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Abstract. Causal attribution aided by counterfactual reasoning is recog-
nised as a key feature of human explanation. In this paper we propose
a post-hoc contrastive explanation framework for reinforcement learning
(RL) based on comparing learned policies under actual environmental re-
wards vs. hypothetical (counterfactual) rewards. The framework provides
policy-level explanations by accessing learned Q-functions and identi-
fying intersecting critical states. Global explanations are generated to
summarise policy behaviour through the visualisation of sub-trajectories
based on these states, while local explanations are based on the action-
values in states. We conduct experiments on several grid-world examples.
Our results show that it is possible to explain the difference between
learned policies based on Q-functions. This demonstrates the potential
for more informed human decision-making when deploying policies and
highlights the possibility of developing further XAI techniques in RL.

Keywords: Explainable reinforcement learning - Contrastive explana-
tions - Counterfactuals - Visual explanations.

1 Introduction

The aim of explainable AI planning (XAIP) and explainable reinforcement learn-
ing (XRL) is to help end-users better understand agent behaviour (e.g. learned
policies) and how that behaviour relates to the environment (i.e. transition prob-
abilities and rewards) [I5I12/6]. Contrastive explanations are a particular ap-
proach to explainable AT (XAI) that seek to answer contrastive why-questions,
with the aim of identifying the causes of one event (called the fact) relative to
the causes of another (called the foil in the counterfactual case, meaning that
the event did not occur in the actual world) [26]. Miller [3TI32] emphasised the
importance of contrastive explanations in explainable Al (XAI) based a sur-
vey of the relevant literature from philosophy and social science. Many recent
studies have explored different aspects of contrastive explanations in XAIP and
XRL [49/16135].

One possibility for contrastive explanations in XRL is to compare a learned
policy under actual environmental rewards versus a learned policy under hy-
pothetical (counterfactual) rewards. Such comparisons have analogies in several



2 X. Liu et al.

areas of RL. For example, preference-based RL [8I20127] seeks to learn a policy
that is optimal with respect to altered rewards that combine environmental re-
wards with human preferences. If a policy is learned under both kinds of rewards,
then it opens the possibility of explaining one policy with respect to the other
by way of contrast. An interesting research challenge then is how to generate
contrastive explanations for RL to help humans better understand the impact
of actual rewards on learned agent behaviour.

In this paper, we develop a framework for contrastive explanations in RL
that compares the policy learned under actual rewards against policies learned
under different counterfactual rewards. The actual reward configuration is just
the actual rewards, while each counterfactual reward configuration is a partial
alteration of the actual rewards. We assume that all policies are otherwise trained
under the same conditions (e.g. same hyperparameters, same training steps). We
adopt a post-hoc XAI paradigm to provide two types of contrastive explanation:

1. Global explanation: This type of explanation focuses on providing overall
policy explanations about an agent’s behaviour. It provides insights into
how these policies behave in general by visualising (sub-)trajectories, and
how decisions are made in some states among the configurations.

2. Local explanation: This type of explanation addresses the question, “Why
was action a chosen in state s rather than action a’?” It provides more fine-
grained information based on the action-value function in each configuration,
allowing for a better understanding of agent behaviour.

The rest of this paper is organised as follows. Section [2|reviews related litera-
ture about explanation in XAIP and XRL. Section [3] formulates the main struc-
ture of constrastive explanation, and Section [4] offers illustrative explanation and
further analysis on the cases. The last section offers conclusions, discussions and
future works.

2 Related Work

Explainable AI (XAI) has obtained significant attention in recent years, driven
by the advancement and wide application of machine learning and Al systems
especially in decision making [23/44/40]. The systems pose challenges for trust-
worthiness if they simply employ more powerful and flexible models, albeit at
the expense of model interpretability and transparency [33U12J30]. The com-
plexity of the systems, as well as the difficulty explaining an agent’s behaviour
in planning and RL, have been acknowledged by many research papers [55/5/6]
which further assessed the necessity of XAl for planning and RL. In this part,
we review some literature that is closely related to the topics in XRL.

Policy summarisation in RL. Policy summarisation has been a subject of
much research in XAIP and XRL [24J45], which improves interpretability and
provides an explanation regarding the agent’s policy behaviour. One approach
is the use of trajectory visualisation, which involves summarising the agent’s
policy by extracting important trajectories from simulations. For example, in
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[1], the authors discussed the design and implementation of the HIGHLIGHTS
algorithm, which used state importance and the state diversity criteria for choos-
ing the trajectories from the replay buffer. This approach was further extended
in [I8], which integrated saliency maps to local explanation through the visu-
alisation of trajectories. In robotics and control, [I7] utilises example trajec-
tories to enable users to better anticipate the behaviours or goals of robots.
Following this, [24] enhanced the example trajectories extraction by optimis-
ing an inverse reinforcement learning or imitation learning problem. Another
approach to policy summarisation is generating an abstracted or hierarchical
explanation through learned models or data about the policy. For instance, in
[47], authors generated policy-level explanations for RL, which used a Markov
chain to represent abstracted states and their transitions based on the training
data. In [43], authors proposed a framework for learning hierarchical policies in
multi-task RL that can learn human instructions and generate an explanation
of its decisions by learned instructions back to humans. Similarly, in [54], au-
thors proposed a policy abstraction method through an extended model of MDP
for deep Q-networks. Besides, many prior studies have demonstrated effective-
ness revealing an agent behaviour through trajectory visualisation and policy
abstraction [3I3419]. These works provide solid support for trajectory visualisa-
tion that serves as an effective approach to policy summarsation and explaining
the agent’s behaviour. Building upon this foundation, we extend these methods
by incorporating contrastive explanations.

Critical states and key moments for explanation in RL. [16] suggested that
the essence of the policy relies on a few critical states or the corresponding
agent’s actions on those states, and proposed approaches for computing critical
states based on the action-value function and the policy function. Similarly, [22]
explored the importance of a state with the variance of its learning action-value
function on states. Another study by [4I] proposed a method which extracted
key moments of the agent’s decision with statistical information of the agents,
delivered visual summaries and offered user studies of the performance. The
authors further extracted key elements of interestingness from an agent’s learning
experience in [42], and presented a global and visual summarisation of agent
behaviour based on elements including frequency and sequence. From another
aspect, counterfactual state, which was proposed in [36] captured the key states
that an agent chose a different action with minimal change to the input of
the policy networks. Deep generative models were used to create counterfactual
states and present visual counterfactual explanations to users on Atari games in
this work. Recent research integrated generating counterfactuals in latent space
with gradient-driven methods [53]. In the domain of robust RL, the detection of
critical states against adversarial attacks adopted this metric [25]. Other studies
[GAITIT3] focused on the identification and visualisation of the salience of state
features for Atari agents, which could be considered a metric of critical states.

Ezxplanation via rewards or value functions in RL. Notably, the contrasting
descriptions were provided for users’ queries related to predefined state transi-
tions and expected reward outcomes of the agent [49]. This approach did not di-
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rectly answer the contrastive questions on the agent’s behaviour, but transformed
the questions and provided answers by explaining the learned value functions in-
stead. Similar to [14], the proposed method introduced contrastive explanations
regarding the simulated outcomes of the rollouts based on two policies (the agent
policy and the foil policy). The construction of the fact and foil in these papers,
and the scheme for contrastive explanation are heuristics, which partially mo-
tivated the contrastive explanation for the difference in reward configurations
in our work. The framework in [I0] provided a policy evaluation method on
the action-value function that identified the influence of state transitions by re-
moving some transition data. According to [29], contrastive explanations were
generated by action influence models which involved causal relationship of re-
wards and actions. [21] introduced an explanation framework based on reward
decomposition, in which it is assumed that rewards can be decomposed into
vector-like rewards with semantic meaning. It is extended in a user-study for
real-time strategy games in [2], generated explanations for outcomes that agents
intended to achieve in tabular RL approaches [52]. [28] further utilised reward
decomposition to build a learnable framework for robotics.

From a boarder aspect of XRL, some works have considered aspects of
user needs, such as personalised explanations [46] and the complexity of con-
trastiveness [35]. We refer readers to see systematic overview of topics in XRL
[B75TI5648].

3 Generating Contrastive Explanations for Two Policies

3.1 Preliminaries

In this work we consider infinite-horizon, discounted reward Markov Decision
Processes (MDPs) [38/39]. An MDP is a tuple M = (S, A, P, R,~y) where S is a
finite set of states, A is a finite set of actions, P : S x A — A(S) is a (stochastic)
transition function where A(S) is the set of probability distributions over S,
R:SxAxS— Risareward function, and 7 € [0,1) is a discount factor. The
transition function P says if action a is executed in state s then the system will
transition to state s’ with probability P(s,a,s’), where P(s,a,s’) denotes the
probability of reaching state s’ according to distribution P(s,a). The optimal
value function V* is defined for each s € S as:

V*(s) =max » P(s,a,5) [R(s,a,s") +7V*(s)] (1)

€A
“ s'eS

and the optimal action-value function Q* is defined for each a € A as:
Q*(s,a) = Y P(s,a,8) [R(s,a,5') +7V*(s)] (2)
s’es

A policy is a function 7 : S — A. The optimal policy 7* can be extracted directly
from the optimal action-value function, i.e. for each s € S:

7" (s) = argmax,c 4 Q" (s, ) 3)
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Fig.1: A grid-world scenario.

In planning (where P and R are known) a well-known approach to finding the
optimal value function is value iteration [4]. In RL (where P and R are unknown)
a well-known approach to finding the optimal action-value function is Q-learning
[50]. In our proposed method, we assume access to both the learned policy and
the learned action-value function as optimal functions defined in Equation
and , which allows us to generate explanations from the decision-making
processes of the agent. We consider MDPs with different reward functions R; as
M; = (S, A, P,R;,~). The optimal policy, optimal value function and optimal
action-value function on M; are marked as 7}, V;*(s) and Q7 (s, a).

Environment description: A demo of Grid-World. We consider a sim-
ple case with a 7 x 4 grid-world (Figure |1|). Four actions, UP, DOWN, LEF'T,
RIGHT, are available at each state with a random action rate with 0.1E| To
reach the final destinations (G0 and G1 in green blocks) with the same positive
reward, the agent (red triangle) has to avoid the absorbing states, the lava cells
(orange), with a reward of 0. The agent initialises at one of the four cells on the
far-left side of the lava, and every action taken receives a penalty of -0.01.

3.2 Identifying Critical States from Q-functions

Critical states are defined as states where small changes can significantly affect
the agent’s behaviour, and they have been shown to be reliable indicators of an
agent’s decision-making process [16]. One of the most commonly used metrics
for defining critical states is the difference between the maximum and average
action values of a state above a predetermined threshold. Let C; denote the set
of critical states under the optimal policy 7n* for a given MDP. We refer this
metric as Maz-mean [16],

Ci= {SES (mafo(s,a)—ﬁZQf(s,a)) >T}. (4)

1 With 90% probability the agent moves one cell in the direction specified by the
action (i.e. the action succeeds), or with 5% probability each the agent moves one
cell either clockwise or anti-clockwise relative to the direction specified by the action
(i.e. the action fails). This grid-world was implemented by Minigrid[7].
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Critical

User selects states B - Critical states

Global
Explanation
Trajectories Sub-trajectories
Action: Value
Local L
Explanation AIGLT. 2665

Select states

Fig.2: An illustration of explanation process. Global explanation: agent (red
triangle) starts at a state, an example (full) trajectory and/or sub-trajectory are
visualised. Local explanation: local explanations are provided with a window on
states of interest by interacting with the explainer, and with more information
explained on the agent’s state.

The number of critical states can vary depending on the reward function of
the MDP. By changing the threshold 7 according to the user’s needs and the
environmental reward function, the number of critical states can be adjusted
accordingly. If there are K MDPs, we can denote the set of intersected states
among these MDPs as C' = NE | C;.

One of the commonly used metrics for the max-mean metric is the difference
between the maximum and minimum action-values from the action-value func-
tion [I]. Another study by [22] explores the importance of a state by examining
the variance of its action-value function at states during learning. We consider
these as variants of the Max-mean approach. We acknowledge that further eval-
uation of these methods through user studies is necessary to determine their
efficacy in generating useful explanations of agents. A survey of related work on
critical states and key moments is provided in Section [, and we offered analysis
in Section

Before presenting more details, we provide an overview of how our methodol-
ogy (referred to as the explainer) generates explanations for users (referred to as
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(a) Critical states (blue) with one re- (b) Critical states (purple) with a dif-
ward function. ferent reward function.

(c¢) The intersected critical states (red)
of two reward functions.

Fig. 3: Critical states from two different reward functions, and the intersected
critical states which hint the important states in common of the two configura-
tions.

the ezplainee). The explainer initiates the process by generating critical states
based on the specific questions of the explainee. Critical states are generated as
a series of intersecting critical states if there are multiple policies. These critical
states are then represented visually as contrastive trajectories. Each trajectory
records the sequence of state-action pairs an agent takes, beginning from each
critical state during simulations. Additionally, to provide further details to the
user, the explainee can pause the visualisation and inquire about states of inter-
est. In the event of such queries, the explainer presents contrastive explanations
on different learned policies, including the feasible actions that can be executed,
the relevant action values from those states, along with the optimal actions of
each policy.

3.3 Global Explanation by Using Critical States

Firstly, the explainer presents a number of states based on a default threshold
7 of the metric in Equation . These states are then used as inputs to the
explainer, and Monte Carlo simulations are initiated in parallel, recording the
state-action pairs until termination states are reached (i.e., absorbing states or
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predefined maximum length of recording). We refer a full trajectory as a trajec-
tory rollout history in which agent starts from the initial state of the environ-
ment and terminates until the agent reaches termination states. A sub-trajectory
is a trajectory rollout history in which agent starts from the critical states and
reaches termination states. To provide a comprehensive global explanation on
states, we visualise full trajectories or partial trajectories rollouts (illustrated in
Figure . Finally, the corresponding trajectories with the maximal probability
for the counterfactual reward function within the sample space are presented to
the user either as videos or images with all the state-action pairs highlighted
in contrast. These trajectories serve as contrastive global explanations, allowing
the explainee to observe, comprehend the agent’s behaviour and compare agents
with respect to their reward functions in each configuration.

3.4 Local Explanation and Contrastive Explanation Based on
Action-values

If the users have further queries regarding how the policy acts on specific states,
we visualise based on the states in question by displaying optimal actions and
action-values of those states. We leverage the learned action-value function to
generate local explanations for the agent’s decision-making. For instance as
shown in Figure and the action RIGHT is the optimal action as the
explainee observe that it has the highest value. The explainer displays the rel-
ative importance of each action at a given state based on its action-value, and
provides a more interpretable and informative explanation for the agent’s deci-
sion.

We provide contrastive explanations on critical states in each reward con-
figuration, highlighting the differences between the learned policies and their
corresponding action-values. Specifically, we contrastively display the different
critical states presented in the reward configuration based on the metric in Equa-
tion . The intersected critical states are highlighted (for instance, in red in
Figure to draw the attention of explainees to the potential significance of
the states across multiple configurations. In our proposed framework, the ex-
plainee can choose specific states of interest, and the explainer will then display
all the actions taken by agents and the action-values pairs from agents in a con-
trastive manner across different reward configurations. This allows the explainee
to observe the different action-values pairs associated with the same action, and
possible different optimal actions in a given state for better understanding of
agents’ behaviour. In addition, we can further enhance the local explanations by
considering the uncertainty of the agent’s action-value estimation.

4 Experiments

We consider two variants of this grid-world named GW ™' and GW ™ (see in Figure
1)) where the the reward functions are set as:
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— GW™: The agent will receive a reward of +1 at G0 (6,4) and a reward of
+3 at G1 (6,0).

— GW™: The agent will receive a reward of +3 at G0 (6,4) and a reward of
+1 at G1 (6,0).

(a) A learned policy in GW™. (b) A learned policy in GW ™.

Fig. 4: Tlustration of grid-world by Q-learning in GW* and GW~ (blue and
purple).

The purpose of the setting is to give an illustrative example where reward
functions are the only part vary and the transition functions in the MDPs re-
main the same. We designed such two intuitive reward functions under which
Q-learning is used to learn policies. Specifically, we ran the algorithm on two
grid-worlds denoted as GW™ and GW ™, respectively, with a discount factor of
0.99 and learning rate of 0.01. The Q-tables are initialised with values N (0, 1)
and 14000 episodes. After the training process we output the Q-table as the
learned action-value function.

We identify the critical states from each @Q table and compute their intersec-
tion set C, which provides a simple illustration of policy behaviour. To compute
the critical states, we utilised the Max-mean method in Equation @D and set a
predetermined parameter of 7 = 80 for better illustration. The resulting critical
states for GW* and GW™ are shown in Figure |3} There were five intersected
critical states, and we selected three of them for illustration: (0,3), (2,1), and
(4,2).

To provide a global explanation, we report the learned policies for GW* and
GW™ in Figure and Figure@ respectively, along with the optimal actions at
each state indicated by arrows. We then present further global and contrastive
explanations based on a sample of simulations shown in blue and purple colours
in Figure[5a] 5B} and [5d The corresponding states are highlighted in the images.
The explainees can observe that the agent’s decisions starting from certain states
can lead to completely different goal states which reveals the importance of
understanding critical states and their impact on the overall policy behaviour.
For example, in Figure[5b] this figure illustrates two trajectories which are legible
to the explainees in the presence of two possible goal states of the agent and the
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(a) Sub-trajectory from (b) Sub-trajectory from (c) Sub-trajectory from

(0,3). (2,1). (4,2).
m  Agent B Agent B Agent
Action: Value T Action: Value T Action: Value
UP: 116.0 UP:129.9 UP: 1844
—> DOWN:131.4 DOWN: 0.9 DOWN: -0.2
LEFT:116.3 LEFT: 104 LEFT: -1.2
RIGHT: 248.8 | RIGHT: 0.8 L RIGHT: 12.6
B Agent B Agent B Agent
Action: Value Action: Value Action: Value
uP: 29.9 UP: 63.6 upP:. 253
DOWN: 239.0 «— DOWN: 120.5 DOWN: 258.5
LEFT: 359 LEFT: 245.9 LEFT: 35
l RIGHT: 32.5 | RIGHT: 9.7 l RIGHT: 41.9
(d) Local information on (e) Local information on (f) Local information on
(0,3). (2,1). (4,2).

Fig.5: An example of constrasive explanation on three critical states.
Global contrastive explanation on agents in GW™ (blue) and GW~ (purple).
Local contrastive explanation on actions in GW+ and GW ™.

avoidance of lava states. If the agent starts at the left position next to the
lava grid, with one policy, it takes the action UP and LEFT, then executed a
series of action of RIGHT and eventually reaches the goal state on the top-right
(G1). With a different policy, it takes the action LEFT and DOWN, and then
provides another series of actions that reaches the goal state of bottom-right
(G0). We observe at least two agent behaviours: the behaviour of reaching
different goal states, and the behaviour of stepping away from the lava grid.
From the perspective of the explainees’ mental models, we wish they would
attribute causes of the difference of reward configurations themselves from these
behaviours, with possibly further observation on the local explanation of action-
values. Though the visual explanation does not directly tell the explainees the
actual factors on how and why the reward differs, it illustrates an explicable
trajectory that help them comprehend the objectives of the agent’s behaviours.
Similar explanations apply to Figure [fal and Figure

Local and contrastive explanation are shown in Figure and [51 Pro-
viding action-values and optimal actions for each state in contrast contributes
to a more comprehensive explanation of global contrastive explanation with tra-
jectories. The explainee can observe differences among the action-values across



Contrastive Explanations for RL via Counterfactual Rewards 11

actions, which could help explainees comprehend why the agent chose the learned
action (highlighted in black) over the other three actions (shown in grey). For
instance, in Figure it has been demonstrated that the action UP is the op-
timal action for one agent, the blue agent, as it yields the highest action-value
of 129.9. On the other hand, for the second agent, the purple agent, the optimal
action is LEFT, with a corresponding optimal action-value of 245.9. The differ-
ence in optimal actions aid the explainees in attributing causal factors, e.g., why
the agent ultimately reaches distinct goal states.

5 Conclusion and Discussion

In this study, we addressed the problem of explanation in RL by comparing
policies based on their action-value functions where the policies are learned under
different reward functions. Our proposed methods generating global and local
explanations through trajectories based on intersected critical states. We further
showed our explanation successfully demonstrating the contrastive behaviour by
an example from Q-learning in a grid-world.

5.1 Discussion of Research Questions

In this subsection, we discuss our research questions and the knowledge con-
tributed to the XAI community in this paper. The utilisation of counterfactual
rewards within XRL is to address two broader and significant research questions:

Research Question 1: Casual attribution via counterfactual reason-
ing. Suppose that an action X has been learned by an agent and the explainees
asked “why X7?7” as the action may look unexpected or weird. Humans are be-
lieved to answer such questions by identifying causes through counterfactual
reasoning. In RL, the learned action in each state depends on characteristics
of the underlying MDP, which consists of a transition function and a reward
function. A reasonable cause in RL then might reference characteristics of the
transition function and/or reward function that led to action X having been
learned. An important question would be: what characteristics of the transition
function and/or reward function are most relevant to the action X having been
learned? In this paper, we limit our focus to the reward function. The objective
of simulating hypothetical rewards is not to imply that X would not have been
learned in the absence of the actual reward function. Instead, its purpose is to
facilitate counterfactual reasoning in humans, enabling them to attribute char-
acteristics of the actual reward function as causes for X having been learned. We
focus on predefined hypothetical reward functions, but our objective remains
the same: as an aid to understand the actual reward function and its impact on
learned actions.

Research Question 2: Casual contrastive explanations. Suppose Re-
search Question 1 has been answered and the explainees are able to attribute
characteristics of the actual reward function as causes for X having been learned.
Suppose again that the explainees proposed some other action Y which would
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have been normal/expected, and asked “why X rather than Y?” According to the
question, action Y was not learned by the agent, so the explainees are not able
to attribute characteristics of the actual reward function as causes for Y having
been learned. Instead, we need a hypothetical reward function, and specifically
one where Y would have been learned with all the settings being equal (i.e., the
same transition function, hyper-parameters, and training steps etc.) However,
if we have those causes, then we can answer the question by focusing on the
aspects where the actual and hypothetical causes differ. In the paper we do not
directly address Research Question 2, but we do lay some groundwork on how
it could be addressed, mainly due to the need to construct hypothetical reward
functions, but also in the need for visual comparisons. However, a major differ-
ence is that the hypothetical reward function is now significant; it must ensure
that Y is learned, all else being equal. The same criteria may be reasonable for
choosing hypothetical reward functions under Research Question 1.

5.2 Discussion of Findings

This paper contributions to the field of XRL in the sense that it addresses a
previously unexplored question improving the users’ comprehension of the agent
behaviour through the construction of a hypothetical reward function. Specif-
ically, we use the learned policies on both the hypothetical and actual reward
functions to enable users to engage in counterfactual reasoning on the discrep-
ancies existed between these reward functions. The proposed method offers a
viable and natural means of addressing contrastive questions and limit the in-
formation scope to identification of critical states and trajectory visualisation.
The metric used for critical states in this study builds upon a prior research. The
visualisations presented in this paper leverage the established groundwork of tra-
jectory visualisation methods, which have proven to be an effective approach to
summarising policies and an agent’s behaviour. We emphasise the importance of
co-use for explaining the difference of reward functions: contrastive explanations
visually based on trajectories and utilisation of action-values.

5.3 Limitations and Future Work

While this paper primarily focuses on computational methods rather than user
studies, it is important to acknowledge the need for a user study to evaluate the
effectiveness of the visual explanations provided and the validity under specific
conditions. We recognise the significance of conducting a comprehensive user
study as part of future work. We also provide possible future improvement on
the following topics.

Critical states identification. One limitation observed is the absence of
user evaluation regarding the metrics employed for critical states identification.
While the action-values can reveal the optimal action(s) that are preferred over
alternative actions, future work should focus on providing explanations from the
underlying reasons supporting such preferences, e.g., an epistemic perspective
of certainty/uncertainty of the agent. Furthermore, in addition to computing
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critical states based on the action-value or value function, we posit that a sim-
ilar metric can be applied to the policy function and potentially extended to
continuous action spaces.

Textual explanation and interactive interface. The proposed method
primarily provide visual comparisons to facilitate casual attribution by humans,
however, this could fail when the visualisation does not meet human’s expecta-
tion. We recognise this limitation, and textual-based and question-based expla-
nations could be used in enhancing the potential cognitive process by explainees
in future work. The inclusion of an interactive interface is targeted to consider
the needs and preferences in explanation for users [35/46]. For instance, provid-
ing users with the capability to specify the desired number of critical states or
certain type of metric they wish to view, particularly in situations where there
may be an overwhelming number of states to consider. Moreover, particular at-
tention would be given to prioritising the presentation of trajectory explanations
that involve disagreement perceived by the explainees.

System design. The proposed method exhibits limitations when applied
to complex environments. The method heavily relies on an accurate model or
simulator to generate trajectories supposing that the agent can be positioned
in arbitrary states. Alternative solutions would be to compute critical states
through pre-recording trajectories or employing episodic memory of an agent [9]
in future work. While the computational cost increases when multiple policies
need to be trained for real-world applications, the training of contrastive policies
can be conducted in parallel. And in most scenarios, we believe that a limited
form of contrastive explanations can be achieved sufficiently with only two poli-
cies. Furthermore, exploring the explanation of potential policy randomness and
environmental uncertainty (e.g., random effects and transitions induced by the
environment or random actions taken by the agent) is identified as a promising
future direction.
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