/cardiovascular-study-dataset-
predict-heart-disea
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Table 2. Dataset Description

Attribute Name Description Value

Sex Gender of the person String: M for male, F for female
Age Age of the person Z: An Integer ≥ 0

Is smoking Whether a current smoker Bool: 1 for true, 0 for false
Cigs Per Day Average daily cigarette consumption Z: An Integer number ≥ 0
BP Meds Whether on blood pressure medication Bool: 1 for true, 0 for false

Prevalent Stroke Whether had previously had a stroke Bool: 1 for true, 0 for false
Prevalent Hyp Whether was hypertensive Bool: 1 for true, 0 for false

Diabetes Whether had diabetes Bool: 1 for true, 0 for false
Tot Chol Total cholesterol level per deciliter Z: Normal ≤ 200 milligrams
Sys BP Systolic blood pressure R: Hypertension ≥ 140 mmHg
Dia BP Diastolic blood pressure R: Hypertension ≥ 100 mmHg
BMI Body Mass Index R: Normal 18 ∼ 25

Heart Rate Heart rate per minute Z: Normal 60 ∼ 100
Glucose Glucose level Z: Normal ≤ 200mg/dL

10-year CHD 10-year risk of coronary heart disease Bool: 1 for true, 0 for false

3.3 Visualisations of Global and Local Explanations

Decision trees and nodes of a tree produced directly by a decision tree algorithm
contain lots of additional information, in addition to the attribute name and
its split condition as seen in Figure 1. The additional information may include
for example, GINI values or the number of records reaching a leaf nodes. Such
information is difficult for non-expert users to understand and there is actually
no need to present such information to non-expert users.

Our objective is to provide more straightforward explanations by visualising
the decision tree. Figure 3 illustrates the process of converting text into an
interactive graphical decision tree.

Decision Tree
Model

Train

Predict one record

Dataset Global Decision Paths

Local Decision Path

Tree structure Decode
&

Update
Echarts

Jsonify
&

UTF - 8 
EncodeSet Path Color 

Blue

Set Path Color 
Grey AJAX

Front-end JavascriptBack-end Flask 

Fig. 3. The process of visualising decision trees

The decision tree model is based on implementation of CART in scikit-
learn[7]. After training, the global decision path is formed by recursively ex-
ploring the ‘tree_’ attribute in the model. The local decision path can be
obtained by identifying a specific ‘node_id’ before exploring the ‘tree_’. To
differentiate global and local explanations, we set the global paths in a grey line
style, while the local paths are shown in blue lines. After that, we convert the
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path into a JSON format and encode it. The encoded string is then passed to
the front-end by Flask[15] and Ajax. In the JavaScript of the HTML webpage,
we utilise ‘atob’ and ‘JSON.parse’ functions to decode the data into a normal
format. The decision tree is updated whenever we reset the Echarts[18] with the
latest decoded data.

Visualization Optimization: Scalability and selective tree depths are im-
plemented in the tree visualization to enhance user experience. The interface
enables the generation of global explanations with a range of maximum tree
depths between 2 and 6. Based on the tree we described in Section 3.2, Figure
4 shows global explanations with the tree depths of 2 and 3 respectively.

Fig. 4. The global explanation tree of different tree depths, where each node is ex-
pandable upon a click.
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It’s an interactive function that sends an Ajax request back to the model and
returns the corresponding tree model when the user selects a depth and clicks
the ‘update depth’ button.

The tree structure becomes more complex as the tree gets deeper. To enhance
readability, we hide some nodes when a tree depth exceeds 4. Nodes can be
expanded or hidden by clicking on a particular node. Figure 5 shows the tree
zoom in and out function.

Fig. 5. Zoom in and out of explanation tree
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3.4 Counterfactual Explanation Criteria

Changeable Attributes Selection: The dataset contains 15 attributes and
attribute selection can reduce the dimensionality and enhance the computa-
tional efficiency of the algorithm. Moreover, some attributes are not actionable,
for instance, an individual’s age, or gender. Identifying and focusing on the
most important attributes improves the actionability and interpretability of the
counterfactual records. We use Shapley Additive Explanations(SHAP)[20] as a
reference to select attributes.

SHAP is a method that quantifies attribute contributions for any machine
learning model. SHAP calculates the Shapley value for each attribute given a
specific record and measures its importance to the final outcome of this record.
The intuition behind the Shapley value is to calculate the output difference with
and without a specific attribute.

SHAPA(XS) =
∑

S⊆F\{A}

W ∗ [fS∪{A}(XS∪{A})− fS(XS)] (7)

W =
|S|!(|F | − |S| − 1)!

|F |!
(8)

In Equations 7 and 8, F is the set of all attributes in a dataset, A is an individual
attribute, and F \ {A} means the set of attributes without A. fS∪{A} is a ML
model with attribute A present, and fS is a model without A, and XS represents
the values of attributes in S.

SHAP value for a single attribute of a particular record can be extended to
calculate SHAP values for this attribute over all of the records in a dataset. The
global importance of this attribute is then obtained by averaging these individual
SHAP values for this attribute. The ranking of the attributes based on (global)
SHAP values is shown in Figure 6.

Fig. 6. The SHAP attribute importance plot
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In practice, we first select important key attributes referring to the explana-
tion of attributes contributions using SHAP. Then, we opt-out attributes that
are not actionable, e.g., gender and age, not possible to change easily. Last,
sysBP, diaBP, BMI, HR, cigs per day, glucose are 6 changeable attributes we
provide when generating counterfactual records.

Attributes Range Constraints Range constraints are used for filtering po-
tential infeasible counterfactual records due to real-world limits. Table 3 below
lists range constraints of changeable attributes when generating counterfactual
explanations.

Table 3. Attributes range constraints

Cigs/Day Sys BP Dia BP Heart Rate BMI Glucose

[0, 400] [0, 300] [0, 250] [0, 200] [10, 50] [0,250]

4 Interactive XAI System and its Evaluation

4.1 System Testing

The interface is available to access via weblink6. When users access the XAI
interactive page for the first time, they will be redirected to the page containing
a research introduction and participation ethical terms. Users must click the ’I
consent’ button to explore following main functions.

Data description, global and local explanation, counterfactual explanation,
feedback & questionnaire are the four sections in the application. Most of the
content on the data description page has been mentioned in Section 3.2.

In the following analysis, the terms high risks, high likelihood, and more
likely are used interchangeably to refer to the 10-year CHD risk associated with
a Yes result. Similarly, the terms low risks, low likelihood, and less likely
refer to the 10-year CHD risk associated with a No result.

6 https://med.bristol-xai.uk
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Figure 7 shows the interface of global and local explanations, and illustrate
the global and local explanations of a selected record (in this case, we set the
tree depth as 3). Each of the 1011 records in the original dataset can be selected
on the righ-panel to view its decision path displayed on the left-panel with blue
colour, and the interface supports sorting by age and blood pressure in ascending
or descending order.

Fig. 7. Global and local explanation interface

Figure 8 presents the counterfactual explanation interface. A brief introduc-
tion to counterfactual explanation is provided at the top. Default values have
been set to facilitate users in exploring the two panels below more conveniently.

Panel 1 displays how a 10-year CHD risk prediction can be generated when
the button “Step 1” is clicked by a user. To aid a user in inputting these values,
we provide some default values in these attribute boxes to start with. If a user
wishes to alter any of these values, they can do so, and clicked the Step 1: Trigger
ML Model for Prediction. The tabular display will appear beneath the button
and show the prediction result (far-right in green colour).
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Fig. 8. Counterfactual explanation interface

For Panel 2, Figure 9 shows the counterfactual records found for the original
record displayed in Panel 1. These counterfactual records are provided by using
DiCE and considering the importance of attributes measured by SHAP given
in Figure 6. In the counterfactual records, when the sign “-” is displayed under
an attribute name, it means, the value of this attribute is the same as that in
the original record. Counterfactual records only display attribute values which
are different from original, and these values actually show how changes in some
attribute values will contribute to generating a different prediction outcome.
This is the essence of counterfactual explanation.

Fig. 9. Generate high risks CHD counterfactuals given a low-risk original record
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Similarly, if the original record show “Yes, High-risk” and we want to provide
counterfactuals to a user, “No, low-risk” records will be produced by DiCE to
show how changes in some attribute values can alter the prediction outcome to
“No” as shown in Figure 10. It shall be pointed out that in this case, only two
attributes are used to find counterfactuals. Users are provided with a choice of
how many attributes they wish to use to find counterfactuals. This is done by
selecting attribute names in Panel 2, such as either “Select All”, or just select
some by clicking on individual attribute names.

Fig. 10. Generate low risks CHD counterfactuals given a high-risk original record

Figure 11 shows an example of counterfactual records generated by using 4
attributes.

Fig. 11. Counterfactual explanations with 4 changeable attributes
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When a counterfactual does not exist if a certain combination of attributes
selected. When this happens, the system will prompt ‘No Counterfactuals found
for the given configuration, perhaps try with different attributes combinations.
Recommend: try selectAll attributes for the first attempt’.

4.2 Questionnaire Evaluation

XAI aims to provide decision-makers with explanations of the computing system
to help them understand that the entire process is reasonable. It is important
to evaluate the effectiveness of the XAI explanation through a questionnaire for
participants.

Table 4 shows our 14 questions covering three aspects: basic information,
system satisfactory, and overall experience. The designed questions refer to the
metrics for explainable AI proposed by [16], including goodness, satisfaction, and
understanding.

Table 4. Questions for evaluation

Class Alias Question Options
Q1 Your age < 20; 20~30; 30~40; 40~50; >50
Q2 Your gender Female;Male;No binary;Prefer not to say

Q3 Do you have any prior Artificial Intelligence
experience?

Yes,a STEM related student/worker/researcher; No

Q4 Do you have any prior Medical Domain experience?
Yes (a medical student/worker/researcher);
Yes (been diagnosed with CHD/any related diseases);
No (mainly focus on other domains)

Q5 How do you describe your English proficiency? Beginner, Intermediate, Advanced, Proficient, Native

Q6 Rank the explanations from easiest to least
understandable in the list. 

Data Description, Global Explaination, Local
Explaination, Counterfactuals Explore

Q7 How	useful	do	you	find	the	decision	tree	to	your
understanding	the	global	&	local	explanations? Five levels from very unhelpful to very helpful

Q8
How	useful	do	you	find	the	counterfactual	examples	it
generates	to	your	understanding	of	counterfactual
explanations?	

Five levels from very unhelpful to very helpful

Q9 How the decision tree works Five levels from very unclear to very clear
Q10 Why a certain prediction is given. Five levels from very unclear to very clear
Q11 How each attribute influences the result. Five levels from very unclear to very clear
Q12 How attributes  combinations influence the result. Five levels from very unclear to very clear
Q13 Do you encountered any challenges while using XAI Optional
Q14 Do you have any additional comments or feedback Optional

Overall
Feedback

Basic
Information

System
Satisfactory

The
Helpfulness of
Explanations

Result Analysis: In total, 200 participants tried our XAI system after filtering
out incomplete questionnaries. 34.5% under 20, 49.5% aged between 20 and 30,
and 16% over 30 years old. As for English proficiency, 20% are beginners, 37%
are intermediate, and 43% are advanced or native speakers. Additionally, there
are 103 non-experts in AI and 120 individuals unfamiliar with healthcare.
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Fig. 12. The distributions of gender and age

Questions related to system satisfaction (Q7 and Q8) receive high ratings,
Figure 13 shows that most of participants believe that the interfaces are helpful
in understanding the decision tree classifier.

Fig. 13. Rates distributions of Q7(left) and Q8(right)

Table 5 reflects the mean, median, Standard Deviation(SD), Coefficient of
Variation(CV) scores of question Q7 to Q12. The mean scores reflect the par-
ticipants’ overall ratings. The median values display central tendency and are
robust to skewed distributions. SD and CV scores take into account the disper-
sion of rating data and can be used to assess the stability and consistency of the
scores.

Table 5. Mean, median, SD, CV scores for Q7 to Q12

Q7 Q8 Q9 Q10 Q11 Q12

Mean 3.705 3.586 3.490 3.469 3.367 3.376
Median 4.000 4.000 4.000 4.000 3.000 4.000

Standard Deviations 0.913 0.941 1.046 1.088 1.061 1.079
Coefficient Variation 24.64% 26.24% 29.97% 31.36% 31.51% 31.96%
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Q7 gains highest average score of 3.705, and the lowest standard deviation
of 0.913, suggesting that most participants agreed that decision trees are useful
for understanding global and local explanations. Although Q8 receive a lower
score, the average grade of 3.586 still suggests counterfactual explanations are
effective. For the median values, most questions received a score of 4, while Q11
gained a median score of 3.

We further examined the coefficient of variation and found the variation in
scores for Q10, Q11, and Q12 was above 31%. This indicates significant differ-
ences exist in how participants considered questions related to why a certain
prediction is given (Q10), how each attribute influences the result (Q11), and
how attribute combinations influence the result (Q12).

These findings show a positive attitude among participants towards our XAI
interface but different satisfactory degrees exist for participants with different
backgrounds.

To further investigates the effect of participants’ background, participants
are divided into four groups based on whether they have prior knowledge of
the AI field (Q3) and healthcare(Q4). Those with medical knowledge, such as
medical students, medical workers, or those previously diagnosed with CHD-
related diseases, are considered to have prior knowledge of healthcare, and the
distribution for each group are shown in Table 6.

Table 6. Background group description and distribution

Group Names AI Field Healthcare Field Percentage(%)

Group1 No No 40.1%
Group2 No Yes 11.2%
Group3 Yes No 19.3%
Group4 Yes Yes 29.4%

Figure 14 shows the scores given by each group for questions Q9 to Q12.
Groups without AI-related knowledge (Group 1, 2) find the explanation useful
and clear, with average scores around 3.5. One interesting finding is that par-
ticipants with AI but no medical background (Group 3) give the lowest ratings,
with average scores around 3.

Also, we read optional feedback (Q13,Q14) from Group 3 and found one pos-
sible reason for their critics is their familiarity with the ML model and expect
more advanced implementations. They provide many helpful suggestions for fur-
ther improvement including applying the technique to large-scale datasets, using
figures like PDP plots to show attribute importance, and focusing on the robust-
ness of the interface. The feedback from other groups is more general, including
applying the current technology to other fields and providing support for differ-
ent languages.
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Group1 Group2 Group3 Group4
Q9 3.6456 3.3636 3.1282 3.5690
Q10 3.5570 3.5000 3.1842 3.5263
Q11 3.5128 3.4091 2.8684 3.4828
Q12 3.4177 3.3636 3.0000 3.5690
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Fig. 14. Comparison of Q9-Q12 Average Scores by Group

5 Conclusion

This paper presents an interactive web application that provides decision sup-
port to non-experts. The system offers intuitive global, local, and counterfactual
explanations to visualise how a decision tree classifier works.

Compared to traditional static GUIs, the system provides dynamic explana-
tions that enable users to (1) adjust the maximum depth of the decision tree, (2)
personalize predictions based on textual inouts, and (3) generate counterfactuals
based on different attribute combinations.

The system is applied in the healthcare field and evaluated through feed-
back from online participants. The results demonstrate that XAI methods can
improve the model’s credibility by helping users understand how and why it
predicts a specific outcome. Moreover, users can deepen their understanding of
the XAI system by experimenting with various inputs and observing changes in
dynamic explanations Our work shares similarities with ExpliClas [2]. ExpliClas
is a web service that generates global and local explanations after the user selects
a dataset and a classifier. The main distinction is that we also offer counterfac-
tual explanations with adjustable attributes. This feature offers a deeper insight
into why the ML model predicted P instead of Q. Nonetheless, we are inspired
to pursue the following improvements in future research: (1) support multiple
datasets for user flexibility, (2) personalize user experience through their inter-
actions with the interface, (3) track user browsing duration to assess the XAI
system’s attractiveness and (4) provide some additional explanations such as
attribute-importance plot using DPP or LIME.
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