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The buckling response of axially compressed
cylindrical shells is well known for its imperfection
sensitivity. Mapping out a stability landscape by
localized probing has recently been proposed as
a rational means for establishing shell buckling
knockdown factors. Probing using a point force
directed radially inwards and perpendicular to the
cylinder wall is based on the insight that a localized
single dimple exists as an edge state in the basin
boundary of the stable prebuckling equilibrium.
Here, we extend the idea of probing to bi-directional
inwards and outwards forces to trigger both single-
dimple and double-dimple edge states. We identify
key features of the ensuing probing stability landscape
and generalize these to derive three design curves of
varying conservatism that are a function of the non-
dimensional Batdorf parameter only. Interestingly,
the most conservative of the three knockdown curves
bounds a large dataset of experimental buckling
results from below, despite being derived from
probing features of geometrically perfect cylinders.
Overall, the three design curves permit a more
nuanced design approach than legacy knockdown
factors, as different levels of conservatism can be
chosen based on expected manufacturing quality.
For instance, the most and least conservative of the
three design guidelines differ by a factor of 3 for the
most slender cylinder geometries, and the associated
reduction in safety factor has profound implications
for efficient structural design.

This article is part of the theme issue ‘Probing and
dynamics of shock sensitive shells’.
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1. Introduction
The buckling response of thin-walled shells is well known for its stochastic nature. Here, we
focus on the axially compressed cylindrical shell, a common lightweight structural component
in diverse engineering applications ranging from grain silos and water towers to space launch
vehicles and aircraft fuselages. Copious tests on axially compressed thin-walled cylinders have
demonstrated a large scatter in experimental buckling loads ranging from 10% to 90% [1] of the
classical prediction derived from small-deflection theory [2]:

Pcl = 2πEt2
√

3(1 − ν2)
and ucl = Lt

R
√

3(1 − ν2)
,

where Pcl and ucl are, respectively, the critical compression force and end-shortening of an
isotropic (Young’s modulus E and Poisson’s ratio ν) cylinder of radius R, length L and wall
thickness t. For imperfect cylinders the classical prediction overestimates the buckling load,
creating unique challenges for safe design.

The discrepancy between classical prediction and experiments has been explained by
various deficiencies in the analytical approach such as unrealistic boundary conditions,
the role of nonlinearity in the prebuckling response, inevitable geometric imperfections
during manufacturing and loading imperfections during testing [3–6]. Hence, accurately
predicting the buckling load of compressed cylinders is challenging as the buckling load
depends acutely on the precise nature of the initial, and potentially evolving, system
conditions [7].

Today, these deficiencies can be accounted for by using nonlinear methods, computational
models, and stochastic approaches, often leading to excellent correlation between predictions
and experiments when all imperfections are accurately modelled. Unfortunately, in the design of
new structures, the precise nature of manufacturing imperfections and in-service perturbations
is not known. Therefore, the question remains of how best to design thin-walled shell structures
without knowing the type, shape, and magnitude of imperfections and perturbations encountered
in service.

Historically, this question has been addressed empirically relying on lower-bound curves to
datasets of experimental results, e.g. NASA’s SP-8007 design guideline [8]. These design curves
are also known as knockdown factors (KDFs) as they ‘knock down’ the classical prediction to
a lower, more conservative value. With modern high-precision manufacturing processes, these
historical design curves have become exceedingly conservative, limiting our ability to innovate
and design more efficient structures [9]. In addition, legacy design curves do not permit a
nuanced approach whereby a structural engineer chooses from different design curves of varying
conservatism depending on expected levels of imperfection, manufacturing quality, operating
environment, loading conditions, etc.

To this end, the idea of locally ‘probing’ a shell with an external poker to derive new
and less conservative design guidelines has gained traction [10,11],1 albeit in various different
manifestations. Central to all approaches is the realization—obtained through experimental
observation and numerical modelling—that a localized dimple is a ‘stimulating, realistic and
worst-case imperfection’ [13]. Although the critical instability point on the prebuckling path
features a spatially periodic buckling eigenmode, the unstable postbuckling response of shells is
generally governed by immediate localization [14]. High-speed photography experiments dating
back to the 1970s confirm this picture [12,15], whereby the dynamic buckling event shows the
formation of a single buckle that then propagates circumferentially (and often axially) over a
time frame of milliseconds to restabilize in a diamond-shaped postbuckling mode. Through
detailed computational studies [16–19], this dynamic pattern formation is now known to be
an example of homoclinic snaking (also known as cellular buckling) [20] that also governs the

1The idea of ‘probing’ can also be traced back to the seminal paper by Eßlinger & Geier [12], where cylinders were perturbed
at different levels of axial compression by tapping with a finger.
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evolution of complex patterns in other domains ranging from nonlinear optics and chemistry to
convection [21].

In a snaking system, the localized building block of pattern formation forms the lowest saddle
point in the energy landscape between a homogeneous state before pattern formation and a
periodic state after pattern formation. Hence, the unstable single dimple is the saddle point
of smallest energy—the mountain pass state—adjacent to the stable prebuckling equilibrium,
and separates the unbuckled state from another stable postbuckled equilibrium [22]. From the
perspective of nonlinear dynamics theory, the single dimple is the lowest-energy state on the
basin boundary surrounding the prebuckling energy well [23]. Even for a theoretically perfect
cylinder, the energy barrier that needs to be overcome to push the cylinder onto this single-
dimple edge state is a small fraction of the strain energy stored in the unbuckled cylinder [17].
Furthermore, the more slender the cylinder (increasing L/t or R/t), the smaller the ratio between
mountain pass energy and energy stored in the unbuckled shell [22], explaining the increased
imperfection sensitivity of more slender shells. In summary, once the mountain pass state exists
in the energy landscape surrounding the stable prebuckling equilibrium, the cylinder is balanced
in a precarious ‘shock-sensitive’ state [10], where the cylinder can readily be triggered to buckle by
external perturbations, or alternatively, be expected to buckle prematurely if initial imperfections
erode the energy barrier even further.

Given the importance of the single dimple, a number of numerical and experimental
procedures have been devised to stimulate its formation in an attempt to: (i) derive new
knockdown factors for design, or (ii) create new testing methodologies. One class of approaches
originates with the work of Hühne et al. [24,25], whereby a radial perturbation load of nominal
magnitude is first applied to the cylinder and axial compression then increased until buckling
occurs. Depending on where the perturbation is applied along the cylinder length and on
the nature of the load (force or displacement controlled), different testing modalities can be
applied [26]. In general, however, the buckling load first decreases with increasing perturbation
magnitude before reaching a plateau. By interpreting this plateau as a worst-case knockdown
in buckling load, a new design guideline relating KDF to cylinder geometry Batdorf parameter,
Z = (L2/Rt)

√
(1 − ν2) has been derived [27–29]. These design curves are less conservative than

NASA’s SP-8007 guideline and knockdown factors derived from eliminating the membrane
stiffness of a cylinder entirely [30]. The concept of perturbing a cylinder with point forces has
also been extended to multiple, simultaneously applied perturbation loads [31], which produces
greater knockdown in buckling load.

A more recent perturbation approach based on the concept of ‘shock sensitivity’ does not
apply the radial perturbation load a priori, but probes and unprobes the cylinder repeatedly at
different levels of axial compression [11]. The purpose of the probing procedure is manifold. By
repeating the probing procedure for different levels of axial compression, a stability landscape is
mapped out that shows a number of important features [32] (figure 1a,b). For low levels of axial
compression, the probing force versus probing displacement curves are sigmoidal of exclusively
positive stiffness. For intermediate values of compression, the curves develop maximum and
minimum turning points in the sigmoidal probing force versus probing displacement curves, but
crucially, the probe force never intersects the zero force axis for non-zero probing displacement.
Above a critical value of axial compression, the probing force dips below the zero force axis,
meaning that the induced single dimple now exists as an unstable equilibrium in addition to
the stable prebuckling state. The work done by the probing poker in pushing the cylinder out
of the stable prebuckling energy well and onto the saddle of the single dimple is a measurement
of the energy barrier to buckling [10].

Another application of the probing procedure is in non-destructively predicting the buckling
load of a manufactured cylinder [23]. The maximum turning points in the probing force versus
probing displacement curves measured at various levels of axial compression form the so-called
‘ridge’ (figure 1a,b). By extrapolating the ridge to the level of axial compression where the probing
force equals to zero, the buckling load of a tested cylinder can be estimated without inducing
buckling. The challenge inherent in this approach is that the stiffness to probing—and therefore
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Figure 1. (a) Radially inwards probing force, F, versus incremental radial probing displacement, �w, for different levels of
axial end-shortening, u, in the prebuckling regime. Note, each prebuckling state has radial Poisson dilation,w0, before poking
commences. (b) 3D view of the probing stability landscapewith the additional axis of axial end-shortening, u. Key features such
as the ridge of turning points in the probing force–displacement paths, the unstable single-dimple solution (mountain pass
state), and the stable single-dimple solution for F = 0 are annotated. (c) Snaking equilibrium paths of axial reaction force,
P, versus end-shortening, u, describing circumferential pattern formation. Note, the unstable segments of the single-dimple
and double-dimple solutions run almost coincident to the prebuckling solution. (d) Radial deformation modes showing the
sequenceofmultiplyingodd- andeven-numberedbuckles that start from the single dimple and thedouble dimple, respectively,
and both terminate in a periodic 10-buckle pattern. (Online version in colour.)

the maximum turning point in the probing force versus probing displacement curves—will, by
definition, only fall to zero if the deformation mode induced by probing does indeed correspond
to the natural buckling mode of the cylinder. Hence, if probing is not conducted where the
single dimple would naturally develop under axial compression (a function of the imperfection
signature; specifically, the location of the sharpest imperfection [7,33]), then ridge tracking will
overestimate the buckling load [34].

A final application of the probing procedure is to use specific features of the stability landscape
to derive non-empirical shell buckling knockdown factors. For example, in previous work the
present authors have tracked the limiting level of axial compression for which the single dimple
first exists as an unstable edge state with respect to varying geometric parameters (R, L, t) of
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the cylinder [17]. In doing so, a power-law relationship between cylinder geometry (Batdorf
parameter, Z) and the onset of ‘shock sensitivity’ was derived computationally that bears striking
similarities with the KDF proposed by Wagner et al. [27–29] using perturbation approaches, and
that of Evkin et al. [35,36] using Pogorelov’s geometrical method (see [37] for a comparison).
Hence, despite the different means of arriving at a single-dimple-based KDF, it is encouraging
to note the close correlation of the different design curves.

The purpose and novelty of the present contribution is to extend the authors’ previous work
on tracking key features of the stability landscape with respect to cylinder geometry [17]. In
particular, we demonstrate that the cusp of the probing ridge, i.e. the point for which the probing
force versus probing displacement curves are sigmoidal yet of exclusively positive stiffness (no
turning point), represents the smallest level of compression for which a cylinder can buckle for
any dimple imperfection magnitude. In addition, we extend the idea of probing to also poking
the cylinder radially outwards. Probing outwards produces an outwards crest in the cylinder
wall separating two adjacent inwards dimples. In previous work, we have demonstrated the
importance of the double dimple in representing the dual solution to the single dimple in the
homoclinic snaking sequence [18]. Indeed, the single-dimple and double-dimple solutions are
the fundamental building blocks for pattern formation in the axially compressed cylinder and
produce intertwined equilibrium paths of multiplying odd- and even-numbered buckles around
the cylinder circumference (figure 1c,d). Hence, by tracking both the limit points of the single- and
double-dimple solutions, and the cusps of the inwards and outwards probing ridges, we derive
different cylinder buckling design curves of varying conservatism. Ultimately, this facilitates a
more nuanced design approach where structural engineers have the option of choosing the level
of conservatism depending on their expected level of cylinder perfection. For cylinders of large
Batdorf parameter, which have the greatest sensitivity to imperfections, the difference in KDF
between the least and most conservative design curves is a factor of 3. Hence, the choice of design
curve can have profound implications for lightweight design of future engineering structures.

The rest of the paper is structured as follows. Section 2 introduces some of the key concepts
of the probing stability landscape using the two-dimensional system of a compressed beam on a
nonlinear elastic foundation, and particularly highlights the importance of the cusp of the probing
ridge in determining the worst-case imperfect buckling response. Section 3 then extends the
analysis to buckling of an axially compressed cylinder and presents several knockdown curves
of varying conservatism derived from key features of the stability landscape. Finally, conclusions
are drawn in §4.

2. Beam on a nonlinear elastic foundation
To introduce key concepts that are subsequently used to derive knockdown factors for axially
compressed cylindrical shells, we first consider the stability landscape of a simpler two-
dimensional system. A beam resting on and attached to a nonlinear elastic foundation has
previously been used to explore the mechanics of shell buckling. Indeed, the rationale for using
the beam on an elastic foundation to explore cylindrical shell buckling was initially formulated
by von Kármán et al. [38]. If we imagine a cylindrical shell as a collection of axial strips, then the
azimuthal curvature of the cylinder acts as a nonlinear foundation. Specifically, the linear effect
of azimuthal curvature is to stiffen each axial strip transversely, i.e. to increase the buckling load,
thereby reflecting membrane-bending coupling in the shell, while the quadratic effect reflects an
asymmetry in transverse stiffness for larger deflections, i.e. radially inwards perturbations induce
less strain energy than radially outwards perturbations. Thus, von Kármán et al. [38] showed
experimentally that a beam resting on a nonlinear elastic foundation, where the foundation
stiffness decreases for finite deflections, exhibits subcritical buckling with imperfection sensitivity.

In addition, the similarities between cylindrical shell buckling and the beam on a nonlinear
elastic foundation go beyond what was initially anticipated by von Kármán et al. If the elastic
foundation features initially destabilizing and finally restabilizing nonlinear terms, the beam
first buckles subcritically and then restabilizes for finite deformations. Indeed, if the beam is
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sufficiently long, then it displays a tendency to first localize in one or multiple buckles which
then multiply in a cellular manner along the length of the beam [20]. Thus, a foundation with
quadratic and cubic nonlinear terms in the force–elongation response is sufficient to display a
rich behaviour of pattern formation reminiscent of the axially compressed cylinder.

Here, we model an initially flat beam of bending rigidity EI and length L, resting on an elastic
foundation characterized by a force, F, versus displacement, v, relationship F(v) = k1v + k2v

2 +
k3v

3. The beam is simply supported at either end and loaded axially by a force P (compressive
force taken as positive) to produce an end-shortening u. The critical buckling load is a function
of the bending rigidity and the linear stiffness term of the foundation, giving the classical
expression Pcr = 2

√
k1EI with a periodic, sinusoidal eigenmode of wavelength lw = 2π (EI/k1)0.25.

The relative magnitude of the nonlinear terms k2 and k3 then governs the interplay between
initial destabilization and later restabilization, and in particular, if cellular buckling (homoclinic
snaking) occurs. Indeed, if k2 � k3, then the destabilizing term dominates, and while the buckling
mode will localize, the buckled beam does not restabilize for positive (compressive) values of P.
Equally, if k3 � k2, then the beam restabilizes almost instantly after buckling in a benign subcritical
manner, precluding any opportunity for cellular buckling (snaking). Thus, both terms k2 and
k3 (chosen in appropriate proportion) are required to observe imperfection-sensitive, localized
buckling with pattern formation through snaking as observed in the cylindrical shell.

For algebraic simplicity, we assume k1 = 1 and EI = 1. To allow for cellular buckling, a
sufficiently long beam of L = 25π is assumed with k2 = −55 and k3 = 1000. Using a finite-element
formulation, the beam is discretized into 100 three-noded (quadratic) beam elements based on
Reissner’s planar, large-displacement, finite-strain beam theory [39]. In deriving the internal force
vector and tangent stiffness matrix of the beam element, the total potential energy is modified
to include the potential of the foundation. As such, the foundation is not modelled explicitly
as separate nonlinear spring elements attached to the beam, but rather the foundation restraint
is subsumed into the element formulation of the beam directly. The resulting nonlinear system
of equations is solved using an in-house generalized path-following solver that extends the
capabilities of typical Riks path-following to include pinpointing of singular points (bifurcation
points and limit points), branch switching at bifurcations, and tracking of singular points with
respect to simultaneously varying parameters; see [40] for details.

(a) Cellular buckling and mountain pass state of the perfect beam
The axial force, P, versus end-shortening, u, equilibrium manifold characteristic of the perfect
beam is shown in figure 2a. The initially flat beam buckles at the classical value of P/

√
k1EI = 2

with a sinusoidal eigenvector of lw = 2π (12.5 full waves). The bifurcation is transcritical (one
stable and one unstable branch bifurcate off the flat solution) due to the up-down displacement
asymmetry inherent in the quadratic term of the foundation. The initially stable branch of the
transcritical bifurcation soon destabilizes by passing a limit point and sees the mode shape
localize at the beam’s mid-span. With increasing end-shortening, the applied load oscillates
between two values (the pinning region [41]) with each ‘snake’ of the de- and re-stabilizing
equilibrium path adding additional buckles to the left and right of the growing wavefront (cellular
buckling). The second unstable branch from the transcritical bifurcation follows a similar snaking
sequence, but the buckling mode first localizes at both beam ends before multiplying towards the
beam mid-point (see modes a–d in figure 2a).

As shown in figure 2b, this latter branch of the transcritical bifurcation features another
bifurcation point in the vicinity of the prebuckling path (see inset A in figure 2b). Branching at
this pitchfork bifurcation onto a new unstable path causes the buckling mode to localize even
further—from a localization at both ends to a single localization at either the left or the right end
(see mode i in figure 2b). Crucially, this fully end-localized mode corresponds to the mountain
pass state on the basin boundary surrounding the prebuckling energy well. Hence, even though
there are four unstable branches shown in figure 2b running adjacent to the stable prebuckling
path, the two overlapping branches (black dashed curve) representing a fully end-localized mode
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Figure 2. Mechanical response of an axially compressed beam resting on a nonlinear (softening/restiffening) elastic
foundation. (a) The prebuckling path of axial force, P, versus end-shortening, u, destabilizes at a transcritical bifurcation at the
classical load, Pcr = P/

√
k1EI = 2. The two branches of the transcritical bifurcation are both snaking equilibrium paths that

represent themultiplication of two different localizedmodes: onemode localized at the beammid-point and another localized
at both beam ends. (b) A pitchfork bifurcation off the end-localized transcritical branch leads to a fully localized mode at either
end of the beam that alsomultiplies through snaking. The initially unstable branch of this fully end-localizedmode corresponds
to the path of lowest-energy edge states, i.e. mountain pass states adjacent to the prebuckling equilibrium. (c) Informed by the
mountain pass state, probing close to one end of the beam for different values of compression, P, results in the familiar probe
force, F, versus probe displacement,v, stability landscape similar to figure 1a.When initial geometric imperfections affine to the
mountain pass state are present, the origin of the probing equilibrium path shifts to the new axes F̄–v̄, leading to imperfect
edge states (F̄ = 0) that did not exist in the perfect case (F = 0). (d) Equilibrium paths, P versus u, of an imperfect axially
compressed beam for increasing imperfectionmagnitude of a fully end-localizedmode. No imperfect buckling limit point, Pimpcr ,
exists below the cusp of the probing ridge, Pprobecusp . (Online version in colour.)

at either end of the beam correspond to the unstable equilibria of least energy for all levels of axial
load above limit point i.

This observation can be confirmed by inspection, as the fully end-localized mode only features
half the number of waves as the modes depicted in figure 2a, thereby storing less strain energy.
We also confirmed this observation computationally by employing the perturbation energy
(Störenergie) algorithm [42], which directly computes the smallest-energy edge state surrounding
a stable equilibrium by means of a quadratic eigenvalue problem. The eigenvalue problem failed
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to converge for axial loads less than the limit point i, confirming that no edge states exist below
the limiting axial force of the fully end-localized mode. Finally, figure 2b shows that for increasing
end-shortening beyond limit point i, the equilibrium path undergoes the now familiar snaking
sequence, leading to the propagation of the single localized buckle from one beam end to the
other (see modes i–v shown in figure 2b).

Thus, a beam on a nonlinear elastic foundation of appropriately chosen elastic stiffness values
features some of the key characteristics present in the axially compressed cylinder, including: (i)
subcritical buckling; (ii) localization of buckling modes; (iii) cellular buckling/homoclinic snaking
and (iv) a clearly defined mountain pass state.

(b) Probing the perfect beam and imperfect beam buckling response
Based on this knowledge of the mountain pass state, we perform numerical probing experiments
that trigger the associated localized mode. Hence, a point force is applied vertically to the beam
at the node that lies closest to the peak of the fully end-localized mode (figure 2c). The probing
procedure is conducted from different prebuckling states of varying axial load. Equilibrium
curves of probing force, F, versus probing displacement, v,2 for three levels of axial load, P,
are shown in figure 2c. The probing curves show the same qualitative behaviour as for the
axially compressed cylinder in figure 1a. For low axial load, P, the probing curve is sigmoidal of
exclusively positive stiffness. For intermediate levels of P, maximum and minimum turning/limit
points appear on the probing curves, but the curves do not intersect the probing force axis, F = 0.
For high levels of axial load, i.e. when the end-localized mountain pass state is a self-equilibrated,
yet unstable, equilibrium (P greater than the limit point i marked in figure 2b), the probing curves
intersect the horizontal axis.

We now pose the question of what is expected to occur if initial geometric imperfections in the
shape of the mountain pass state are present? We suggest that introducing an initial imperfection
is, to first order, equivalent to shifting the origin of the probing curves, as shown by the F̄–v̄ axes in
figure 2c. This shift in coordinate axes reflects the fact that both the magnitude of the probing force
and the probing displacement required to obtain a specific deformation amplitude diminish with
the presence of an affine imperfection. Depending on the magnitude of the initial imperfection,
v0, this implies that probing curves for the perfect beam (v0 = 0) that did not intersect the F = 0
axis may intersect the imperfect F̄ = 0 axis, as shown in figure 2c. Hence, we obtain ‘imperfect’
edge states that did not exist for the perfect beam which, crucially, exist for lower levels of axial
load, P. However, if the axial load is sufficiently small, such that probing of the perfect beam does
not lead to maximum and minimum turning/limit points on the probing curves, then no level
of initial imperfection can shift the F̄ = 0 axis to yield an imperfect edge state. This transition is
defined by the point where the probing ridge, i.e. the locus of maximum/minimum points on
the probing curves, reaches a turning point—a so-called codimension-2 cusp catastrophe. Thus,

for levels of axial compression, P, below the axial force, Pprobe
cusp , of the probing ridge cusp of the

perfect beam, imperfect edge states are not possible.
This behaviour is confirmed in figure 2d, which shows the P–u equilibrium path of the perfect

beam (in grey) in addition to various equilibrium paths of imperfect beams with increasing
magnitude of the fully end-localized, mountain-pass-state imperfection. As expected, with
increasing imperfection magnitude, the prebuckling equilibrium curves are rounded off and
the bifurcation of the perfect system is converted into a limit point that induces buckling at a

lower axial load, Pimp
cr , than the bifurcation load of the perfect system, Pcr. The description of

the previous paragraph implies that beams with fully end-localized initial imperfections should
exhibit unstable edge states for levels of axial load, P, well below those of the perfect beam.
Indeed, this is precisely what is observed in figure 2d. In addition, the locus of imperfect limit
points (black dashed curve) in figure 2d shows that above a threshold value of imperfection
magnitude, the limit points in the imperfect equilibrium curves vanish entirely at another cusp

2The lateral displacement, v, is normalized by the diameter of the circular beam cross-section, d = 0.01195.
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catastrophe. As a result, all imperfect beams buckle for axial loads greater than this cusp load,

Pimp
cusp. At this stage, the behaviour of the beam is best described as having a new, non-flat

geometry with the undulation of the end-localization acting as a governing feature, rather than a
‘quasi-perfect’ beam with an initial imperfection.

Interestingly, the value of Pimp
cusp is slightly greater than the load, Pprobe

cusp , at the cusp of the
probing ridge of the perfect beam (solid black curve in figure 2d). Based on interrogating the
probing landscape in figure 2c and the buckling response of imperfect beams in figure 2d, we
therefore argue that a beam with an imperfection affine to the mountain pass state cannot buckle

at loads lower than Pprobe
cusp . Indeed, by conducting other single-point and multi-point force probing

experiments on the perfect beam, we have found that probing to induce the mountain pass state

leads to the lowest value of Pprobe
cusp . In addition, by running a large set of localized, random,

and periodic sinusoidal imperfection signatures, we could not determine an imperfect buckling

load, Pimp
cr , smaller than Pprobe

cusp , with fully end-localized imperfections causing the most severe
knockdown.

We argued previously that introducing an initial imperfection is, to first order, equivalent
to shifting the origin of the probing curves in the probing landscape of figure 2c. Hence, the
probing displacement at the probing cusp of the perfect beam should provide a first-order
approximation of the initial imperfection magnitude required to minimize the imperfect buckling
load. The imposed imperfection magnitude (measured as the greatest lateral deflection v0 from

the initially flat beam) that minimizes the imperfect buckling load, Pimp
cusp, in figure 2d is v0/d =

2.33. Conversely, the lateral deflection at the probing cusp of the perfect beam, Pprobe
cusp , shown

in figure 2c is v/d = 1.81. The nonlinearity of the problem precludes the possibility of a perfect
mapping of the displacement at the probing cusp (based on the perfect beam) to the imperfection
magnitude of the lowest buckling load (relating to an imperfect beam). However, our analyses
suggest that the probing cusp displacement (v/d = 1.81) can be used as a conservative estimate
of the imperfection magnitude (v0/d = 2.33) required to minimize the buckling load with a
mountain-pass-affine imperfection mode.

In summary, we have shown that a geometric imperfection affine to the mountain pass state
leads to the largest knockdown in buckling load. Beyond a certain threshold magnitude of
imperfection, the limit point instability that defines imperfect buckling vanishes and the beam
buckles at a higher load. However, this comes at the cost of a significantly altered, lower-
stiffness prebuckling response, and as a result, the beam is best interpreted as a new structure of
altered geometry rather than a nominally flat beam with imperfections. Interestingly, the smallest
possible buckling load of the imperfect beam can be determined by a probing procedure on the
perfect beam that induces the fully end-localized mountain pass state. Specifically, the cusp on the
probing ridge of the stability landscape is a good proxy for the lowest imperfect buckling load.

These properties of the probing stability landscape are equally valid for other systems such
as the axially compressed cylinder. The beam on a nonlinear elastic foundation was analysed
in this section due to its greater simplicity while maintaining close mechanical similarity to the
cylindrical shell in subcritical buckling, localization, snaking and the probing landscape. This
leads, in our opinion, to a much neater exposition of the key concepts summarized above. In the
following sections, we use the identified properties of the probing stability landscape to determine
a lower-bound buckling load for axially compressed, geometrically imperfect cylinders.

3. Axially compressed cylindrical shell
As a baseline model, we take the longest cylinder considered in Yamaki’s seminal experiments
[43]. Hence, we consider a thin-walled shell of wall thickness t = 0.247 mm, mid-thickness radius
R = 100 mm and axial length L = 160.9 mm. As Yamaki’s cylinders were manufactured from
mylar, we assume the constitutive behaviour is isotropic and linear elastic under the strain regime
considered, with Young’s modulus E = 5.56 GPa and Poisson’s ratio ν = 0.3.
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Figure 3. (a) Probing stability landscape in terms of axial end-shortening, u, versus radial probing displacement, �w, for
probing radially inwards and outwards. Probing inwards leads to the single-dimple edge state while probing outwards leads to
thedouble-dimple edge state. The limiting level of axial end-shortening forwhich the single dimple and thedouble dimple exist
as edge states are denoted as limit points L1 and L2, respectively. The level of axial end-shortening for which probing inwards
and outwards results in a sigmoidal probing force versus probing displacement curve of exclusively positive stiffness (no turning
points) are denoted by the cusps C1 and C2, respectively (cf. figure 2c). (b) The axial end-shortening, u∗, of the four points L1, L2,
C1 and C2 can be generalized for any cylinder by tracking these points with respect to varying model parameters R, t, L and ν .
The data points of u∗L1 for point L1 versus the non-dimensional Batdorf parameter, Z, collapse onto one curve. A least-squares
power law shows excellent fit to these data. The fitted power-law curves for the other points L2, C1 and C2, obtained using the
same methodology, are also stated. (Online version in colour.)

The cylinder is discretized into isoparametric, geometrically nonlinear finite elements based
on a total Lagrangian formulation. The finite elements used are the so-called ‘degenerated shell
elements’ [44] based on the assumption of the first-order shear deformation theory [45] (shear
correction factor k = 5/6). The full cylinder is discretized into 193 axial and 480 circumferential
nodes resulting in 463 200 degrees of freedom (d.f.) that are assembled into 25-noded hp/spectral
finite elements (48 axial and 120 circumferential elements) using the interpolation scheme by
Payette & Reddy [46]. To mirror Yamaki’s experiments, all nodes at the top and bottom ends of
the cylinder are clamped, with all d.f. constrained apart from the applied axial end-shortening
displacement, u. The elements are fully integrated, and the effects of shear and membrane
locking are minimized by the use of bi-quartic isoparametric interpolation functions (25-noded
elements). The chosen mesh density and modelling approach was previously validated by
excellent correlation with Yamaki’s experimental results [18]. The shell element is implemented
in the same in-house FE code and nonlinear solver as used in §2 (see Groh et al. [40] for full
capabilities).

(a) Stability landscape of radially inwards and outwards probing
Figure 3a shows the probing stability landscape in terms of controlled end-shortening, u, versus
the incremental radial deflection, �w, measured at the cylinder mid-length (probing location
is invariant to azimuthal coordinate). Note that on the prebuckling path the cylinder dilates
as a result of Poisson’s expansion. Towards the two ends of the cylinder this leads to the
well known boundary layer (see mode PB in figure 1d), but towards the cylinder mid-length
the radial expansion is uniform and a function of the applied end-shortening, i.e. w0 = w0(u).
The incremental variable �w(u) therefore expresses the deviation from the prebuckling radial
deflection as a function of u.
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In figure 3a, the prebuckling path is shown as the horizontal curve �w(u) = 0. The prebuckling
solution loses stability at a bifurcation point for uR/Lt = 0.561, which is 92.7% of the classical

buckling end-shortening, ucl = Lt/
(

R
√

3(1 − ν2)
)

. This 8% knockdown to the classical end-
shortening occurs as a result of the nonlinear boundary layer towards the clamped edges, which
is not accounted for in the classical model. Also shown in figure 3a are the equilibrium paths of the
single-dimple and double-dimple solutions determined in previous work [18], which correspond
to a locus of zero probing force, F = 0. The displacement norm �w describes the incremental
radial displacement at the centre of the single buckle of the single-dimple solution and at the
centre of the crest separating the two buckles of the double-dimple solution. As the single-dimple
displacement is radially inwards (see mode i in figure 3a), the abscissa is negative. For the double
dimple, the displacement �w is positive because an outwards crest separates the two adjacent
inward buckles (see mode ii in figure 3a).

Both single-dimple and double-dimple solutions are initially unstable and therefore represent
subcritical buckling behaviour. The single-dimple and double-dimple solutions then stabilize at
limit points L1 and L2, respectively, where they go onto the odd and even snaking sequences,
respectively, depicted in figure 1c. A single-dimple edge state for a specific level of end-shortening
can be found by probing into the shell (�w < 0) using a point force centred at the cylinder mid-
length. A projection of an inwards probing path is shown for uR/Lt = 0.5 in the u–�w plane, and
the familiar probing path in terms of probing displacement, �w, versus probing force, F, is shown
as an inset. The single-dimple edge state is obtained when F = 0.

Also shown in figure 3a is a radially outwards probing path for the same end-shortening
uR/Lt = 0.5. In previous experimental and numerical work, only radially inwards probing was
considered [17,23,32,34], but its dual—namely, radially outwards probing—is equally informative
as it leads to the double-dimple edge state. The top-right inset of probing displacement, �w,
versus probing force, F, shows a similar inverted U-shaped curve with a maximum turning/limit
point. Probing radially outwards forces an outwards crest into the cylinder wall with two dimples
appearing on either side of the crest. The double-dimple edge state is obtained when F = 0.

Hence, both probing inwards and outwards is important as both the single dimple and the
double-dimple represent mountain pass states for different regimes of end-shortening, u, and
either probing setup can be used to effectively trigger the corresponding deformation modes.
As established by Horák et al. [22], the single dimple is a mountain pass state adjacent to the
prebuckling energy well, but as the single-dimple solution vanishes for end-shortening less
than limit point L1, i.e. u < u∗

L1
, the double-dimple solution then takes over as the mountain

pass state between limit points L1 and L2, i.e. u∗
L2

< u < u∗
L1

. Thus, for a complete picture of the
probing stability landscape both inwards and outwards probing is necessary, an insight that is
currently lacking in the shell-probing literature. Also note that henceforth the end-shortening
values corresponding to critical points of interest are denoted by a star superscript.

Apart from determining L1 and L2, the other features of the probing stability landscape worth
noting are the cusps of the probing ridges C1 and C2. The two solid black curves in figure 3a
denote the locus of the maximum and minimum turning points on the probing �w–F curves with
changing u, i.e. the probing ridges for radially inwards and outwards probing. As discussed in the
previous section, the cusp of the probing ridge denotes the lowest buckling end-shortening for a
cylinder with an imperfection affine to the probing deformation mode. Hence, the end-shortening
at C1 (uR/Lt = 0.203) provides the minimum buckling load of a cylinder with a single-dimple
imperfection (mode i in figure 3a), whereas C2 (uR/Lt = 0.148) provides the minimum buckling
load of a cylinder with a double-dimple imperfection (mode ii in figure 3a).

We have therefore identified four key features of the probing stability landscape:

— limit points L1 and L2, which denote, respectively, the smallest level of compression for
which the single-dimple and double-dimple edge states exist.

— cusp points C1 and C2, which denote, respectively, the smallest level of compression for
which a cylinder with single-dimple or double-dimple imperfection can buckle.
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The significance of limit points L1 and L2 is that once the single dimple or the double dimple
exist as edge states in the equilibrium manifold, the cylinder is in a heightened state of ‘shock
sensitivity’ [10]. For u > u∗

L2
, even small external perturbations can trigger an escape out of the

prebuckling energy well, over the mountain pass point, and into the postbuckling regime. Hence,
limit points L1 and L2 denote safe, lower-bound compression loads for ‘quasi-perfect’ cylinders
that have been manufactured with great care to tightly dimensioned tolerances. Cusp points C1
and C2 generalize this notion to imperfect cylinders; the cusps provide a lower-bound threshold
below which a cylinder with certain finite imperfections can no longer lose stability.

In previous work by Gerasimidis et al. [47], the inwards probing cusp of the stability landscape
was interpreted slightly differently as denoting the minimum compression level for which a force-
controlled perturbation radially into a perfect cylinder could lead to buckling. This interpretation
is certainly correct, but our results (figure 2c) show that the significance of the cusp point goes
beyond this interpretation. Namely, the cusp in the probing landscape of the perfect cylinder is
of significance for the behaviour of imperfect cylinders as well. This is because limit point L1
of an imperfect cylinder (denoting the onset of the single-dimple edge state) tends to C1 of the
perfect cylinder as a single-dimple imperfection magnitude is increased. The same is true for L2
and C2 in terms of the double-dimple edge state and increasing magnitude of a double-dimple
imperfection. Our insight into cusp point C1 and its dual C2 thus generalizes their interpretation,
and thereby the notion of shock sensitivity, from the perfect into the imperfect regime. Overall,
compared to the current consensus in the probing literature, consideration of the cusp points and
bi-directional inwards and outwards probing significantly extends our perspective of using the
stability landscape to predict buckling.

(b) Cylinder buckling knockdown factors from the stability landscape
Of course, the stability landscape in figure 3a is only valid for one cylinder (t = 0.247 mm,
R = 100 mm, L = 160.9 mm, Z = L2

√
1 − ν2/Rt = 1000). To generalize the response to other

cylinder geometries we use the critical-point-tracking capability of our in-house generalized
path-following code to track L1, L2, C1 and C2 through parameter space. In particular, we
follow the evolution of these points with respect to thickness, t, radius, R, axial length, L and
Poisson’s ratio, ν. A dataset of limit point L1 for each of the four varying parameters is shown in
figure 3b in terms of the normalized end-shortening at the limit point, u∗

L1
/ucl, versus the Batdorf

parameter, Z. Note that the ratio u∗
L1

/ucl can be interpreted as a knockdown factor as it expresses
the onset of the single dimple as a mountain pass state as a ratio of the classical buckling end-
shortening, ucl. Furthermore, for the case of elastic buckling and the quasi-linear prebuckling
path considered here, the ratio u/ucl along the prebuckling path is equivalent to P/Pcl.

Interestingly, the computed set of more than 800 data points in figure 3b collapses onto a
single curve that is accurately approximated by a power law u∗

L1
/ucl = 1.43Z−0.156 (R2 = 0.997)

fitted by a least-squares algorithm. Hence, as suggested in previous publications, e.g. [17,36,37],
a knockdown curve derived from the single dimple is a function of the well-known Batdorf
parameter that characterizes shell buckling. More importantly, the other three key features of
the stability landscape L2, C1, and C2 are also functions of the Batdorf parameter. Indeed, when
tracking these three points with respect to t, R, L and ν, the computed sets of (multiple hundred)
data points of the respective critical points, u∗/ucl, also collapse onto a single curve with respect
to Z. The associated power laws computed by a least-squares algorithm are indicated in figure 3b.

We have reason to believe that these fitted power laws reflect more of the governing physics
than a simple regression analysis might suggest. If the data points for varying thickness are
isolated, then a power law of essentially perfect correlation can be fitted in all cases. For varying
radius or length, most of the error in the conducted regressions arises from the extremes of the
computed R and L values. This occurs because the changing planar geometry leads to a changing
aspect ratio of the discretized finite elements with associated variations in numerical accuracy.
We thus conjecture that the small root-mean-square error of the fitted power laws is by no means
a statistical accident but reveals some of the underlying physics of the problem; at the very least,
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Figure 4. Dataset of 514 experimental buckling results from [1,12,23,43,48–63] plotted in terms of recorded KDF versus Batdorf
parameter, Z. For comparison, the four design curves derived from the probing stability landscape are also shown,with themost
conservative curve forminga lower-boundenvelope to theexperimental results. Note thatNASA’s SP-8007guideline approaches
the same lower-bound KDF of 0.1 for large Z. (Online version in colour.)

the importance of the Batdorf parameter in characterizing the probing stability landscape and
imperfect buckling loads.

In essence, each of the four power laws describes a different design guideline for cylinder
buckling derived from the probing stability landscape. The curves are appropriate measures
of knockdown factors (KDFs) as u∗

L1
/ucl and u∗

L2
/ucl describe the proportion of the classical

load required to place even a geometrically perfect cylinder in a heightened shock-sensitive
state. Equally, u∗

C1
/ucl and u∗

C2
/ucl capture the greatest knockdown in buckling load expected

from single dimple and double dimple, i.e. mountain-pass-affine, imperfections. To test the
four design guidelines against experimental data, each curve is plotted on one set of axes of
Batdorf parameter, Z, against KDF (u∗/ucl) in figure 4.3 Also included in this figure are 514 data
points taken from 20 studies spanning more than 100 years of cylinder buckling experiments
[1,12,23,43,48–63]. As such, the data shown include modern experiments on tightly dimensioned
cylinders [57], as well as earlier, less accurate experiments on cylinders manufactured by rolling
sheet metal around a mandrel with a single axial weld line [60].

3Note that the Batdorf parameter can be rewritten as Z = (L/R)2(R/t)
√

1 − ν2. The length-to-radius ratio of practical cylindrical
shells encountered in industry is in the range L/R = 0.5 − 5. Hence, assuming that L/R =O(1) for practical cylinders, Z has
the same asymptotic behaviour as R/t. Large Z is thus equivalent to large R/t for practical cylinders.
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In general, the design curves can be split into three categories.

(i) The design curves derived from L1 and L2 are nearly identical, with the curve u∗
L2

/ucl =
1.38Z−0.157 denoting the more conservative of the two. This design guideline represents
the threshold of end-shortening for which even a ‘quasi-perfect’ cylinder is in a precarious
shock-sensitive state such that buckling is easily induced by external perturbations.
This curve bounds 73.0% of the dataset shown in figure 4 from below and is the least
conservative guideline presented here.

(ii) The design curve u∗
C1

/ucl = 1.37Z−0.202 corresponds to the lower-bound buckling load
for a cylinder with a dominant single-dimple imperfection in the shape of the mountain
pass state.4 This curve bounds 95.3% of the dataset shown in figure 4 from below and
is of medium conservatism. It is recommended for cases where one dominant sharp
imperfection or localized disturbing features are present to erode the buckling load.
As identified for the beam on a nonlinear foundation, the probing displacement at the
cusp point can be used as a conservative estimate of the initial imperfection magnitude
required to reach the minimum threshold in imperfect buckling load. Defining the non-
dimensional single-dimple amplitude as (w/t)

√
1 − ν2, we have used the computed

dataset of cusp point C1 and the least-squares regression approach outlined above, to
empirically determine a relationship between the dimple magnitude at C1 and the Batdorf
parameter:

w
t

√
1 − ν2 = 0.44Z0.24 (R2 = 0.992). (3.1)

This relation thus provides a conservative estimate of the maximum allowable magnitude
of a dimple-shaped imperfection for which the above design curve is applicable.

(iii) The design curve u∗
C2

/ucl = 3.10Z−0.372 provides the theoretical lower-bound buckling
load of a cylinder under the current loading regime (clamped edges and displacement-
controlled loading). This is because neither mountain-pass-affine imperfection of finite
magnitude, shaped either as a single or a double dimple, can lead to buckling below the
KDF suggested by this curve.5 Indeed, this curve bounds 99.2% of the dataset shown in
figure 4 from below; in total, only four data points fall below the curve of which two
points fall within 0.5% of the curve. This most conservative design guideline is therefore
recommended when no prior information about initial imperfections exists. Interestingly,
this design guideline approaches the same lower-bound KDF of 0.1 as NASA’s SP-8007
guideline [1]. NASA’s curve is not shown in figure 4 as it is a function of R/t rather than Z.

Hence, the three design curves are applicable under different scenarios and assumptions: near-
perfect manufacturing quality and loading for curve (i); manufacturing within the tolerance of
equation (3.1) for curve (ii); and a lower-bound threshold without assumptions on quality for
curve (iii). For each category, the geometric parameter Z of a shell needs to be specified, and
corrections to the classical buckling load can then be applied based on the desired level of
conservatism. In this manner, the three different design curves (derived from L2, C1 and C2) can
be interpreted as varying levels of risk that an engineer can assume during design based on an
assumption of manufacturing quality.

As is commonly the case, the flipside of risk is a commensurate level of reward, which in
our case is the potential for lightweighting. For the most slender of designs (high Z), which are
commonly encountered in the design of space launch vehicles, the most and least conservative
of the three design guidelines can differ by a factor of 3 (KDF of 0.1 versus 0.3 for Z = 1 ×
104). The associated threefold reduction in safety factor can have profound implications on

4A subtle difference between knockdown curves derived from cusp points C1 (single dimple) and C2 (double dimple) is that
the former assumes that one localized (or multiple separated localized imperfections that do not interact) are present, whereas
the latter is derived from the possibility that two or more adjacent imperfections interact.
5Note that for very short cylinders, Z < 100, the design curve derived from C1 (the single-dimple cusp) is more conservative
than the design curve derived from C2 (the double-dimple cusp).
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material usage, cost, and ultimately system performance, especially in industries such as space
transportation where the payload cost to orbit is measured in $1000s per kilogram. Overall,
the three design curves identified from L2, C1 and C2 permit a more nuanced design approach
than legacy knockdown factors, whereby structural engineers have the option of choosing from
different design curves of varying conservatism depending on expected levels of imperfection,
manufacturing quality, operating environment, loading conditions, etc.

4. Conclusion
Probing has emerged as a promising experimental and numerical evaluation technique for
subcritical buckling. As such, it has been applied to cylindrical shells [32], cable-stayed columns
[64], snap-through arches [65] and slender space structures [66]. The key requirement for a
successful probing evaluation is that the applied perturbation induces the critical mode that
governs the buckling instability. The method is particularly useful for systems prone to localized,
rather than distributed, periodic buckling as the associated localized mode shape is readily
controlled using localized actuation.

For cylindrical shells, the present and previous work [18] have identified the single-dimple
and double-dimple localizations as governing instability modes. This is because beyond a critical
threshold of end-shortening, both localizations represent edge states in the basin boundary
surrounding the stable prebuckling equilibrium. Beyond this critical threshold, the cylindrical
shell exists in a heightened state of ‘shock sensitivity’ [10], whereby small external perturbations
can lead to premature buckling even for theoretically perfect shells. By mapping-out the stability
landscape of these two localized modes using inwards and outwards probing forces, we have
identified four key features of the stability landscape that form the basis for rationally derived
knockdown factors (KDFs). These are: firstly, the end-shortening that denotes the onset of the
single-dimple and double-dimple localizations as edge states; and secondly, the cusp points of
the probing ridge that denote the lowest buckling load with either localized dimple mode as an
initial imperfection of finite magnitude. Hence, interestingly, the lower-bound buckling load of an
imperfect shell can be predicted from the probing response of the perfect shell, as long as probing
is conducted to trigger the most critical of edge states (i.e. the mountain pass state). Indeed, this
observation has placed new focus on exactly how a shell is probed; specifically, the importance
of outwards probing to determine the double-dimple edge state. As of this writing, there is no
experimental validation of outwards probing and its stability landscape, which may motivate
new experiments to this effect.

We have identified three unique design curves derived from the probing stability landscape
corresponding to varying levels of conservatism, with the most conservative forming a lower
bound to 99.2% of a dataset comprising 514 experimental results taken from the literature
that span more than a century of buckling experiments. As such, the knockdown factors
presented here permit structural engineers to choose a preferred level of conservatism based
on prior information of likely imperfection magnitudes: (i) a ‘quasi-perfect’ cylinder; (ii) a
pronounced and dominating defect and (iii) the lower-bound response, i.e. no prior knowledge
of imperfection type and magnitude exists. For the most imperfection-sensitive designs, i.e. those
with large Batdorf parameter, the least conservative KDF allows for a threefold reduction in safety
factor compared to legacy design guidelines (e.g. NASA’s SP-8007 guideline) with profound
implications for more efficient and sustainable structural design.

All KDF derived herein assume the classical CC4 boundary condition (ends clamped and
displacement-controlled compression) as this is the condition most commonly implemented in
laboratory experiments. Future work will investigate the effect of changing boundary condition
on the stability landscape, e.g. pinned ends and force-controlled compression.

In conclusion, we believe that the present work creates opportunities for more lightweight and
higher-performing cylindrical shell structures in a broad range of engineering applications.

Data accessibility. Data are available at the University of Bristol data repository, data.bris, at https://doi.org/10.
5523/bris.1ycd90k17l2tt25rs2upikl2nj [67].
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