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Abstract

An a priori analysis for a generalized local projection stabilized finite element approxima-
tion of the Stokes, and the Darcy flow equations are presented in this paper. A first-order
conforming Pc

1 finite element space is used to approximate both the velocity and pressure.
It is shown that the stabilized discrete bilinear form satisfies the inf-sup condition in the
generalized local projection norm. Moreover, a priori error estimates are established in
a mesh-dependent norm as well as in the L2−norm for the velocity and pressure. The
optimal and quasi-optimal convergence properties are derived for the Stokes and the Darcy
flow problems. Finally, the derived estimates are numerically validated with appropriate
examples.
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1. Introduction

The Stokes problem has considerable practical importance in civil, petroleum, and elec-
trical engineering, such as flow in porous media, heat transfer, semiconductor devices, etc.
Several numerical schemes such as conforming and nonconforming finite element meth-
ods, finite difference, finite volume methods have been developed for Stokes problem. It is
well-known that the choice of equal-order interpolation spaces for the finite element approx-
imations of the pressure and velocity induces spurious oscillations in the numerical solution.
Nevertheless, the equal-order interpolation spaces are preferred to avoid mixed finite ele-
ment spaces and the complexity in implementation. Hence, a stabilization method is used
to enhance the stability and accuracy of the standard Galerkin solution with equal-order
finite element spaces.

Over the years several stabilization methods such as the streamline diffusion Petrov-
Galerkin [43, 44], the residual free bubbles [1, 15, 29], the Galerkin least-squares [1, 11, 35],
the edge stabilization [20], the continuous interior penalty [16, 17, 18, 19] and the local
projection schemes [9, 24, 30, 31, 41], have been proposed. The relation between the
different approaches is also well-understood in most cases. The basic idea of stabilization is
to stabilize the Galerkin variational formulation so that the discrete approximation is stable
and convergent [6, 7, 17, 21, 22, 40]. Stabilization methods for the Stokes-like operators
are well-studied in the literature [3, 30], and a few studies for the Darcy equations have
also been presented [6, 7, 39, 40, 41].
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The local projection stabilization (LPS) method has been proposed in [3, 9] for the
Stokes problem and subsequently extended to various other classes of problems [4, 10,
30, 31, 34, 38, 41]. The stabilization term in the local projection method is based on a
projection of the finite element space that approximates the unknown into a discontinuous
space [3, 9]. LPS is very attractive, mainly because of its commutation properties in
optimization problems [8] and stabilization properties similar to residual-based approaches
[37]. A significant benefit of the local projection method is that the LPS approach uses a
symmetric stabilization term and contains fewer stabilization terms than the residual-based
stabilization approach. Generalized local projection stabilization (GLPS) is a generalized
form of LPS, where the local projection spaces are defined on a patch of cells associated
with each node without enriching the finite element space. GLPS was first introduced
in [36] for the convection–diffusion problem and later applied to various other classes of
problems [5, 26, 32, 33, 38]. Further, unlike LPS, GLPS needs neither a macro grid nor an
enrichment of approximation spaces.

In this work, the GLPS conforming finite element scheme for the Stokes and the Darcy
flow problems is presented. In particular, the equal order interpolation spaces Pc

1/P
c
1 are

used to approximate the velocity and pressure. Since equal order interpolation does not
satisfy the inf-sup stability condition, spurious oscillations in the approximated pressure
are unavoidable. GLPS overcomes the space incompatibility issue and suppresses the oscil-
lations. In the stabilized formulation, the pressure stabilization Sp(∇p,∇q) can rectify the
lack of inf-sup stability in finite element spaces. Although approximating the Pc

1/P
c
1 equal

order interpolation spaces, we no longer have mass conservation. This loss can be reduced
with the addition of the stabilization term Su(∇ · u,∇ · v). The boundary conditions are
not used strongly in discrete space; hence, the discrete formulation combines the standard
Galerkin formulations, stabilization terms, and weakly imposed boundary conditions.

Further, in [36], it was noted that the stabilization parameter was independent of the
diffusion parameter, therefore making the method very well suited for degenerate diffusion
problems. The behaviour for the Stokes problem is somewhat different, and the analysis
gives different results depending on how the stabilization parameter scales with respect to
the mesh-size h. Further, an a priori error estimates are derived in a mesh-dependent norm
as well as in the L2−norm for the velocity and pressure. The optimal order of convergence
is observed for the Stokes equations. For the Darcy equations, the optimality is observed
for the divergence of the velocities and suboptimality with the gap of half a power of h for
the pressures and velocities in the L2-norm.

The outline of the article is as follows: In Section 2, the weak formulation of the Stokes
problem is introduced. Section 3 is devoted to an overlapping local projection stabilized
conforming finite element method. The stability analysis for the Stokes problem with
respect to a generalized local projection norm is derived. In section 3.2, an optimal a priori
error estimates for the Stokes problem with respect to a generalized local projection norm
is provided. In Section 4, the above approach is studied for the Darcy flow problem. Taking
into account the error estimate of Theorem 3.2, the stabilization parameters are modified.
An elementary proof of stability and convergence analysis for the Darcy flow problem
is derived. Section 5 presents some numerical experiments that confirm the theoretical
analysis.
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2. The Stokes problem

Consider the following Stokes problem:

−∆u +∇p = f; ∇ · u = 0 in Ω, (1)

u = 0 on ∂Ω.

Here, Ω is an open, bounded subset of Rd, d = 2, 3 with boundary ∂Ω. Here, u de-
notes the velocity, p denotes the pressure, f ∈ [L2(Ω)]2 is a given data. Throughout
this paper, standard notations for Lebesgue and Sobolev spaces are used. The notation
(·, ·) represents the L2(Ω) inner product; and L2(Ω) and L∞(Ω) norms are respectively
denoted by ‖u‖ and ‖u‖∞. The standard notation of Sobolev space Hm(Ω) for m=1,2
and its norm ‖·‖m are used. The notations [L2(Ω)]2 and [H1(Ω)]2 respectively abbrevi-
ate the vector-valued versions of L2(Ω) and H1(Ω); H1

0(Ω) is a subspace of H1(Ω) with
zero trace functions. Now, consider the functional spaces V = {v ∈ [H1

0(Ω)]2}, and
Q = L2

0(Ω) =
{

q ∈ L2(Ω)|
∫

Ω q dx = 0
}

.
Further, multiplying the model problem with a test function (v, q) ∈ V ×Q and after

integrating over Ω, the weak form of the model problem (1) reads:

Find (u, p) ∈ W = V ×Q such that

B((u, p), (v, q)) = (f,v), for all (v, q) ∈ W, (2)

where

B((u, p), (v, q)) : = a(u,v)− b(p,v) + b(q,u),

and a(u,v) = (∇u,∇v) and b(p,v) = (p,∇ · v).
The existence of a weak solution to this problem follows by applying the Lax–Milgram

lemma in the divergence-free subspace of V and the pressure in Q by the Brezzi condition
[14]. We will assume that Ω is a convex polygonal domain so that the following regularity
estimate holds ‖u‖2 + ‖p‖1 . ‖f‖ .

Remark 2.1. The analysis is presented for a two-dimensional case for simplicity. Never-
theless, the study is independent of the dimension, whereas faces instead of edges need to
be used to extend to three-dimensions.

Finite element formulation

Let Th be a collection of non-overlapping quasi-uniform triangles obtained by decom-
position of Ω. Let hK = diam(K) for all K ∈ Th and the mesh-size h = maxK∈ThhK . Let
Eh = EIh ∪ EBh be the set of all edges in Th where EIh and EBh are the set of all interior and
boundary edges respectively and hE = diam(E) for all E ∈ Eh. Let Vh := VIh ∪ VBh be the
set of all vertices in Vh where VIh and VBh are the set of all interior and boundary vertices
respectively. For any a ∈ Vh, Ma (patch of a) denotes the union of all cells that share the
vertex a. Further, define ha = diam(Ma) for all a ∈ Vh. Moreover, We use the following
norm in the analysis. Let the piecewise constant function hT is defined by hT |K = hK and
s ∈ R and m ≥ 0

‖hsT u‖m =

∑
K∈Th

h2s
K ‖u‖

2
Hm(K)

 1
2

for all u ∈ Hm(Th).
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Figure 1: Node patchMa.

Suppose I(a) denotes the index set for all Kl elements, so that Kl ⊂ Ma. Then, the
local mesh-size associated to Ma is defined as

ha :=
1

card(I(a))

∑
l∈I(a)

hl, for each a ∈ Vh,

where card(I(a)) denotes the number of elements inMa. Since the mesh Th is assumed to
be locally quasi-uniform [12], there exists a positive ζ ≥ 1 independent of h such that

ζ−1 ≤ ha
hl
≤ ζ for all l ∈ I(a).

For any a ∈ Vh, define the fluctuation operator κa : L2(Ma)→ L2(Ma) by

κa(v) = v − 1

|Ma|

∫
Ma

v dx.

Then,

‖κa‖L(L2(Ma),L2(Ma)) ≤ C ∀ a ∈ Vh,

where C is a constant independent of h. For each a ∈ Vh, let βa be the stabilization
parameter. Now, the stabilization term is defined by

Sh(u, v) :=
∑
a∈Vh

βa

∫
Ma

κa(u)κa(v) dx.

We next define a piecewise polynomial space as

Pk(Th) :=
{
v ∈ L2(Ω) : v|K ∈ Pk(K) ∀K ∈ Th

}
,

where Pk(K), k ≥ 0, is the space of polynomials of degree at most k over the element K.
Further, define a conforming finite element space of piecewise linear

Pc
1(Th) :=

{
v ∈ H1(Ω) : v|K ∈ P1(K) ∀ K ∈ Th

}
.

Note that throughout this paper, C (sometimes subscripted) denotes a generic positive
constant that may depend on the shape-regularity of the triangulation but is independent
of the mesh-size. Further, the notation c . d represents the inequality c ≤ Cd.

Now recall the following technical results of finite element analysis.

Lemma 2.1. Trace inequality [25]: Suppose E denotes an edge of K ∈ Th. For vh ∈
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Pk(Th), there holds

‖vh‖L2(E) ≤ Ch
−1/2
K ‖vh‖L2(K). (3)

Lemma 2.2. Inverse inequality [25]: Let v ∈ Pk(Th), for all k ≥ 0. Then,

‖∇v‖L2(K) ≤ Ch
−1
K ‖v‖L2(K) . (4)

Lemma 2.3. Poincaré inequality [13]: For a bounded and connected polygonal domain Ω
and for any v ∈ H1(Ω), ∥∥∥∥v − 1

|Ω|

∫
Ω
v dx

∥∥∥∥
L2(Ω)

≤ ChΩ ‖∇v‖L2(Ω) ,

where hΩ and |Ω| denote the diameter and measure of domain Ω. In particular, for every
vertex a ∈ Vh and every function v ∈ H1(Ma), it holds that∥∥∥∥v − 1

|Ma|

∫
Ma

v dx

∥∥∥∥
L2(Ma)

≤ Cha ‖∇v‖L2(Ma) , (5)

where the constant C is independent of the mesh-size ha.

Furthermore, for a locally quasi-uniform and shape-regular triangulation, the H1-stability,
the L2-stability, and the stability in the weighted the L2-norm [2] of the L2-orthogonal pro-
jection Ih : L2(Ω)→ Pc

1(Th) leads to the following approximation properties.

Lemma 2.4. L2-orthogonal projections: The L2-projection Ih : L2(Ω)→ Pc
1(Th) satisfies∥∥h−1

T (v − Ihv)
∥∥+ ‖∇(v − Ihv)‖ ≤ C ‖hT v‖2 , for all v ∈ H2(Ω), (6)

For vector-valued functions, Ih : [L2(Ω)]2 → [Pc
1(Th)]2 satisfies∥∥h−1

T (v − Ihv)
∥∥+ ‖∇(v − Ihv)‖ ≤ C ‖hT v‖2 , ∀ v ∈ [H2(Ω)]2. (7)

Moreover, the trace inequality over each edge implies∑
E∈Eh

‖v − Ihv‖2L2(E)

1/2

≤ C
∥∥∥h3/2
T v

∥∥∥
2

for all v ∈ [H2(Ω)]2. (8)

The orthogonality relation for all vh ∈ [Pc
1(Th)]2 implies

(v − Ihv,vh) = 0. (9)

The following approximation estimates hold for the L2-orthogonal projection operator:

‖Ihv‖ ≤ ‖v‖ ,
∥∥h−1
T Ihv

∥∥ ≤ C ∥∥h−1
T v

∥∥ and ‖∇(Ihv)‖ ≤ C ‖∇v‖ . (10)

3. An overlapping local projection stabilization for Stokes problem

This section describes the conforming finite element method for the Stokes problem
(1), where the velocity and the pressure are approximated with the continuous piecewise
linear finite element spaces. It is well-known that equal-order interpolation spaces for the

5



pressure and the velocities in the Stokes problem are not inf-sup stable and induce spu-
rious oscillation in the solution. An overlapping local projection stabilization method is
introduced to circumvent this stability issue. Further, the Dirichlet boundary condition is
not incorporated in the discrete space, and therefore weakly imposed in the discrete for-
mulation using Nitsche’s technique [42]. The final formulation combines standard Galerkin
formulation, stabilization terms, and weakly imposed Dirichlet boundary condition.

Let Vh := [Pc
1(Th)]2 and Qh := L2

0(Ω)
⋂

Pc
1(Th). The stabilised finite element formula-

tion of the Stokes reads:

Find (uh, ph) ∈ Wh = Vh ×Qh such that

Bh((uh, ph), (v, q)) = L(v, q), (11)

for all (v, q) ∈ Wh, where

Bh((uh, ph), (v, q)) = ah(uh,v)− bh(ph,v) + bh(uh, q) + Sh((uh, ph), (v, q)), (12)

and

ah(uh,v) : = (∇uh,∇v)−
∑

E∈EBh

∫
E

∂uh

∂n
· v ds−

∑
E∈EBh

∫
E

∂v

∂n
· uh ds

+
∑

E∈EBh

∫
E

ζ

hE
uh · v ds,

bh(ph,v) : = (ph,∇ · v)−
∑

E∈EBh

∫
E

(v · n)ph ds,

Sh((uh, ph), (v, q)) : = Su(uh,v) + Sp(ph, q),

Su(uh,v) : =
∑
a∈Vh

∫
Ma

κa(∇ · uh)κa(∇ · v) dx,

Sp(ph, q) : =
∑
a∈Vh

µa

∫
Ma

κa(∇ph)κa(∇q) dx,

L(v, q) : = (f ,v).

Note that the parameters ζ and µa will be chosen later. Further, introduce the generalized
local projection norm for Wh by

|||(uh, ph)|||2 := ‖∇uh‖2 + ‖ph‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph)). (13)

3.1. The inf-sup condition

Theorem 3.1. Let ζ be selected in such a way that ζ > ζ0 > 0 with ζ0 large enough.
Assume also that µa = µh2

a for some µ > 0. Then the discrete bilinear form (11) satisfies
the following inf-sup condition for some positive constant ν, independent of h:

inf
(uh,ph)∈Wh

sup
(vh,qh)∈Wh

Bh((uh, ph), (vh, qh))

|||(uh, ph)||| |||(vh, qh)|||
≥ ν.

Proof. In order to prove the stability result, it is enough to choose some (vh, qh) ∈ Wh
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for any arbitrary (uh, ph) ∈ Wh, such that

Bh((uh, ph), (vh, qh))

|||(vh, qh)|||
≥ ν |||(uh, ph)||| > 0. (14)

First, consider the bilinear form in (12) with (vh, qh) = (uh, ph):

Bh((uh, ph), (uh, ph)) = ‖∇uh‖2 − 2
∑

E∈EBh

∫
E

∂uh

∂n
· uh ds +

∑
E∈EBh

∫
E

ζ

hE
u2
h ds

+ Sh((uh, ph), (uh, ph)). (15)

The second term of (15) is handled by using the Cauchy–Schwarz inequality and trace
inequality (3),

2

∫
E

∂uh

∂n
· uh ds ≤ 2

∥∥∥∥∂uh

∂n

∥∥∥∥
L2(E)

‖uh‖L2(E) ≤ 2h
−1/2
E ‖∇uh‖L2(K) ‖uh‖L2(E) . (16)

The sum of all the boundary edges of (16) and using Young’s inequality,

2
∑

E∈EBh

∫
E

∂uh

∂n
· uh ds ≤ 1

2
‖∇uh‖2 + 2C2

∑
E∈EBh

∫
E

1

hE
u2
h ds. (17)

Substitution of (17) to (15) and the selection of parameter ζ > ζ0 =: 4C2 to obtain

Bh((uh, ph),(uh, ph))

≥ 1

2
‖∇uh‖2 +

ζ − 2C2

ζ

∑
E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))

≥ 1

2

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))

 . (18)

The selection of the parameter ζ is given by,

ζ − 2C2

ζ
≥ 1

2
.

Using the surjectivity of the divergence operator [28], there exists a function z ∈ [H1
0(Ω)]2

such that ∇ · z = ph and
‖z‖1,Ω ≤ C1‖ph‖. (19)

Let z ∈ [H1
0(Ω)]2 is defined as in (19). Let zh = Ihz ∈ Vh. Then,

‖zh‖1,Ω ≤ ‖z‖1,Ω ≤ C1‖ph‖. (20)

Finally, taking (vh, qh) = (zh, 0) in (12),

Bh((uh, ph), (zh, 0)) = ah(uh, zh)− bh(ph, zh) + Sh((uh, ph), (zh, 0)). (21)

7



Let us estimate the above three terms. Consider the first term of (21):

ah(uh, zh) = (∇uh,∇zh)−
∑

E∈EBh

∫
E

∂uh

∂n
· zh ds−

∑
E∈EBh

∫
E

∂zh
∂n
· uh ds

+
∑

E∈EBh

∫
E

ζ

hE
uh · zh ds. (22)

The first term of (22) is handled by using the Cauchy–Schwarz inequality, (20) and Young’s
inequality,

(∇uh,∇zh) ≤ ‖∇uh‖ ‖∇zh‖ ≤ C ‖∇uh‖ ‖ph‖ ≤ C ‖∇uh‖2 +
‖ph‖2

10
.

Applying the Cauchy–Schwarz inequality, trace inequality (6) and (20),∫
E

∂uh

∂n
· zh ds =

∫
E

∂uh

∂n
· (zh − z) ds ≤ C

∥∥∥∥∂uh

∂n

∥∥∥∥
L2(E)

‖zh − z‖L2(E)

≤ C ‖∇uh‖L2(K) ‖∇zh‖L2(K) .

and ∫
E

ζ

hE
uh · zh ds =

(∫
E

ζ

hE
u2
h ds

) 1
2
(∫

E

ζ

hE
(zh − z)2 ds

) 1
2

≤ C
(∫

E

ζ

hE
u2
h ds

) 1
2

‖∇zh‖L2(K) .

The sum of all the boundary edges and using (20) and Young’s inequality,∑
E∈EBh

∫
E

∂uh

∂n
· zh ds +

∑
E∈EBh

∫
E

ζ

hE
uh · zh ds

≤ C

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds

+
‖ph‖2

10
.

The second term of (22) is handled as:

∑
E∈EBh

∫
E

∂zh
∂n
· uh ds ≤ ‖∇zh‖2 + C

∑
E∈EBh

∫
E

ζ

hE
u2
h ds ≤ ‖ph‖

2

10
+ C

∑
E∈EBh

∫
E

ζ

hE
u2
h ds.

In the second term of (21), add 0 = (ph, ph)− (ph,−∇ · z) to obtain

−bh(ph, zh) = −(ph,∇ · zh) +
∑

E∈EBh

∫
E

(zh · n)ph ds

= ‖ph‖2 + (ph,∇ · (z− zh)) +
∑

E∈EBh

∫
E

(zh · n)ph ds. (23)
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Applying an integration by parts to the second term of (23),

(ph,∇ · (z− zh)) = −(∇ph, (z− zh))−
∑

E∈EBh

∫
E

(zh · n)ph ds.

It follows that

−bh(ph, zh) = ‖ph‖2 − (∇ph, z− zh).

Use the canonical nodal basis-function φa at the node a ∈ Vh over the mesh Th. Since,∑
a∈Vh φa ≡ 1,

(∇ph, z− zh) =
∑
K∈Th

∫
K
∇ph(z− zh)

∑
a∈Vh

φa dx

=
∑
a∈Vh

∫
Ma

(z− zh) ∇phφa dx. (24)

Using the orthogonality property of L2-projection (9) with the test function Caφa ∈ Vh,
where Ca = 1

|Ma|
∫
Ma
∇ph dx and ‖φ‖∞ ≤ 1,

(∇ph, z− zh) =
∑
a∈Vh

∫
Ma

(z− zh)

(
∇ph −

1

|Ma|

∫
Ma

∇ph dx

)
φa dx

≤

∑
a∈Vh

∫
Ma

µ−1
a (z− zh)2 dx

 1
2
∑

a∈Vh

∫
Ma

µaκ
2
a(∇ph) dx

 1
2

≤ 1

10
‖ph‖2 + CSp(ph, ph). (25)

The last term of (21) is handled by using the Cauchy–Schwarz inequality, boundedness of
the local projection operator and (19),

Sh((uh, ph), (zh, 0)) ≤ [Sh((uh, ph), (uh, ph))]
1
2 [Sh((zh, 0), (zh, 0))]

1
2

≤ C[Sh((uh, ph), (uh, ph))]
1
2 ‖∇ · zh‖

≤ CSh((uh, ph), (uh, ph)) +
1

10
‖ph‖2. (26)

Put together (21) leads to

Bh((uh,ph), (zh, 0))

≥ 1

2
‖ph‖2 − C

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))

 . (27)

The final selection of (vh, qh) is

(vh, qh) = (uh, ph) +
1

2(C + 1)
(zh, 0).
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Here Ih is defined in (6). Adding (18), and (27) leads to

Bh((uh, ph), (vh, qh))

≥ 1

2

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))

+
1

4(C + 1)
‖ph‖2

− C

2(C + 1)

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))


≥ 1

2(C + 1)

‖∇uh‖2 +
∑

E∈EBh

∫
E

ζ

hE
u2
h ds + Sh((uh, ph), (uh, ph))

+
1

4(C + 1)
‖ph‖2

≥ 1

2(C + 1)
|||(uh, ph)||| . (28)

Applying the triangle inequality

|||(vh, qh)||| ≤ |||(uh, ph)|||+ 1

2(C + 1)
|||(zh, 0)||| ≤ α |||(uh, ph)||| . (29)

In the second term of (29), applying (19) and a similar technique as in (26),

|||(zh, 0)||| = ‖zh‖2 +
∑

E∈EBh

∫
E

ζ

hE
z2
h ds + Su(zh, zh) ≤ C‖ph‖2,

Finally, (28) and (29) lead to (14) and this concludes the claim.

3.2. A priori error estimates

We assume H2(Ω) × H1(Ω) regularity for the Stokes problem [30], and derive the fol-
lowing finite element results:

• convergence in triple norm, assuming p ∈ H1(Ω),

• optimal convergence in the L2-norm for the velocities.

Lemma 3.1. Assume that µa = µh2
a for some µ > 0. Let (u, p) ∈ [H2(Ω)]2 × L2

0

⋂
H1(Ω).

Then,

|||(u− Ihu, p− Ihp)||| ≤ C (‖hT u‖2 + ‖hT p‖1) . (30)

Proof. First, consider the terms in |||·||| norm defined in (13),

|||(u− Ihu, p− Ihp)|||2 := ‖(∇(u− Ihu))‖2 + ‖p− Ihp‖2 +
∑

E∈EBh

∫
E

ζ

hE
(u− Ihu)2 ds

+Sh((u− Ihu, p− Ihp), (u− Ihu, p− Ihp)).

Using the projection estimates (6)–(7),

‖∇(u− Ihu)‖ ≤ ‖hT u‖2 , and ‖p− Ihp‖ ≤ ‖hT p‖1 .

10



Using the trace inequality over each edges (8),∑
E∈EBh

∫
E

ζ

hE
(u− Ihu)2 ds ≤ C ‖hT u‖22 .

Recall the stabilization term

Sh((u− Ihu,p− Ihp), (u− Ihu, p− Ihp))

=
∑
a∈Vh

∫
Ma

κ2
a(∇ · (u− Ihu)) dx +

∑
a∈Vh

µa

∫
Ma

κ2
a(∇(p− Ihp)) dx. (31)

In the first term of (31), using the boundedness of an overlapping local projection operator
and (7),

∑
a∈Vh

∫
Ma

κ2
a(∇ · (u− Ihu)) dx =

∑
a∈Vh

∥∥∥∥∇ · (u− Ihu)− 1

|Ma|

∫
Ma

∇ · (u− Ihu) dx

∥∥∥∥2

L2(Ma)

≤ C
∑
a∈Vh

‖∇ · (u− Ihu)‖2L2(Ma)

≤ C ‖hT u‖22 . (32)

The last term of (31) is handled by following a similar argument as in (32) with µa = µh2
a:∑

a∈Vh

µa

∫
Ma

κ2
a(∇(p− Ihp)) dx ≤ C ‖hT p‖21 .

The combination of all the above estimates concludes the claim.

Lemma 3.2. Assume that µa = µh2
a for some µ > 0. Let (u, p) ∈ [H2(Ω)]2 × L2

0

⋂
H1(Ω)

and for all (vh, qh) ∈ Wh. Then,

Bh((u− Ihu, p− Ihp), (vh, qh)) ≤ C (‖hT u‖2 + ‖hT p‖1) |||(vh, qh)||| . (33)

Proof. Consider the bilinear form in (12):

Bh((u− Ihu, p− Ihp), (vh, qh)) = ah(u− Ihu,vh)− bh(p− Ihp,vh) + bh(u− Ihu, qh)

+ Sh((u− Ihu, p− Ihp), (vh, qh)).
(34)

Consider the first term of (34):

ah(u− Ihu,vh) = (∇(u− Ihu),∇vh)−
∑

E∈EBh

∫
E

∂(u− Ihu)

∂n
· vh ds

−
∑

E∈EBh

∫
E

∂vh

∂n
· (u− Ihu) ds +

∑
E∈EBh

∫
E

ζ

hE
(u− Ihu) · vh ds. (35)

Applying the Cauchy–Schwarz inequality and L2-projection property (7),

(∇(u− Ihu),∇vh) ≤ ‖∇(u− Ihu)‖ ‖∇vh‖ ≤ ‖hT u‖2 |||(vh, qh)||| .

11



The second term of (35) is handled by using the Cauchy–Schwarz inequality,

∑
E∈EBh

∫
E

∂(u− Ihu)

∂n
· vh ds ≤ C

 ∑
E∈EBh

hE

∥∥∥∥∂(u− Ihu)

∂n

∥∥∥∥2

L2(E)

1/2 ∑
E∈EBh

ζ

hE

∫
E

v2
h ds

1/2

.

Applying the trace inequality over,

∑
E∈EBh

hE

∥∥∥∥∂(u− Ihu)

∂n

∥∥∥∥2

L2(E)

≤ C
(
‖u− Ihu‖21,K + h2

K ‖u− Ihu‖22,K
)
. (36)

Applying an introduction of some nodal interpolation, an inverse inequality and the H1-
stability of L2-projection in (36),∑

E∈EBh

∫
E

∂(u− Ihu)

∂n
· vh ds ≤ C ‖hT u‖2 |||(vh, qh)||| .

The third term of (35) is handled by using the Cauchy–Schwarz inequality, trace inequality
(3) and (8),

∑
E∈EBh

∫
E

∂vh

∂n
· (u− Ihu) ds ≤

 ∑
E∈EBh

hE

∥∥∥∥∂vh

∂n

∥∥∥∥2

L2(E)

1/2 ∑
E∈EBh

ζ

hE

∫
E

(u− Ihu) ds

1/2

≤ C ‖hT u‖2 |||(vh, qh)||| .

The last term of (35) is handled by using the Cauchy–Schwarz inequality and (8),

∑
E∈EBh

∫
E

ζ

hE
(u− Ihu) · vh dsC ≤

 ∑
E∈EBh

1

hE

∫
E

(u− Ihu)2 ds

1/2 ∑
E∈EBh

ζ

hE

∫
E

v2
h ds

1/2

≤ C ‖hT u‖2 |||(vh, qh)||| .

Consider the second term of bilinear form (34):

bh(p− Ihp,vh) = (p− Ihp,∇ · vh)−
∑

E∈EBh

∫
E

(vh · n) (p− Ihp) ds. (37)

12



The first term of (37) is handled by using a similar argument as in (24)–(25)

(p− Ihp,∇ · vh)

=
∑
a∈Vh

∫
Ma

(p− Ihp)∇ · vhφa dx

≤

∑
a∈Vh

∫
Ma

(p− Ihp)2 dx

1/2∑
a∈Vh

∫
Ma

(
∇ · vh −

1

|Ma|

∫
Ma

∇ · vh dx

)2
1/2

≤

∑
a∈Vh

∫
Ma

(p− Ihp)2 dx

1/2∑
a∈Vh

∫
Ma

(κa(∇ · vh))2 dx

1/2

≤ ‖hT p‖1 |||(vh, qh)||| .

The second term of (37) is handled by using the Cauchy Schwarz inequality and trace
inequality over edges,

∑
E∈EBh

∫
E

(vh · n) (p− Ihp) ds ≤ C

 ∑
E∈EBh

h−1
E ‖vh · n‖2L2(E)

 1
2
 ∑

E∈EBh

hE ‖p− Ihp‖2L2(E)

 1
2

≤ C ‖hT p‖1 |||(vh, qh)||| .

Applying an integration by parts in the next term of the bilinear form (34),

bh(u− Ihu, qh)

= (qh,∇ · (u− Ihu))−
∑

E∈EBh

∫
E

((u− Ihu) · n) qh ds

= −(∇qh,u− Ihu) +
∑

E∈EBh

∫
E

((u− Ihu) · n) qh ds−
∑

E∈EBh

∫
E

((u− Ihu) · n)qh ds.

(38)

Applying a similar technique as in (24)–(25), the first term of (38) is estimated as:

(∇qh,u− Ihu) ≤ C ‖hT u‖2 |||(vh, qh)||| .

The last term is estimated in a similar way as in (31),

Sh ((u− Ihu, p− Ihp), (vh, qh)) ≤ (‖hT u‖2 + ‖hT p‖1) |||(vh, qh)||| .

The combination of the above estimates concludes the claim.

Lemma 3.3. Assume that µa = µh2
a for some µ > 0. Suppose (u, p) ∈ [H2(Ω)]2×L2

0(Ω)∩
H1(Ω) and (uh, ph) ∈ Wh are the solutions to (2) and (11) respectively. For any (vh, qh) ∈
Wh. Then,

Bh((u− uh, p− ph), (vh, qh)) ≤ C (‖hT u‖2 + ‖hT p‖1) |||(vh, qh)||| .

Proof. Using u = 0 over the boundary edges,

Bh((u− uh, p− ph), (vh, qh)) = Sh((u, p), (vh, qh)).

13



Sh((u, p), (vh, qh)) =
∑
a∈Vh

∫
Ma

κa(∇ · u)κa(∇ · vh) dx +
∑
a∈Vh

µa

∫
Ma

κa(∇p) · κa(∇qh) dx.

(39)

Using the Cauchy–Schwarz inequality and Poincaré inequality (5) in the first term of (39),∑
a∈Vh

∫
Ma

κa(∇ · u)κa(∇ · vh) dx

≤

∑
a∈Vh

∥∥∥∥∇ · u− 1

|Ma|

∫
Ma

∇ · u dx

∥∥∥∥2

L2(Ma)

1/2

S
1/2
h ((u, p), (vh, qh))

≤ ‖hT u‖2 |||(vh, qh)||| .

In a similar way, the second term is handled as:∑
a∈Vh

µa

∫
Ma

κa(∇p)κa(∇qh) dx ≤ ‖hT p‖1 |||(vh, qh)||| .

The combination of the above estimates concludes the claim.

Theorem 3.2. Suppose (u, p) ∈ [H2(Ω)]2×L2
0

⋂
H1(Ω) and (uh, ph) ∈ Wh are the solutions

to (2) and (11) respectively. Let µa = µh2
a for some µ > 0. Then it holds that

|||(u− uh, p− ph)||| ≤ C (‖hT u‖2 + ‖hT p‖1) . (40)

Proof. Using the triangle inequality,

|||(u− uh, p− ph)||| ≤ |||(u− Ihu, p− Ihp)|||+ |||(Ihu− uh, Ihp− ph)||| . (41)

The first term of (41) is handled by Lemma 3.1, i.e.,

|||(u− Ihu, p− Ihp)||| ≤ C (‖hT u‖2 + ‖hT p‖1) .

The second term of (41) is handled by using Theorem 3.1,

|||(Ihu− uh, Ihp− ph)||| ≤ 1/δ sup
(vh,qh)∈Wh

Bh((Ihu− uh, Ihp− ph), (vh, qh))

|||vh, qh|||

≤ 1/δ sup
(vh,qh)∈Wh

Bh(u− uh, p− ph), (vh, qh))

|||vh, qh|||

+ sup
(vh,qh)∈Wh

Bh((Ihu− u, Ihp− p), (vh, qh))

|||vh, qh|||
. (42)

Finally, the result follows by using Lemma 3.2 and Lemma 3.3 in (42), and this concludes
the claim.

We now proceed to derive an L2-error estimates for the velocities in the case of the
Stokes equation. Consider the following dual problem, find (φ, ψ) ∈ W such that

ah(v, φ) + bh(q, φ)− bh(ψ,v) = (η,v)Ω, ∀ (v, q) ∈ W (43)
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and assume that the solution has the additional regularity,

‖φ‖2 + ‖ψ‖1 ≤ C ‖η‖ , (44)

valid if the boundary is sufficiently smooth, [28].

Theorem 3.3. Assume that the solution (u, p) of (2) belongs to [H2(Ω)]2 × L2
0

⋂
H1(Ω)

and let (uh, ph) ∈ Wh be the solution of (11). Assume also that µa = µh2
a for some µ > 0.

Then,
‖u− uh‖ ≤ C

(∥∥h2
T u
∥∥

2
+
∥∥h2
T p
∥∥

1

)
.

Proof. Choosing η = v = u− uh, q = p− ph in (43) gives

‖u− uh‖2Ω = ah(u− uh, φ) + bh(p− ph, φ)− bh(ψ,u− uh)

= ah(u− uh, φ− Ihφ) + bh(p− ph, φ− Ihφ)− bh(ψ − Ihφ,u− uh)

+ Su(u− uh, φ− Ihφ) + Sp(ph, Ihψ)

= (a) + (b) + (c). (45)

Let us now estimate these three terms. Consider the first term of (71). Following similar
arguments as in Lemma 3.2,

(a) ≤ C (|||u− uh||| ‖hT φ‖2 + ‖p− ph‖ ‖hT φ‖2 + |||u− uh||| ‖hT ψ‖1) .

Using the Cauchy–Schwarz inequality, and Lemma 3.1,

(b) ≤ S1/2
u (u− uh,u− uh)S

1/2
u (φ− Ihφ, φ− Ihφ)

≤ C |||u− uh||| ‖hT φ‖2 .

The last term of (71) is handled by using boundedness of the local projection operator, the
stability of the projection estimates and µa = µh2

a, i.e.,

(c) = Sp(p, Ihψ)− Sp(p− ph, Ihψ), (46)

|Sp(p, Ihψ)| ≤

( ∑
a∈Ma

µa ‖κa∇p‖2L2(Ma)

) 1
2

Sp(Ihψ, Ihψ)1/2

≤ C ‖hT p‖1 ‖hT ψ‖1 .

|Sp(p− ph, Ihψ)| ≤ C |||(u− uh, p− ph)||| ‖hT ψ‖1 .

The proof concludes by combining the above estimates with the Theorem 3.2, and the
assumed regularizing behavior (44).

4. An overlapping local projection stabilization for the Darcy flow problem

4.1. The Darcy problem

In this section, we extend the above analysis to the Darcy flow problem. Consider the
Darcy flow equations: Find (u, p) such that

u + ω∇p = f; ∇ · u = g in Ω, (47)

u · n = 0 on ∂Ω.
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Here, Ω ⊂ R2 is an open bounded polygonal domain with smooth boundary ∂Ω and u is
the velocity vector, p is the pressure, f ∈ [L2(Ω)]2, g ∈ L2

0(Ω) are the given data, n is the
unit outward normal vector to ∂Ω and ω = κ/λ, κ > 0 is the permeability, and λ > 0 is
the viscosity. The divergence constraint implies that the prescribed data must satisfy the
condition, ∫

Ω
g dx = 0.

In order to formulate a weak formulation of the Darcy flow equations, consider the following
Sobolev spaces,

V := {v ∈ H(div,Ω)| v · n = 0 on ∂Ω} , Q := L2
0(Ω),

where L2(Ω) is a space of square-integrable measurable function. Moreover, a weak formu-
lation of the model problem (47) reads as: Find (u, p) ∈ V×Q such that

a(u,v)− b(p,v) = (f,v); b(u, q) = (g, q),

for all v ∈ V and q ∈ Q, and

a(u,v) :=

∫
Ω
ω−1(u · v) dx; b(p,v) :=

∫
Ω
p∇ · v dx.

The weak form of the Darcy flow problem can also be defined on V×Q =W and it reads
as: Find (u, p) ∈ W such that

A((u, p), (v, q)) = L(v), (48)

for all (v, q) ∈ W, where

A((u, p), (v, q)) := a(u,v)− b(p,v) + b(q,u); L(v) := (f,v) + (g, q).

For sufficiently regular data, the weak formulation (48) is known to possess a unique
solution [28].

4.2. The inf-sup condition

This section describes the conforming finite element method for the problem (47), where
the velocity and the pressure are approximated with the continuous piecewise linear finite
element spaces.

Let Vh := [Pc
1(Th)]2 and Qh := L2

0(Ω)
⋂

Pc
1(Th). We propose the following finite

element formulation: Find (uh, ph) ∈ Wh = Vh ×Qh such that

Ah((uh, ph), (v, q)) = L(v, q), (49)

for all (v, q) ∈ Wh, where

Ah((uh, ph), (v, q)) = ah(uh,v)− bh(ph,v) + bh(uh, q) + Sh((uh, ph), (v, q)), (50)
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and

ah(uh,v) : =
∑
K∈Th

∫
K
ω−1(uh · v) dx,

bh(ph,v) : = (ph,∇ · v)−
∑

E∈EBh

∫
E

(v · n)ph ds,

Sh((uh, ph), (v, q)) : = Su(uh,v) + Sp(ph, q),

Su(uh,v) : =
∑
a∈Vh

βaω
−1

∫
Ma

κa(∇ · uh)κa(∇ · v) dx +
∑

E∈EBh

∫
E

(uh · n)(v · n) ds,

Sp(ph, q) : =
∑
a∈Vh

βaω

∫
Ma

κa(∇ph)κa(∇q) dx,

L(v, q) : = (f,v) + (g, q).

Note that the stabilization parameters are chosen as βa = βha for some β > 0. Further,
introduce a generalized local projection norm on Wh by

|||(uh, ph)|||2 := ‖ω−
1
2 uh‖2 + ‖h

1
2
T (∇ · uh)‖2 + ‖ph‖2 + Sh((uh, ph), (uh, ph)). (51)

The main result of this section is the following theorem, which ensures that the discrete
bilinear form is well–posed [28].

Theorem 4.1. The discrete bilinear form (49) satisfies the following inf-sup condition for
some positive constant γ, independent of h:

inf
(uh,ph)∈Wh

sup
(vh,qh)∈Wh

Ah((uh, ph), (vh, qh))

|||(uh, ph)||| |||(vh, qh)|||
≥ γ.

Proof. In order to prove the stability result, it is enough to choose some (vh, qh) ∈ Wh

for any arbitrary (uh, ph) ∈ Wh, such that

Ah((uh, ph), (vh, qh))

|||(vh, qh)|||
≥ γ |||(uh, ph)||| > 0. (52)

First, consider the bilinear form in (50) with (vh, qh) = (uh, ph):

Ah((uh, ph), (uh, ph)) = ‖ω−
1
2 uh‖2 + Sh((uh, ph), (uh, ph)). (53)

Taking (vh, qh) = (zh, 0) in (50),

Ah((uh, ph), (zh, 0)) = ah(uh, zh)− bh(ph, zh) + Sh((uh, ph), (zh, 0)). (54)

Let us now bound the three contributions. Applying the Cauchy–Schwarz inequality, (19)
and Young’s inequality,

ah(uh, zh) ≤ ω−1‖uh‖‖zh‖ ≤ ω−1C1‖uh‖‖ph‖ ≤ C
∥∥∥ω− 1

2 uh

∥∥∥2
+

1

8
‖ph‖2.

The constant C in the above estimates depend on ω−1. In the second term of (54), add
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0 = (ph, ph)− (ph,−∇ · z) to obtain,

−bh(ph, zh) = −(ph,∇ · zh) +
∑

E∈EBh

∫
E

(zh · n)ph ds

= ‖ph‖2 + (ph,∇ · (z− zh)) +
∑

E∈EBh

∫
E

(zh · n)ph ds. (55)

Applying an integration by parts to the second term of (55),

(ph,∇ · (z− zh)) = −(∇ph, (z− zh)) +
∑

E∈EBh

∫
E
ph(z− zh) · n dx.

It follows that

−bh(ph, zh) = ‖ph‖2 − (∇ph, z− zh). (56)

Following a similar argument as in (24)–(25), the second term of (56) can be estimated as:

(∇ph, z− zh) =
∑
a∈Vh

∫
Ma

(z− zh)

(
∇ph −

1

|Ma|

∫
Ma

∇ph dx

)
φa dx

≤

∑
a∈Vh

∫
Ma

ω−1β−1
a (z− zh)2 dx

 1
2
∑

a∈Vh

∫
Ma

ωβaκ
2
a(∇ph) dx

 1
2

≤ 1

8
‖ph‖2 + CSp(ph, ph). (57)

The constant C in the above estimates depend on ω−1/2. The last term of (54) is handled
by using the Cauchy–Schwarz inequality, boundedness of the local projection operator and
(19),

Sh((uh, ph), (zh, 0)) ≤ C

2
Sh((uh, ph), (uh, ph)) +

1

4
‖ph‖2 .

Put together, (54) leads to

Ah((uh, ph), (zh, 0)) ≥ 1

2
‖ph‖2 − C

(
‖uh‖2 +

1

2
Sh((uh, ph), (uh, ph))

)
. (58)

Finally, the control of

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

can be obtained by choosing (vh, qh) = (0, hT (∇·uh))

in (50), that is,

Ah((uh, ph), (0, Ih(hT (∇ · uh)))) = bh(Ih(hT (∇ · uh)),uh) + Sh((uh, ph), (0, Ih(hT (∇ · uh)))).
(59)
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By adding and subtracting

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

, the first term of (59) becomes,

bh(Ih(hT (∇ · uh)),uh) =

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

+ (Ih(hT (∇ · uh))− hT (∇ · uh),∇ · uh)

−
∑

E∈EBh

∫
E

(uh · n) Ih(hT (∇ · uh)) ds. (60)

The second term of (60) is estimated as:

(Ih(hT (∇ · uh))− hT (∇ · uh),∇ · uh)

=
∑

a∈Ma

∫
Ma

Ih(hK(∇ · uh))− hK(∇ · uh)(∇ · uh)φa dx

=
∑

a∈Ma

∫
Ma

(Ih(hK(∇ · uh))− hK(∇ · uh))

(
∇ · uh −

1

|Ma|

∫
Ma

∇ · uh dx

)
φa dx

≤

( ∑
a∈Ma

ωβ−1
a ‖Ih(hT (∇ · uh))− hT (∇ · uh)‖2L2(Ma)

) 1
2

[Sh((uh, 0), (uh, 0))]
1
2

≤ 1

6

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

+
C

2
Sh((uh, ph), (uh, qh)).

The constant C in the above estimates depend on ω1/2. In the third term of (60), using
the Cauchy–Schwarz inequality, trace inequality, stability property of projection operator
(10) and Youngs inequality,

∑
E∈EBh

∫
E

(uh · n) Ih(hK(∇ · uh)) ds ≤

 ∑
E∈EBh

∫
E

(uh · n)2 ds

 1
2
 ∑

E∈EBh

∫
E

(Ih(hK(∇ · uh))2 ds

 1
2

≤ 1

6

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

+
C

4
Sh((uh, 0), (uh, 0)).

The last term of (59) is handled by using the Cauchy–Schwarz inequality, boundedness of
the local projection operator, the stability of the projection operator, inverse inequality
and the Young’s inequality,

Sh((uh, ph), (0, Ih(hT (∇ · uh))))

≤ S1/2
h ((uh, ph), (uh, ph))S

1/2
h ((0, Ih(hT (∇ · uh))), (0, Ih(hT (∇ · uh))))

≤ 1

6

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

+
C

4
Sh((uh, ph), (uh, ph)).

Put together, (59) leads to

Ah((uh, ph), (0, Ih(hT (∇ · uh)))) ≥ 1

2

∥∥∥∥h 1
2
T (∇ · uh)

∥∥∥∥2

− C

2
Sh((uh, ph), (uh, ph)).
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The selection of (vh, qh) is

(vh, qh) = (uh, ph) +
1

C + 1
(zh, 0) +

1

C + 1
(0, Ih(hT∇ · uh)).

Here, Ih is the projection operator. Rest of the proof can be derived following similar steps
as in (28)–(29).

4.3. A priori error estimates

Using the |||·||| norm and inf-sup condition described above, we now prove a priori error
estimates for the discrete solution.

Lemma 4.1. Suppose βa = βha for some β > 0. Let (u, p) ∈ [H2(Ω)]2 × L2
0

⋂
H2(Ω).

Then,

|||(u− Ihu, p− Ihp)||| ≤ C
(∥∥∥∥h 3

2
T u

∥∥∥∥
2

+

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
. (61)

Proof. Following a similar argument as in Lemma 3.1, the proof can be derived.

Lemma 4.2. Suppose βa = βha for some β > 0. Let (u, p) ∈ [H2(Ω)]2 × L2
0

⋂
H2(Ω) and

for all (vh, qh) ∈ Vh ×Qh. Then,

Ah((u− Ihu, p− Ihp), (vh, qh)) ≤ C
(∥∥∥∥h 3

2
T u

∥∥∥∥
2

+

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
|||(vh, qh)||| . (62)

Proof. Consider the bilinear form in (50):

Ah((u− Ihu, p− Ihp), (vh, qh)) = ah(u− Ihu,vh)− bh(p− Ihp,vh) + bh(u− Ihu, qh)

+ Sh((u− Ihu, p− Ihp), (vh, qh)).
(63)

Applying the Cauchy–Schwarz inequality and L2-projection property (7),

ah(u− Ihu,vh) ≤
∥∥∥ω− 1

2 (u− Ihu)
∥∥∥∥∥∥ω− 1

2 vh

∥∥∥ ≤ C ∥∥h2
T u
∥∥

2
|||(vh, qh)||| .

Note that the constant C in the above estimates depends on ω−1/2. Consider the second
term of bilinear form (63):

bh(p− Ihp,vh) = (p− Ihp,∇ · vh)−
∑

E∈EBh

∫
E

(vh · n) (p− Ihp) ds. (64)

Using the Cauchy–Schwarz inequality and L2-projection property in the first term of (64),

(p− Ihp,∇ · vh) ≤ ‖p− Ihp‖ ‖∇ · vh‖ ≤
∥∥∥∥h 3

2
T p

∥∥∥∥
2

∥∥∥∥h 1
2
T (∇ · vh)

∥∥∥∥ ≤ ∥∥∥∥h 3
2
T p

∥∥∥∥
2

|||(vh, qh)||| .
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The second term of (64) is handled by using the Cauchy–Schwarz inequality and trace
inequality over edges,

∑
E∈EBh

∫
E

(vh · n) (p− Ihp) ds ≤

 ∑
E∈EBh

‖vh · n‖2L2(E)

 1
2
 ∑

E∈EBh

‖p− Ihp‖2L2(E)

 1
2

≤
∥∥∥∥h 3

2
T p

∥∥∥∥
2

|||(vh, qh)||| .

Applying an integration by parts in the next term of the bilinear form (63),

bh(u−Ihu, qh)

= (qh,∇ · (u− Ihu))−
∑

E∈EBh

∫
E

((u− Ihu) · n) qh ds

= −(∇qh,u− Ihu) +
∑

E∈EBh

∫
E

((u− Ihu) · n) qh ds−
∑

E∈EBh

∫
E

((u− Ihu) · n)qh ds.

(65)

Applying a similar technique as in (24), the first term of (65) is estimated as:

(∇qh,u− Ihu) =
∑
a∈Vh

∫
Ma

(u− Ihu)

(
∇qh −

1

|Ma|

∫
Ma

∇qh dx

)
φa dx

≤

∑
a∈Vh

∫
Ma

ω−1β−1
a (u− Ihu)2 dx

 1
2
∑

a∈Vh

∫
Ma

ωβaκ
2
a(∇qh) dx

 1
2

≤ C
∥∥∥∥h 3

2
T u

∥∥∥∥
2

|||(vh, qh)||| ,

the constant C in the above estimates depends on ω−1/2. The last term is estimated in a
similar way as in (31),

Sh ((u− Ihu, p− Ihp), (vh, qh)) ≤ C
(
C1

∥∥∥∥h 3
2
T u

∥∥∥∥
2

+ C2

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
|||(vh, qh)||| .

The constants C1 and C2 in the above estimates depend on ω−1/2 and ω1/2, respectively.
The combination of the above estimates concludes the claim.

Lemma 4.3. Suppose (u, p) ∈ [H2(Ω)]2 × L2
0(Ω) ∩ H2(Ω) and (uh, ph) ∈ Wh are the solu-

tions to (48) and (49) respectively. For any (vh, qh) ∈ Wh. Then,

Ah((u− uh, p− ph), (vh, qh)) ≤ C
(∥∥∥∥h 3

2
T u

∥∥∥∥
2

+

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
|||(vh, qh)||| . (66)

Proof. Following a similar argument as in Lemma 3.3, the proof can be derived.

Theorem 4.2. Suppose (u, p) ∈ [H2(Ω)]2×L2
0

⋂
H2(Ω) and (uh, ph) ∈ Wh are the solutions

to (48) and (49) respectively. Let βa = βha for some β > 0. Then it holds that,

|||(u− uh, p− ph)||| ≤ C
(∥∥∥∥h 3

2
T u

∥∥∥∥
2

+

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
. (67)
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Proof. Identical to the proof of Theorem 3.2.

Corollary 4.1. Suppose (u, p) ∈ [H2(Ω)]2 × L2
0

⋂
H2(Ω) and (uh, ph) ∈ Wh are the solu-

tions to (48) and (49) respectively. Let βa = β for some β > 0. Then it holds that

|||(u− uh, p− ph)||| ≤ C (‖hT u‖2 + ‖hT p‖2) . (68)

We now proceed to derive an L2-error estimates for the pressure in the case of the Darcy
equation. Consider the following dual problem, for a given (φv, φp), find (zv, zp) ∈ W such
that

ah(wv, zv)− bh(wp, zv) + bh(wv, zp) = (φp, wp)Ω, ∀ (wv, wq) ∈ W (69)

and assume that the solution has the additional regularity, i.e., (zv, zp) ∈ [H1(Ω)]2×H2(Ω)
and it holds the estimate

‖zv‖1 + ‖zp‖2 ≤ C ‖φp‖ , (70)

valid if the boundary is sufficiently smooth [10].

Theorem 4.3. Assume that the solution (v, p) of (48) belongs to [H1(Ω)]2 × L2
0

⋂
H2(Ω)

and let (vh, ph) ∈ Wh be the solution of (49). Assume also that βa = βh2
a for some β > 0.

Then,

‖p− ph‖ ≤ C
(∥∥∥∥h 3

2
T v

∥∥∥∥
1

+

∥∥∥∥h 3
2
T p

∥∥∥∥
2

)
.

Proof. Choosing, φp = wp = p− ph,wv = v − vh in (43) gives

‖p− ph‖2Ω = ah(v − vh, zv)− bh(p− ph, zv) + bh(v − vh, zp)

= ah(v − vh, zv − Ihzv) + bh(p− ph, zv − Ihzv)− bh(v − vh, zp − Ihzp)

+ Sv(vh, Ihzv) + Sp(ph, Ihzp)

= (a) + (b) + (c). (71)

Let us now estimate these three terms. Consider the first term of (71). Following similar
arguments as in Lemma 4.2,

(a) ≤ C
(
|||v− vh||| ‖hT zv‖1 + ‖p− ph‖ ‖hT zv‖1 + |||v− vh||| ‖hT zp‖2

)
.

Consider the second term of (71).

(b) ≤ Sv(v, Ihzv)− Sv(v − vh, Ihzv)

The first term of above is handled by using boundedness of the local projection operator,
the stability of the projection estimates and βa = βh2

a, i.e.,

|Sv(v, Ihzv)| ≤

( ∑
a∈Ma

βa ‖κa(∇ · v)‖2L2(Ma)

) 1
2

Sv(Ihzv, Ihzv)1/2

≤ C ‖hT v‖1 Sv(Ihzv, Ihzv)1/2. (72)
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Now,

Sv(Ihzv, Ihzv) : =
∑
a∈Vh

βaω
−1

∫
Ma

κ2
a(∇ · Ihzv) dx +

∑
E∈EBh

∫
E

(Ihzv · n)2 ds

Consider the second term of above∑
E∈EBh

∫
E

(Ihzv · n)2 ds =
∑

E∈EBh

∫
E

((zv − Ihzv) · n)2 ds

≤
∥∥∥∥h 1

2
T zv

∥∥∥∥
1

|Sv(v − vh, Ihzv)| ≤ C |||(v − vh, p− ph)|||
∥∥∥∥h 1

2
T zv

∥∥∥∥
1

.

The last term of (71) is handled by using boundedness of the local projection operator
and the stability of the projection estimates, i.e.,

(c) = Sp(p, Ihzp)− Sp(p− ph, Ihzp), (73)

|Sp(p, Ihzp)| ≤

( ∑
a∈Ma

βa ‖κa∇p‖2L2(Ma)

) 1
2

Sp(Ihzp, Ihzp)
1/2

≤ C ‖hT p‖2 ‖hT zp‖2 .

|Sp(p− ph, Ihzp)| ≤ C |||(v − vh, p− ph)||| ‖hT zp‖2 .

The proof concludes by combining the above estimates with the estimate (68), and the
assumed regularizing behavior (70).

5. Numerical Results

In this section, an array of numerical results is presented to illustrate the derived
theoretical estimates. A hierarchy of uniformly-refined triangular meshes having 16, 64,
256, 1024, and 4096 elements is used in all examples. The initial and uniformly-refined
mesh is shown in Figure 2.
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Figure 2: Triangulations used for computations in section 5
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5.1. Stokes flow problem

Consider the model problem (1) in Ω = (0, 1)2 with a given exact solution

u(x, y) = (− cos(2πx) sin(2πy) + sin(2πy), sin(2πx) cos(2πy)− sin(2πx))

p(x, y) = 2π(cos(2πy)− cos(2πx)).

The stabilization parameters for the discrete variational formulation (12) are chosen as
µa = µh2

a with µ = 1 and ζ = 2. The equal-order interpolation spaces Pc
1/P

c
1 are used

to approximate the velocity and pressure approximation. The GLPS formulation (11)
suppressed the spurious oscillations in the discrete solutions and succeeded in dealing with
the incompatibility of discrete spaces. Figure 3 displays the Pc

1/P
c
1 stabilized solution

for the mesh-size 0.0078. The errors are computed in L2- norm, H1-seminorm, and |||·|||
stabilized norm. The quantitative and qualitative errors and the order of convergence
obtained with Pc

1/P
c
1 finite element approximations are summarized in Table 1, Table 4 ,

and in the last plot of Figure 3. Expected convergence rates, i.e., second-order L2-errors
in velocity and pressure and first-order H1−approximation error in velocity, are obtained.

Table 1: Stokes problem: Errors and convergence orders.

Mesh-size ‖u− uh‖ Order |∇(u− uh)| Order ‖p− ph‖ Order

1/16 0.2015 - 1.9160 - 1.5225 -

1/32 0.0403 2.3207 0.7124 1.4273 0.3187 2.2561

1/64 0.0085 2.2394 0.3204 1.1530 0.0514 2.6330

1/128 0.0021 2.0300 0.1578 1.0215 0.0120 2.0936

Figure 3: GLPS discrete solution (uh, ph) and convergence plot of the Stokes problem.
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5.2. The Darcy flow problem

To demonstrate the robustness of the method, we consider the Darcy flow problem as
the second numerical test example. Consider the model problem (47) in Ω = (0, 1)2 with
a given exact solution:

u(x, y) = (−π sin(2πy) sin2(πx), π sin(2πx) sin2(πy)) and p(x, y) = sin(2πx) sin(2πy),

and the stabilization parameters βa = βha, β = 1. The solution is approximated with
the equal-order interpolation spaces Pc

1/P
c
1 using GLPS finite element formulation (49).

Although the velocity and pressure approximation spaces are not inf-sup stable for the
Darcy problem, the GLP stabilization effectively prevents the spurious oscillations. The
effect of parameters κ and λ on the rates of convergence are also investigated. Figure
4 shows the Pc

1/P
c
1 approximation with GLP stabilized finite element solutions for the

mesh-size 0.0078 with ω = 1. The computed errors with the L2−norm and H1−seminorm
are presented in Tables 2 and 3 with (ω = 1) and (ω = 0.1), respectively, whereas Table 4
presents the errors measured in GLP stabilized norm as defined in (51). We can observe
a second-order convergence in L2-norm, the first-order convergence in H1-seminorm and
O(h3/2) convergence in |||·|||. Also, Figure 5 shows the convergence behaviour of Pc

1/P
c
1

approximation of the Darcy equations with respect to L2-norm, H1-seminorm, and the
GLP stabilized norm with (ω = 1) and (ω = 0.1) respectively. These numerical results
support the estimates derived in the previous section.

Figure 4: Pc
1/P

c
1 GLPS discrete solution (uh, ph) with (ω = 1, β = 1).

Table 2: Darcy problem: Errors and convergence orders with ω = 1.

Mesh-size ‖u− uh‖ Order |∇(u− uh)| Order ‖p− ph‖ Order

1/16 1.7949 - 13.1479 - 0.1040 -

1/32 0.5847 1.6182 5.1579 1.3500 0.0177 2.5549

1/64 0.1395 2.0669 1.8466 1.4819 0.0027 2.7185

1/128 0.0262 2.4128 0.5405 1.7724 0.0005 2.5674

6. Conclusions

A generalized local projection stabilized (GLPS) conforming finite element scheme for
the Stokes and the Darcy flow problems with equal-order interpolation spaces (Pc

1/P
c
1) is

proposed and analyzed in this paper. GLPS allows to use of projection spaces on overlap-
ping sets and avoids the need for a two-level mesh or an enrichment of finite element space.
The partition of the unity of the basis functions together with the L2-orthogonal projection
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Table 3: Darcy problem: Errors and convergence orders with ω = 0.1.

Mesh-size ‖u− uh‖ Order |∇(u− uh)| Order ‖p− ph‖ Order

1/16 0.5232 - 4.7062 - 0.1823 -

1/32 0.1223 2.0971 1.7727 1.4086 0.0576 1.6633

1/64 0.0229 2.4166 0.6214 1.5124 0.0129 2.1593

1/128 0.0037 2.6382 0.2639 1.2354 0.0024 2.4026

Table 4: Error and convergence orders with respect to |||·|||.
Mesh-size h 1/4 1/8 1/16 1/32 1/64 1/128

Darcy flow ω = 1 |||·||| 2.7966 2.6309 1.8345 0.6146 0.1470 0.0363

Order - 0.0881 0.5202 1.5777 2.0639 2.0164

Mesh-size h 1/4 1/8 1/16 1/32 1/64 1/128

Darcy flow ω = 0.1 |||·||| 2.7398 1.8254 0.5594 0.1386 0.0273 0.0048

Order - 0.5859 1.7061 2.0132 2.3420 2.5091

Mesh-size h 1/4 1/8 1/16 1/32 1/64 1/128

Stokes flow |||·||| 6.7100 5.5089 1.6857 0.3463 0.0649 0.0183

Order - 0.2846 1.7084 2.2834 2.4157 1.8299

(a) (b)

Figure 5: Convergence plots of Pnc
1 /Pnc

1 approximations with (a) (ω = 1, β = 1) and (b) (ω = 0.1, β = 1).

properties is used to derive the stability and convergence estimates. Further, a robust a
priori error analysis is presented for both problems. An array of numerical experiments
is presented to support the derived estimates and to demonstrate the proposed scheme’s
efficiency in suppressing oscillations without compromising the order of convergence.
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