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Abstract

Nucleation is the initial step in the formation of crystalline materials from

solutions. Various factors, such as environmental conditions, composition, and

external fields, can influence its outcomes and rates. Indeed, controlling

this rate-determining step toward phase separation is critical, as it can signifi-

cantly impact the resulting material's structure and properties. Atomistic simu-

lations can be exploited to gain insight into nucleation mechanisms—an

aspect difficult to ascertain in experiments—and estimate nucleation rates.

However, the microscopic nature of simulations can influence the phase

behavior of nucleating solutions when compared to macroscale counterparts.

An additional challenge arises from the inadequate timescales accessible to

standard molecular simulations to simulate nucleation directly; this is due to

the inherent rareness of nucleation events, which may be apparent in silico at

even high supersaturations. In recent decades, molecular simulation methods

have emerged to circumvent length- and timescale limitations. However, it is

not always clear which simulation method is most suitable to study crystal

nucleation from solution. This review surveys recent advances in this field,

shedding light on typical nucleation mechanisms and the appropriateness of

various simulation techniques for their study. Our goal is to provide a deeper

understanding of the complexities associated with modeling crystal nucleation

from solution and identify areas for further research. This review targets

researchers across various scientific domains, including materials science,

chemistry, physics and engineering, and aims to foster collaborative efforts to

develop new strategies to understand and control nucleation.

Abbreviations: API, active pharmaceutical ingredient; BF, brute force (MD simulation); CNT, classical nucleation theory; CV, collective variable;
CμMD, constant chemical potential molecular dynamics; FFS, forward flux sampling; HEN, heterogeneous nucleation; HON, homogeneous
nucleation; MD, molecular dynamics; MFPT, mean first-passage time; MLD, modified liquid droplet; PNC, prenucleation clusters; TPS, transition
path sampling; US, umbrella sampling; WTMetaD, well-tempered metadynamics.
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1 | INTRODUCTION: WHY SIMULATE CRYSTAL NUCLEATION FROM
SOLUTION?

Crystalline materials are solids composed of microscopic repeating units arranged in a regular, periodic array. At the
smallest scales, the repeat units are formed from just a handful of atomic/molecular “building blocks” arranged with a
well-defined symmetry. Like construction bricks, these building blocks can assemble into a plurality of structures (poly-
morphs), providing materials with different physical and chemical properties. A key characteristic of molecular and
ionic crystalline solids is that their building blocks are held together by non-covalent interactions, resulting in a
decoupling of material chemical properties from their physical and mechanical properties. Additionally, the reversible
self-assembly of these solids can often be carried out under mild conditions in solution. This flexibility facilitates endless
possibilities towards material design with applications in, for example, construction, pharmaceutical manufacturing,
separations, catalysis, and organic electronics. For instance, most active pharmaceutical ingredients (APIs) are formu-
lated as crystalline solids.1–3

A significant focus of the computational design of crystalline materials is dedicated to predicting a rigorous
thermodynamic stability ranking among all possible bulk phases that may result from crystallization. To this aim,
increasingly sophisticated approaches have emerged in recent years, including accurate dispersion models in elec-
tronic structure calculations4 and the introduction of quantum effects5 to calculate lattice energies, the application
of machine learning methods to accurately estimate the thermodynamic stability of crystal polymorphs6, and the
development of novel approaches for the calculation of relative lattice free energies.7–12 Establishing the relative
stability of crystal polymorphs using computational calculations is extremely valuable in identifying those that are
thermodynamically plausible. This has proven particularly useful for the development of APIs, and is finding
increasing applications outside academia.13–19 These methods, however, fail to capture the role played by compo-
nents in a preceding crystal-forming fluid phase in directing phase separation toward a specific outcome. In the
case of crystallization from solution, the parent liquid often has a composition radically different from the crystal
itself, where solvent and other solution additives are often excluded. Even in the simplest example of a single-
component molecular crystal emerging from a two-component solution—comprising the solute building blocks
and solvent—varying the solute concentration can change the mechanism, rate and polymorphic outcome of pre-
cipitation. Computational material discovery/prediction methods based solely on thermodynamic assumptions,
therefore, cannot identify how, or even if a thermodynamically favorable polymorph can be obtained by crystalli-
zation from solution.

The key to understanding why thermodynamics alone cannot determine crystallization outcomes is related
to the fact that crystallization from an out-of-equilibrium solution is dominated by kinetic factors that are
sensitive to changes in the reaction environment.20–24 Both of the mechanistic steps necessary for crystalliza-
tion to occur in metastable solutions—namely, the formation of a crystal embryo (nucleation) and its subse-
quent growth into a bulk phase—are determined by the dynamics and frequency of transfer of building
blocks from the solution to the crystal. As such, the choice of solvent, temperature and solute concentration,
in particular, can change the polymorphic outcome of precipitation.25–27 Because the dynamics of the building
blocks assembly discussed above are so important, molecular dynamics (MD) is typically the simulation tool
of choice to investigate the crystallization of molecular and ionic solids in silico. Through the lens of statisti-
cal mechanics, MD simulations unlock both thermodynamic and kinetic information by tracing the motion of
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up to 109 atoms over simulation times ranging from 10�9 to 10�6 s. Nevertheless, understanding and predicting how
crystals with well-defined composition, structure and properties assemble from a supersaturated solution remains a for-
midable task using molecular simulations. The small time scales probed by MD simulations are generally inadequate to
study the complex microscopic steps involved in crystal nucleation and growth. As we highlight below, however,
advanced sampling schemes and theoretical treatments are often invoked to circumvent these limitations. In doing so,
MD simulations can help to determine crystal nucleation and growth rates, polymorphism, crystal habit and defect den-
sity as a function of solution composition, temperature and the presence of additive/impurities and external forces.
Indeed, a wealth of information can be gained by combining complementary computational tools to probe different
crystallization steps from solution, but it is not always apparent which tools are most appropriate for the specific task
at hand.

In this review, we provide an extended summary of the key theoretical and methodological features associated
with atomic-scale modeling and simulation of crystallization triggered by homogeneous nucleation from solution.
In particular, we focus on the key differences and complementarities between simulation methods implying that
nucleation follows a classical mechanism and methods that enable us to ask questions about the mechanism
itself. In this process, we contrast simulation methods based on theoretical prior knowledge of nucleation mecha-
nisms (e.g., seeding) with rare events simulation methods based on the introduction of a bias potential
(e.g., metadynamics) and methods based on sampling nucleation trajectories in path space (e.g., forward flux
sampling). This review focuses on methods to simulate crystal nucleation, and we also note that significant pro-
gress was made in recent years to simulate crystal growth from solution by combining MD simulations, Kinetic
Monte Carlo, and enhanced sampling.28–31

Our review complements an overview of the literature provided by Agarwal et al.,32 which delves into the the-
oretical background of rate theories applied to nucleation problems, as well as the review by Sosso et al.33 that
provides a wider appraisal of simulation methods to investigate crystal nucleation from liquids, without a specific
focus on crystal precipitation from solution. We believe solutions deserve particular attention because, even if
crystallization from multicomponent liquids is extremely common, it presents peculiar challenges associated with
the fact that the product phase is usually characterized by a different composition than the parent phase and that
the driving force for the process depends on solute concentration. After defining the remits of applicability of
atomistic simulations to nucleation problems and highlighting the theoretical basis associated with the main fea-
tures of nucleation processes investigated by molecular simulations, we briefly review the literature describing
the methods to model nucleation from solution with atomistic detail. Finally, we provide a critical comparison of
insights obtained from works that investigate the nucleation of NaCl(s) from aqueous solutions: a problem that
has been tackled using approaches covering the entire spectrum of methods reviewed in this work.

2 | CLASSIFYING NUCLEATION FROM SOLUTION

Before delving into an overview of simulation methods to study crystal nucleation from multicomponent liquids, it is
important to discuss the additional adjectives that qualify the nucleation process in the scientific literature and their
meaning. This is essential to define the applicability domain of molecular simulation methods and to formulate appro-
priate research questions that could emerge when different nucleation processes and mechanistic hypotheses are being
investigated. Figure 1 summarizes the different classes of nucleation discussed below and provides a sequence of con-
siderations in order to determine an appropriate classification.

2.1 | Primary versus secondary nucleation

Primary nucleation is the spontaneous formation of new crystalline particles from a metastable solution phase without
any interplay with pre-existing crystalline particles. This happens due to rare fluctuations in local solute order. Primary
nucleation rates are usually low and can be influenced by factors such as solute concentration and temperature. In con-
trast, secondary nucleation occurs when pre-existing crystals or crystal surfaces (of the same nucleating substance) pro-
mote the formation of new crystals by attracting and attaching crystal growth units. Secondary nucleation is often
much faster than primary nucleation and can be influenced by external factors such as agitation and shear forces that
lead to particle attrition.
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2.2 | Homogeneous versus heterogeneous nucleation

Homogeneous nucleation (HON) occurs in the bulk of a supersaturated solution and can be controlled by changing the
solution environment. As well as temperature and pressure control, solution additives may affect the nucleation behav-
ior. While the rates for HON can be predicted using a suitable theory/model, the location where nucleation occurs can-
not be determined a priori. HON requires specific conditions for it to occur and is much less prevalent in nature than
heterogeneous nucleation (HEN). In HEN, crystal nucleation is facilitated by interfaces—usually a solid submerged in
the solution phase. Surfaces can act as nucleants to direct the site-specific crystallization of particular crystal poly-
morphs or, more generally, enhance the rates for crystallization. The direct simulation of heterogeneous nucleation is a
daunting task, as, in general, information on the local structure of the surfaces promoting nucleation is not available.
Hence, while the methods discussed in this review are, in principle, applicable to the study of heterogeneous nucle-
ation, as shown by the recent works on heterogeneous ice nucleation,35–39 examples of their application to HEN from
solution are currently lacking. As such, in Figure 1, we report HEN as being on the edge of the applicability domain for
molecular simulations of nucleation from solution.

2.3 | Single-step versus multi-step nucleation

Single-step nucleation refers to the direct formation of crystals from their primary building blocks in solution via a sin-
gle energy barrier in the free energy landscape, giving rise to an induction time associated with a single bottleneck
toward crystallization. In contrast, multi-step nucleation encompasses a variety of crystallization pathways, which can
involve the formation of intermediate precipitate phases, such as liquids, amorphous solids or other crystalline phases.
The pathway to the most stable crystal form from solutions may involve multiple intermediates occurring in sequence
reproducibly. If the relative stability of the intermediates increases with each step, this type of mechanism is consistent
with the Ostwald–Lussac empirical rule of stages.40,41

FIGURE 1 To gain insight into nucleation mechanisms and evaluate rates, an appropriate simulation method must be chosen to

investigate the system at hand. This flow diagram identifies where theory-based simulation methods (based on CNT and its extensions) are most

suitable. In particular, we highlight that secondary nucleation typically involves interactions of crystalline particles with the fluid at a scale

inaccessible to molecular simulations and, with some notable exceptions,34 it is typically outside the scope of atomistic simulation studies.

Heterogeneous nucleation is only partly included in the applicability domain as, while most methods discussed in this review can in principle

be employed to study nucleation at solid/liquid (S/L) interfaces, appropriate examples exist only for crystal nucleation from the melt.33
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We specify that intermediates must be demonstrably involved in the formation of crystals to classify crystallization
as multi-step. The mere presence of intermediate structures before or even during crystallization does not exclude the
possibility that single-step crystal nucleation occurs (e.g., by a dissolution/re-precipitation reaction).

An archetypal example of multi-step nucleation is two-step nucleation, widely described as a process where crystalline
order emerges in dense liquid precursors that form during the first phase transformation in solution.42,43 Figure 2b shows
how a two-step pathway deviates from a single-step (one-step) pathway on a two-dimensional reaction coordinate defining
cluster size and order. It is assumed that the rate determining step along a two-step pathway is the emergence of order
within dense liquid domains (see the snapshot in Figure 2b), which form readily when the supersaturation of the parent
phase is sufficiently high. In this case, there are often two bottlenecks to crystallization44–46; however, it may be that a sin-
gle energy barrier is involved in the formation of crystals from solution and that under certain conditions, traversing the
lowest energy pathway leads to amorphous solute cluster intermediates.47–49 In other words, multi-step nucleation does
not necessarily refer to a cascade of single-step nucleation events.

The process of nucleation in complex solutions may be dependent upon chemical reactions and changes in species
stoichiometry occurring locally. Several studies50–52 have attributed the multi-step nature of nucleation to these factors.
Simulating reactive crystallization events is often beyond the scope of classical molecular simulations using semi-
empirical, non-reactive force fields. As such, this review focuses on simulating nucleation from building blocks which
are already present in the parent solution phase. These examples, however, highlight the importance of simulation
practitioner's understanding of the chemical speciation and valency of molecular and ionic species involved in crystal
formation.

2.4 | Classical versus nonclassical nucleation

In Section 3.1, we briefly describe classical nucleation theory (CNT), the thermodynamic and kinetic framework
for classical nucleation. For the purposes of classifying nucleation pathways, we stress that classical nucleation is a

FIGURE 2 (a) The finite size effects of closed simulations manifest in a free energy minimum for the stable thermodynamic phase

resulting from nucleation. This is different to the macroscopic case due to a bounded partition function and a depletion of crystal building

blocks that transfer from the parent phase to the nucleating phase. (b) Crystal nucleation pathways from solution to crystal represented on a

two-dimensional reaction coordinate characterizing cluster density and order. The diagonal marks the case for the concomitant increase in

solute cluster order with density, indicative of the capillary approximation adopted in CNT. Pathways that deviate from this limiting case

include two-step nucleation, where, for example, crystalline order is established in the core of liquid-like precursors, as shown on the right of

B. In the case of NaCl nucleation (discussed below), simulations demonstrate a transition from one-step to two-step crystal nucleation that

occurs when the supersaturation ratio, S¼ exp Δμℓ!xtal=kBTð Þ, is increased far into the metastable zone for phase separation.
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single-step process that takes place through the attachment of monomers from solution to a cluster with an internal
structure matching the bulk crystal. Within the capillary approximation, the surface tension of the clusters of a new
phase is independent of cluster size and also matches the bulk; we should expect a sharp solid–solution interface and
the same crystal faceting observed at equilibrium and ignore any curvature effects on the surface tension for small clus-
ters.53 In terms of kinetics, we assume an abundance of monomers in the solution phase and that the out-
of-equilibrium growth of nuclei occurs at a steady state.

It is highly unlikely that any single-step, homogeneous crystal nucleation occurs according to the above mechanism.
The capillary approximation is particularly problematic for crystal nucleation because the smallest clusters are unlikely
to display an interface structure with surface tension that matches highly faceted bulk crystals with infinitely large pla-
nar surfaces. Furthermore, it may not be the case that the density and structure in the emerging crystal are homoge-
neous throughout. The CNT framework also fails to account for the role that growth units beyond monomers might
play in the formation of crystal nuclei.

Some of the effects described above can be accounted for in frameworks which we label as extended classical nucle-
ation. For example, models that depart from CNT include a surface tension term that is dependent on the cluster
size.54–56 Other theoretical and simulation studies have identified that the structure, particularly the density, of the
smallest nuclei differs from the bulk and stated that this should be accounted for in extensions of CNT.57 Formulations
based on classical density functional theory provide corrections to the CNT nucleation rate derived from the excess sys-
tem free energy that accounts for varying cluster density.58

Given the description of two-step nucleation above, it may be perceived that this type of phase separation mecha-
nism is inconsistent with classical nucleation. However, theoretical studies have demonstrated that two-step nucleation
can be described using classical concepts adopting a composite cluster model.48,59 Changes to the relative supersatura-
tion of the system with respect to a dense liquid and crystal phase lead to changes in the pathways to crystals from solu-
tions48: a common observation in experimental studies. Some nucleation theories predict mechanisms that are clearly
different from those described by CNT and its extensions and are thus termed nonclassical. Because this classification
encompasses a large family of different nucleation frameworks, it is usually not a useful or informative description.
A comprehensive review of nonclassical nucleation is beyond the scope of this review, and we refer the reader to per-
spectives and reviews on the topic.60–64

A paradigmatic example of nonclassical nucleation worth mentioning is the prenucleation cluster pathway. The
prenucleation cluster (PNC) pathway was first proposed for CaCO3

65 but has since been attributed to phase separation
in a diverse range of systems.66 The PNC pathway suggests that the parent solution phase is comprised of hydrated sol-
ute clusters in pseudo-equilibrium with solvated monomers. The population of PNC sizes is determined by the equilib-
rium constant (K) for the reaction monomerð Þx ⇌

þmonomer

�monomer
monomerð Þxþ1, which is assumed to be constant and

independent of the value of x. PNCs are highly dynamic, evolving their structure and topology over very short time-
scales (typically picoseconds).67 The nucleation step in the PNC pathway involves changes to the order and dynamics of
monomers within PNC assemblies that renders them a new thermodynamic phase and gives rise to an interface with
the solution.68 This rate-determining step typically produces a dense liquid phase that contains a large amount of sol-
vent. Subsequent transformations of this liquid are necessary to produce crystals, which may include the further dehy-
dration of dense liquids to form amorphous solid-like phases.

3 | DYNAMIC SIMULATIONS OF CRYSTALLIZATION FROM SOLUTION:
TIME- AND LENGTH-SCALE CHALLENGES

Obtaining information on molecular-scale crystallization events, particularly nucleation, requires a high degree of time
and space resolution. This poses significant challenges for in situ experiments, often leading to only speculative inter-
pretations of molecular mechanisms. In contrast, modeling techniques based on MD simulations inherently provide
insight into the time evolution of systems with atomistic detail,69 making them a powerful tool for understanding com-
plex processes such as nucleation. However, the small system sizes and limited simulations times available to the simu-
lator mean that advanced simulation methods must often be used to simulate nucleation.

In MD, Newton's equations of motion are adopted to evolve atom positions in time.70 Here, chemical bonds are typi-
cally approximated as classical “springs” whose displacement from an equilibrium bond distance is modeled using
Hooke's law. Similar simple functions can be used to approximate bond and dihedral angle rotation to capture the
forces associated with intramolecular degrees of freedom. Intermolecular interactions can be approximated using
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simple, classical interpretations of Van der Waals forces and Coulombic forces for point-charged atoms. Importantly,
all molecular species are assumed to be in their electronic ground state. As such, MD adopting classical, semi-empirical
force fields are not well-suited to simulate chemical reactions and dynamical changes to chemical speciation, though
reactive force fields71 and the advent of machine learning methods to force field design72,73 make this a possibility. Par-
ticularly in the case of ionic systems, polarizability can be simulated using a relatively cheap treatment of charge dis-
placement from atomic nuclei, for example, using springs. By assigning a velocity (sampled from a Maxwell–Boltzmann
distribution at a defined temperature) to atoms at the beginning of a simulation, the Hamiltonian dynamics of the sys-
tem can be propagated according to a fixed temperature and the force field.70,74 This time integration is performed itera-
tively using a small time step, typically on the order of 1 fs, to capture the fastest atomic displacements in the system,
usually molecular bond vibration.

The choice of force field can have important consequences for simulation observations. In terms of simulating crys-
tallization, the force field should reproduce the structure, density and stability of the crystal phase as a minimum
requirement. Furthermore, the solubility of the crystal phase should be reasonably close to that determined experimen-
tally if a comparison to experiments is intended. The properties of the solution should also be modeled accurately. For
example, the free energy of solvation of solutes, their activity in solution as a function of concentration and their mobil-
ities in the solvent are all important properties necessary to accurately capture the thermodynamics and kinetics of crys-
tal nucleation.

Assuming a suitable force field is available (see Section 6), simulating crystallization from multicomponent liquids
using MD typically requires addressing two main system-specific limitations: timescale and finite size effects. Despite
the high space and time resolution capability of MD, which makes it suitable for understanding molecular-scale pro-
cesses, crystal nucleation in microscopic MD volumes can be very slow to realize. Therefore, many novel simulation
methods have been developed to efficiently overcome one or both of these limitations to modeling crystallization.

3.1 | Timescale limitations

Simulating crystallization using MD, especially crystal nucleation, presents a significant challenge due to the infre-
quency of many of the atomic and molecular scale elementary steps required for these processes to occur. For
instance, depending upon the thermodynamic state of the parent phase, crystal nucleation can occur on time scales
typically orders of magnitude larger than those accessible to brute-force simulations.75,76 The separation of these
timescales has made stimulating crystallization an ideal playground for the development of enhanced sampling
methods based on MD. Thanks to enhanced sampling, significant early progress was made to analyze the early
stages of crystallization in simple systems of uniform particles47,77–80 and toward the in-depth investigation of nucle-
ation in monocomponent molecular systems, such as pure water.81 In recent years, an evolution toward systems
with increased complexity and practical relevance has begun, enabling for example, the study of solute precipitate
nucleation. These tend to focus on model systems,32,82,83 such as two-component Potts-lattice models, or inorganic
systems such as NaCl(aq).33,84–89 Attempts to simulate organic solids nucleating from solution have been successful
in highlighting the structural features of early-stage crystallization precursors90,91 and to extract qualitative informa-
tion on nucleation mechanisms.92,93

3.1.1 | Origin of the timescale separation in nucleation: Nucleation free energy barriers and CNT

CNT provides a quasi-mechanistic description of the nucleation process, connecting crystallization equilibrium thermo-
dynamics and nucleation kinetics.53 CNT foundations were laid down by Gibbs 150 years ago to describe the formation
of liquid droplets from saturated vapors, and the theory was developed over the following century, now often being
invoked to explain the emergence of ordered materials from liquids. In CNT, there are two contributions to the free
energy of a metastable system: a volume and a surface free energy both associated with the new, emerging phase
embedded in an out-of-equilibrium parent phase. Forming a stable phase is thermodynamically favorable, but the
resulting interface, which delimits the new phase from the parent one, carries an energy penalty. While the free energy
gain associated with the formation of a stable phase scales linearly with the volume of a nucleus, the free energy cost of
forming an interface scales with its surface area. This simple but general argument provides a rationale for the barrier
to nucleation and a definition for the transition state associated with the nucleation process.27,94
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The size of the nucleus was originally described using a linear descriptor, that is, its radius r. However, the number
of constituent monomers belonging to the nucleus, n, provides a variable which makes fewer assumptions about the
nucleus shape. In this context, the volume and surface free energy contributions lead to the following expression for
the nucleation free energy:

F nð Þ¼�nΔμℓ!xtalþσ
0
n2=3, ð1Þ

where Δμℓ!xtal ¼ μℓ�μxtal is the difference in chemical potential between the metastable liquid and the stable crystal
phase and is strictly positive in conditions where nucleation is thermodynamically favorable and the system is supersat-
urated. The surface term scales as n2=3, where σ

0
is the product of a shape factor, area per monomer adsorption site and

the surface tension, σ. A typical free energy profile for nucleation in the CNT framework is shown by the red curve in
Figure 2a.

By solving the derivative of the equation above with respect to n, we find that the free energy barrier associated with
the nucleation process ΔF� is

F n�ð Þ¼ 4σ
03

27Δμ2ℓ!xtal

¼ 1
2
Δμℓ!xtaln

�, ð2Þ

where the critical size of the crystal nucleus is

n� ¼ 2σ
0

3Δμℓ!xtal

� �3

ð3Þ

and CNT provides analytical solutions for the minimum work required to form a crystal nucleus. The addition of mono-
mers to the nucleus beyond n� reduces the free energy of the system.

CNT assumes that a single energy barrier separates the parent liquid from a bulk crystal in equilibrium with a solu-
tion. It also assumes that the surface tension and the shape factor comprising σ

0
are unchanging as a function of n. This

is the so-called capillary approximation that likely fails for the smallest crystals whose shape and faceting are expected
to deviate from that of the bulk crystal.41 Extensions of the theory can be made to account for varying surface
tension.54–56

The crystal embryo growth is assumed to occur by the transfer of monomers from the solution to the crystal.95 This
is justified by considering the probability of finding clusters of size n: p nð Þ/ exp �ΔF nð Þ=kBTð Þ, where kB is
Boltzmann's constant and T is temperature. If ΔF n�ð Þ� kBT and n� is relatively small; it is reasonable to expect the
transfer of growth units from the solution to the crystal to be dominated by solute monomers. The rate, J , of formation
of clusters of size n per unit volume of the solution and per unit time takes an Arrhenius-type form96,97:

J ¼ ρfþZexp
�ΔF�

kBT

� �
; Z¼ 1

n�
ΔF�

3πkBT

� �1
2

, ð4Þ

where ρ is the volume density of solute monomers and fþ is the rate of attachment of monomers to the nucleus. Z is
the Zeldovich factor for homogeneous nucleation, which accounts for the low probability of observing a large popula-
tion of supercritical clusters that progress to bulk crystals (and is determined by the shape of the free energy barrier in
n).53,98 Due to the exponential term in Equation (4), small changes to ΔF n�ð Þ, as determined by Δμℓ!xtal and σ

0
, can

result in orders of magnitude changes to crystal nucleation rates.
Following units for the rate as m�3 s�1, the characteristic time for a single nucleation event scales according to V�1,

the reciprocal volume of the solution. As described above, computational costs limit the total volume (number of atoms)
that can be simulated using standard MD. With this in mind, consider a hypothetical aqueous solution system undergo-
ing relatively fast nucleation with J ¼ 1020 m�3 s�1. In an MD simulation of this solution containing around 105 water
molecules, we can expect the mean simulation time required to observe one nucleation event to be roughly 1 h. This is
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far beyond the capabilities of MD, which typically achieves simulation times up to 10�6 s on a powerful CPU/GPU.
From this example, it is easy to appreciate why enhanced sampling simulations based on MD are often essential to
study phase separation in some solutions.

3.2 | Finite-size dependence of the crystallization driving force

Simulations of crystallization from solution are typically carried out in the canonical or isothermal-isobaric ensembles,
where the total number of atoms/molecules is constant. When dealing with out-of-equilibrium, multicomponent liquid
phases undergoing a phase transition, this constraint introduces a coupling between the number of solute monomers
available to a growing crystal nucleus and the time-dependent crystallization driving force, Δμℓ!xtal.

32,75,92,99,100 Indeed,
nucleation can be completely inhibited in a microscopic, closed system, if the transfer of monomers from the liquid to a
critical cluster of the new phase renders the solution undersaturated.75,92,101 In a dense system, such as a liquid solu-
tion, this coupling cannot be efficiently removed by simulating in the grand canonical ensemble (where the solute is
replenished from an artificial, external reservoir to maintain a constant solution chemical potential), due to a low prob-
ability for insertion of solute in the liquid phase. Instead, molecular simulations using a constant number of molecules
require either the application of theoretical corrections to account for the change in Δμℓ!xtal or the development of spe-
cialized methods to mimic open boundary conditions,102–106 unless sufficiently large systems can be simulated to mini-
mize the finite-size effects.

3.2.1 | Nucleation free energy in small systems

A rationale for the effect of system size on the phase behavior of metastable liquids is gained by developing a model for
crystal nucleation in confined volumes analogous to the modified liquid droplet (MLD) model developed by Reguera
et al.99,107 to describe depletion effects on the thermodynamics of nucleation of liquid droplets86,92 Consider a two-com-
ponent supersaturated solution, ℓ. The chemical potential of solute i in solution can be written as,

μℓ ¼ μ0þkBT lnai ≈ μ0þkBT lnxi, ð5Þ

where μ0 is a reference chemical potential and ai is the activity of i, which is approximately equal to the mole fraction,
xi, assuming close-to ideal solution behavior. When a crystal forms, the chemical potential of this phase equals the
chemical potential of the solution at equilibrium, such that,

μxtal ¼ μ0þkBT lnai,� ≈ μ0þkBT lnxi,� ð6Þ

and asterisks indicate the activity and mole fraction of the solute under coexistence conditions.
The transfer of monomers from the solution to the crystal during nucleation depletes the surrounding solution.

However, this effect is negligible in a macroscopic system, as the abundance of monomers in the bulk liquid quickly
replenishes the solution surrounding the nucleus (assuming that crystallization is not diffusion limited). In a simula-
tion, however, where the total number of monomers is fixed (N), the depletion changes the driving force for crystalliza-
tion and must be accounted for in an additional term to Equation (1):

ΔF nð Þ¼N μℓ nð Þ�μℓ n¼ 0ð Þð Þ�n μℓ nð Þ�μxtalð Þþσ
0
n2=3: ð7Þ

Depending on the volume of the simulated system, and the supersaturation of the mother phase, the deviation
between a macroscopic and a finite-size nucleation free energy profile can be responsible for significant changes to the
outcome of nucleation simulations. In supersaturated solutions, confinement leads to a minimum in the free energy
profile shown in Figure 2a, the depth of which is determined by the initial concentration and number of monomers in
solution. Furthermore, the height and position of the barrier is perturbed compared to the macroscopic case. If associa-
tion of monomers leads to the solution becoming undersaturated below the critical size of the nucleus in the macro-
scopic limit, then nucleation can be inhibited altogether.

FINNEY and SALVALAGLIO 9 of 30
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One could take advantage of the limitations imposed by finite size by performing simulations initiated at different
N and V and analyzing the steady-state properties of the system obtained from simulations to evaluate ΔF nð Þ. For
example, Li et al.108 performed a series of unbiased MD simulations where they varied the concentration and total num-
ber of coarse-grained, intrinsically disordered peptides in a continuum solvent. Starting from a homogeneous phase,
spontaneous separation occurred when simulations were sufficiently large and concentrated, resulting in dense liquid
peptide droplets in equilibrium with lean solutions. Fitting the steady-state simulation data to a model analogous to
Equation (7) allowed the authors to evaluate xi,�, σ and n� over a range of saturation levels and identify the conditions
where nucleation is completely inhibited by the system size.92,93

Practically, computational challenges mean this approach has yet to find applications to study crystal nucleation.
This is because the spontaneous decomposition of a highly supersaturated solution is unlikely to lead to crystals due to
the slow decay times for monomer relaxation to a lattice structure in a dense amorphous precipitate. Even if sampling
this monomer ordering were feasible over MD timescales, many more crystal geometries could result from a rapid crys-
tallization step, making precise estimates of σ difficult. Based on the local density, alternative formulations of CNT have
also been constructed,109 and the finite size effects can be included here to account for the changing thermodynamic
driving force.101

3.2.2 | Simulating condensed matter systems with pseudo-open boundaries

A limited number of strategies have been developed to avoid the effects of solute depletion that shift the thermodynamic
driving force for steady-state crystallization in simulations. The constant chemical potential MD method (CμMD)102,104,110

employs a closed system that is segregated into a transition region (TR), housing the process of interest; a control region
(CR), representing a bulk fluid with fixed composition; and an internal reservoir that supplies the CR with solute mono-
mers as they are removed from the liquid phase toward the growing crystal in the TR. In doing so, steady-state crystal
growth is maintained for relatively long simulation times, as was shown in the case of, for example, urea,102 isoniazid111

and naphthalene,112 which demonstrate crystal facet and solvent dependent growth rates. In addition, crystal nucle-
ation can be studied using a spherical variant of CμMD that was applied to simulate NaCl crystallization.104

Combining multiple, carefully prepared closed system simulations (representing steps on a nucleation reaction coor-
dinate) to maintain the solution concentration as solute molecules are transferred to a crystal nucleus, out-
of-equilibrium sampling in the so-called Osmotic ensemble can be performed to avoid solute depletion effects.105 This
was successfully applied to understand the nucleation and polymorph selection of sulfamerazine.106 Unlike CμMD, the
reaction coordinate for crystallization must be known a priori here to set up the initial configurations, and dynamical
information cannot be obtained using this approach.

Another promising simulation strategy to avoid solute depletion is the adaptive resolution scheme.113 Here, a closed
system contains a high-resolution region of interest coupled to a low-resolution, coarse-grained representation of sol-
ute/solvent. In the case of nucleation, for example, the crystal nucleus and its immediate environment can be modeled
with atomic detail. As the nucleus grows, a smooth transformation of the model for solute and solvent molecules occurs
by extending the region of the system modeled with high resolution. There are no known examples of applying such
approaches to study crystallization. Both the coarse-grained model and the method by which the molecule representa-
tions are transformed must be prepared/performed carefully to ensure the properties of the system are maintained.

4 | MODELING APPROACHES TO SIMULATE NUCLEATION FROM
SOLUTION

As highlighted in Sections 2 and 3, modeling nucleation from solution introduces unique theoretical and practical chal-
lenges. As such, a range of different approaches have been applied to this problem, populating a variety of methods that
span epistemic interpretations of the role of simulations. On the one hand, there is the application of molecular simula-
tion methods to estimate physical parameters appearing within independently established theoretical frameworks. On
the other hand, molecular simulations can be utilized as computational experiments, yielding a direct observation of
the fundamental steps underpinning crystal nucleation from solution. These types of simulations contribute to the
assessment of existing theoretical frameworks and, if necessary, to the development of new ones. The space between
these two simulation extremes is populated by a plethora of different approaches that vary not just in their technical
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implementation but also in the degree to which they rely on reference theoretical frameworks to yield estimates of
nucleation kinetics and mechanisms. In Figure 3, we provide a graphical representation of a variety of such methods in
relation to their reliance on CNT and its underpinning assumptions. At one extreme, if computational resources were
abundant, then one could perform many, large-scale MD simulations for sufficiently long enough times to observe crys-
tal nucleation and growth, and, following validation of an appropriate reaction coordinate, extract kinetics for nucle-
ation using Poisson statistics (see right of Figure 3). This approach requires no a priori assessment of the mechanism
and rate equation for nucleation. Unfortunately, the computational cost here means that it is unlikely to succeed for
most cases. At the other extreme, if one assumes a mechanism following CNT, equilibrium MD simulations or experi-
mental data can be leveraged to plug into the theory master equation (see left of Figure 3). This approach can be very
cheap; however, estimates of crystallization rates here are likely to be erroneous (given the shortcomings of CNT and
observations from experiments discussed in Section 2) and no insight into the mechanism is gained, as well as this
approach being largely unsatisfying for the simulator. The simulation methods we discuss below fall between these
extremes and were either developed to simulate nucleation directly or to simulate rare events more generally.

A somewhat arbitrary classification of nucleation from solution guides the structure of the core sections in our
review. In the following, we summarize the basics of different simulation approaches by grouping them into two main
categories: theory-based (Section 4.1.1) and exploration (Section 4.2) simulation methods. The latter rely on the vast lit-
erature covering rare event sampling methods. We report on both biased and unbiased simulation methods, prioritizing
those that have been applied to study crystal nucleation from multicomponent solutions. Finally, we propose a global
overview of the type of insight available from nucleation simulations by reporting results that have accumulated in the
last decade on the homogeneous nucleation of NaCl in an aqueous solution. For this system, we have examples of
many, if not all, possible implementations of nucleation simulation strategies. This unicum in the literature provides an
opportunity to compare different approaches and, at the same time, offers an overview of the field. Numerous studies of
NaCl crystal nucleation using different simulation methods facilitate an assessment of the suitability of these
approaches to investigate crystal nucleation in silico more generally.

FIGURE 3 A variety of molecular simulation techniques that can be applied to study nucleation from solution ranges from completely

theory-based (left side) to exploration-driven computational experiments (right side). The insight available and its associated computational

cost vary significantly across this range of methods, highlighting how an a-priori formulation of the research question to be addressed by

simulation is essential to guide the selection of an appropriate simulation method.
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4.1 | Informing theory with molecular simulations

4.1.1 | The seeding method

In the seeding method, popularized by the Espinosa, Vega, Valeriani, Sanz,114,115 Quigley,83 and Peters89,116 groups,
molecular dynamics simulations are used to inform nucleation rate expressions based on CNT. By construction, the
seeding method relies on the a priori acceptance of a quasi-classical nucleation pathway and, within this context,
enables the calculation of nucleation rates. Importantly, as extensively discussed by Zimmerman et al.,116 the seeding
method is applicable when the size of the nucleus is the reaction coordinate for nucleation, and the capillary approxi-
mation can be safely applied (see Section 2). Because analysis of seeded simulations is based on CNT, the approach is
only applicable to systems that nucleate classically (see Figure 1).

The key expression in the seeding method is the CNT nucleation rate, that is Equation (4). In this expression, CNT
is used to obtain estimates of both the free energy barrier ΔF� appearing in the exponent and the prefactor ρfþZ, where
ρ is the density of growth units in solution, fþ is the attachment frequency, and Z the Zeldovich factor, expressed as a
function of the crystallization driving force, as shown in Equation (4).114–116

To solve the rate equations, the parameters that should be estimated at a given T are the solute density ρ, the ther-
modynamic driving force Δμℓ!xtal, the critical nucleus size n� and the attachment frequency fþ. The seeding method
leverages unbiased MD simulations to estimate n� and fþ by averaging the dynamics of growth or dissolution of nuclei
that are prepared with initial size n0 and equilibrated in a solution with composition ρ and temperature T. The rate is
then evaluated according to an estimate of Δμℓ!xtal, which has to be independently obtained at the composition of
interest. Along with others discussed below, the method has only been applied to study nucleation from homogeneous
solutions thus far. As well as requiring a supply of sufficient monomers to a post-critical seed, the initial seed configura-
tion should be mechanically relaxed which is more challenging in the presence of surfaces. Algorithmic frameworks
were designed to combat this latter challenge in simulations of ice nucleation and these tools may also prove useful to
study nucleation from solutions.117

The critical nucleus size n�, for a specific value of ρ and T is obtained by performing ensembles of simulations vary-
ing n0 and, by computing for each ensemble of trajectories initialized at the same n0, the ensemble average of the initial
drift velocity _n 0ð Þh in0 . The initial size n0 associated with _n 0ð Þh in0 ¼ 0 is by definition the critical nucleus size n�. As
such, seeding simulations can be performed using any MD engine that can handle the force field. Typically, for a sol-
ute concentration, one performs at least five simulations at different values of n0 (where each seed is carefully relaxed
in the solution), each of which involves running a handful of independent simulations to obtain the mean trajectory
that indicates the relative stability of the cluster. Seeding methods can, therefore, be relatively cheap and easy to per-
form in systems where the attachment of monomers from the solution to crystal occurs readily over simulation
timescales.

The attachment frequency fþ can be obtained by considering that the dynamics of the nuclei obey the overdamped
Langevin dynamics; Zimmerman et al.86,116 have shown that the attachment frequency is limited by the desolvation
process. Under this condition fþ ¼ fþdes:

fþdes ¼ 4πksσsρ, ð8Þ

where ks is a second-order rate constant and σs is the surface concentration of attachment sites. A more simulation-
driven approach to estimate the attachment frequency is instead proposed by Auer and Frenkel, as discussed by
Espinosa et al.118:

fþAF ¼
n tð Þ�n 0ð Þð Þ2� �

2t
: ð9Þ

These two approaches have been shown to lead to the same order-of-magnitude estimates of the attachment frequency
fþ for NaCl nucleation from aqueous solution,115 a case study that will be further explored and discussed in Section 5.
A thorough discussion on the estimate of the attachment frequency is reported in Lifanov et al.83

It should be noted that, in the literature, we can find examples of applications where seeding-inspired approaches
are used to compute only the prefactor of Equation (4), while enhanced sampling methods are used to independently
compute ΔF�.104
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Notable applications of the seeding method to the investigation of nucleation from solutions include, for example,
the study of the nucleation of methane hydrates,119 and the study of urea nucleation from aqueous solution.120

4.1.2 | Prenucleation species

Many simulation studies seek to gain an understanding of nucleation without directly simulating the process. These
types of simulations are usually the cheapest as the steady-state solution behavior can be achieved readily in standard
MD simulations. Often, though, enhanced sampling techniques (see Section 4.2) are also used to determine the thermo-
dynamic stability of associated species. In complex solutions, simulations have provided information on the species
potentially involved in nucleation; careful analysis of these species and their assembly can aid the classification of
nucleation pathways.49,67,121

Demichelis et al.122 performed metadynamics simulations (described in Section 4.2) to confirm the relative stability of
calcium phosphate complexes as the first associates to form in solution and thought to be directly involved in mineral
nucleation from experiments.123 Simulations have also shed light on structural building units that act as precursors in the
nucleation of metal–organic frameworks124–126 and the complexes that assemble to form inorganic functional materials.

It was hypothesized that the structural motifs of API dimers in solution encode the polymorphic outcomes of crystal
nucleation. As such, MD simulations of organic molecules in solutions have focused on the association of monomer
building blocks to support experimental studies.127–131 In simple 2D models of flexible chiral molecules, Carpenter and
Grünwald132 recently demonstrated how bulk crystal structures are related to the organization of building blocks prior
to nucleation and the importance of kinetics in predicting polymorphism.

Investigating prenucleation species is particularly useful to identify systems that may undergo phase separation fol-
lowing the PNC pathway and other nonclassical crystallization routes. In particular, many studies have considered the
structure and stability of CaCO3 assemblies that emerge in solution and the effects of additives and solution environ-
ment on their properties.67,133–139 These studies have demonstrated that entropy drives the formation of PNCs135 and
questioned the relationship between PNCs and microscopic precursors to dense liquids.136,139 Generally, it was observed
that organic additives stabilize liquid-like assemblies that form prior to crystallization.133,137,138

Predicting the phase behavior in systems that follow the PNC pathway to phase separation requires evaluation of
the equilibrium constant for monomer association, as discussed in Section 2.68 Enhanced sampling simulations, particu-
larly umbrella sampling and metadynamics,134,138,140 have been successfully applied to evaluate these constants, which
corroborate experimental measurements.135 Both biased and unbiased MD simulations were informative in predicting
the structure and dynamic properties of the PNCs and determining the thermodynamic driving forces for their forma-
tion.67,137,139 In this regard, the application of simulations has been critical to understanding and evolving theories for
the PNC pathway.

4.2 | Molecular simulations as computational experiments

As discussed in Section 4.1.1, the seeding method provides information on the nucleation kinetics, implying a nucle-
ation process that closely follows the nucleation pathway postulated in CNT. By construction, seeding methods cannot
answer research questions pertaining to the nucleation mechanism itself. In order to discover and investigate mecha-
nisms deviating from the one postulated in CNT and its extensions, unseeded nucleation simulations are necessary. In
unseeded nucleation simulations, the assembly of crystalline nuclei is explicitly sampled, starting from a solution where
a critical nucleus is absent. As such, the nucleation mechanism is not a priori defined and emerges from the collective
evolution of the system, thus allowing for an open-ended exploration of the nucleation process. This can be useful for
studying systems that exhibit complex behavior involving intermediates along the nucleation pathway or that can yield
different crystal structures upon nucleation.

In order to sample nucleation events in unseeded simulations, enhanced sampling methods are key. Under
conditions of supersaturation of interest for practical applications, spontaneous fluctuations across the nucleation-
free energy barriers are too rare to be observed over timescales accessible with standard MD simulations (see
Section 3.1). Enhanced sampling methods can thus be used to overcome this limitation. Broadly speaking,
enhanced sampling methods used to investigate nucleation from multicomponent liquid phases can be classified
depending on whether they introduce a bias potential as a perturbation of the system's Hamiltonian—such as

FINNEY and SALVALAGLIO 13 of 30

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



metadynamics and umbrella sampling—or are based on efficiently sampling the space of reactive paths using
techniques such as Transition Path, Transition Interface, and Forward Flux Sampling, or the construction of Mar-
kov State Models from unbiased simulation trajectories. Biased enhanced sampling methods typically aim to esti-
mate the free energy barrier associated with the nucleation and to discover nucleation pathways. Nucleation rates
are usually obtained by complementing evaluation of the free energy barrier with estimates of the rate prefactor,
often carried out using approaches similar to those adopted in the seeding method. A direct calculation of nucle-
ation rates here is only practical in simple cases.75

4.2.1 | Biased enhanced sampling approaches

Biased enhanced sampling methods in the context of crystal nucleation are typically deployed to achieve two aims: the
calculation of the free energy barrier associated with the nucleation process and the enhanced exploration of the nucle-
ation mechanism. Typically, the former objective can be achieved by either static or history-independent biasing strate-
gies while the second objective is pursued by the deployment of adaptive, history-dependent biasing methods. In the
following, we briefly recap the methodological bases of two biased enhanced sampling methods representative of
the static and adaptive categories: Umbrella sampling (US) and metadynamics (MetaD). Here we do not report on sam-
pling methods based on constrained dynamics such as the string method used by Santiso et al. to model crystallization
both from the melt141 and from solution,105 and we refer the interested reader to the original publications for an over-
view of this method, related to US and MetaD. Biased enhanced sampling methods depend crucially on the choice of
low-dimensional descriptors of the system configuration—that is, the collective variables (CVs)—that in biased sam-
pling are used to define the bias potential.46,142 We briefly discuss this point at the end of this section and for a compre-
hensive overview, we refer the interested reader to reviews on this topic from Giberti et al.87 and Neha et al.143 These
types of simulations are typically expensive, especially if multiple CVs are biased. Very many (US) and/or very long
(MetaD) simulations may be necessary to obtain convergent thermodynamics and kinetics. However, the computational
cost is much lower than if one were to observe crystal nucleation spontaneously in such systems. US can be performed
in the most commonly available MD engines that allow for implementation of harmonic restraints; though the CVs typ-
ically used to simulate nucleation are unlikely to be available in standard MD codes. A useful and noteworthy plugin is
the PLUMED software144 which interfaces with most MD engines and offers a wide range of CVs, including ones that
are useful to study crystal nucleation and discussed in this review. PLUMED also allows the practitioner to perform US
and MetaD, as well as other types of biased enhanced sampling, in favorite MD engine that has been patched with
PLUMED.

Umbrella sampling
Umbrella sampling is a computational method used in MD simulations to calculate the free energy profile associated
with an activated transition.145–147 The method involves performing a number of independent simulations, or windows,
where a harmonic bias potential, defined as a function of a CV s as Vi ¼ ki s� sið Þ2 is added to the Hamiltonian of the
system. In the ith window, the bias potential is designed to sample configurations that, in s, are projected in the vicinity
of si. Performing simulations for si values describing a pathway between reactants and products allows collecting con-
figurations distributed between a supersaturated solution and a crystalline nucleus. Within each window, the biased
probability density can then be reweighted,145,148 and a global free energy profile is then obtained by employing either
the weighted histogram analysis (WHAM)146,149 the multiple Bennett Acceptance Ratio (mBAR) method,150 or
umbrella integration (UI).151 US is routinely used to compute free energy surfaces associated with activated processes
and its most common application in nucleation studies is the calculation of the free energy barrier to nucleation, that is
ΔF�, without resorting to a theoretical formulation of the barrier dependence on thermodynamic parameters such as
the solubility and surface tension.152 For the calculation of nucleation rates, US calculations are complemented by esti-
mates of the nucleation rate prefactor. This can be obtained by using CNT-inspired expressions118 following an
approach similar to seeding simulations or, more generally, by drawing from the Bennett–Chandler formulation of the
kinetic prefactor associated with a rare-event transition.86,153

Metadynamics
Metadynamics (MetaD) is a molecular simulation technique to study the thermodynamics and mechanisms of rare
events.154,155 It involves introducing a time-dependent bias potential to the system being simulated, which acts to push

14 of 30 FINNEY and SALVALAGLIO

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



the system out of local energy minima and explore a wider range of possible configurations. Poorly explored regions of
configuration space, that might not be easily accessed using traditional molecular dynamics simulations, can be visited
using this approach. MetaD is one among many methods in which sampling is enhanced by adaptively perturbing the
original Hamiltonian of the system by introducing a bias potential, a seminal idea historically introduced with umbrella
sampling.145,154,156,157 In MetaD such a potential is adaptively constructed as a sum of Gaussian kernels defined in a
low-dimensional space of collective variables (CVs), usually indicated as s. CVs are formulated as continuous and differ-
entiable functions of the microscopic coordinates of a system.87,155,158,159 In recent years, several adaptations of MetaD
have been proposed, the most relevant being Well-Tempered metadynamics (WTmetaD) introduced by Barducci
et al.155 In WTmetaD, the external repulsive potential is iteratively updated as:

Vn sð Þ¼Vn�1 sð ÞþG s,snð Þexp �Vn�1 snð Þ
kBΔT

� �
, ð10Þ

where n�1 and n refer to consecutive iterations of bias deposition, sn defines the position of the system in CV space s
at iteration n, Vn�1 is the total bias potential at iteration n�1, kB is the Boltzmann constant and ΔT is a parameter akin

to a temperature. A key feature of the WTmetaD algorithm is the fact that the scaling factor exp �Vn�1 snð Þ
kBΔT

h i
decays as

1=n leading to a convergent behavior. WTmetaD convergence was demonstrated initially for infinitesimally narrow ker-
nel functions and more recently for any G s,snð Þ. By changing the parameter ΔT, a controlled enhancement of the fluc-
tuations in s can be achieved, leading to the asymptotic convergence of the bias in the long-time limit:
V s, t!∞ð Þ¼� ΔT

TþΔTF sð Þþ c tð Þ, where F sð Þ is the free energy in the set collective variables s, and c tð Þ is a time-depen-

dent constant.160

In the context of the study of nucleation processes from solution, metadynamics was applied to explore the configu-
rational landscapes associated with the nucleation of small organic molecules from liquid solutions,91–93,161,162 the
nucleation of salts from aqueous solution,49,104,163 the nucleation of methane clathrates,164 and the assembly of perov-
skites.165 Figure 4 highlights some of these examples. In all of these cases, metadynamics enables the calculation of con-
tinuous reactive trajectories for crystal nucleation and often enables estimates of the free energy landscape associated
with such pathways.

4.2.2 | Unbiased enhanced sampling approaches

In this review, we indicate with the adjective unbiased those rare event sampling methods that are not based on the per-
turbation of a system's Hamiltonian by introducing any biasing potential or any artificial force, yet achieve an enhance-
ment of the sampling of activated events by efficiently sampling trajectories obtained using standard MD. Such
techniques are based on efficiently sampling the Transition Path Ensemble (TPE) and have been spearheaded by Tran-
sition Path Sampling (TPS). After briefly introducing TPS, hereafter, we focus on reporting only techniques that have
recently been used to model nucleation from multicomponent liquids, such as Transition Interface Sampling166,167 and
Forward Flux Sampling153,168 that was recently applied to simulate NaCl nucleation from aqueous solution at moderate
supersaturations169 (see Section 5).

Transition path and transition interface sampling
Transition path sampling (TPS) leverages a Monte Carlo algorithm to sample the TPE starting from a single reactive tra-
jectory that connects reactants and products. In the context of homogeneous nucleation, this trajectory connects a
supersaturated solution to a solution containing a crystal particle. This initial reactive trajectory is often generated using
biased sampling techniques. New trajectories are then sampled by implementing a shooting algorithm. While multiple
shooting algorithms exist, a typical approach consists of perturbing a configuration sampled by the initial reactive tra-
jectory that is, by slightly modifying the momenta, thus generating a new trajectory via backward and forward propaga-
tion in time. If the new trajectory, proceeding through the set of configurations x in n steps, connects reactants Að Þ and
products Bð Þ, it is accepted with a path weight that depends on the equilibrium phase space probability density of the
initial point in the trajectory ρ x0ð Þ as:
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P x½ � ¼ ρ x0ð Þ
Yn�1

i¼0

p xi ! xiþ1ð Þ, ð11Þ

where p xi ! xiþ1ð Þ is the probability to transition from configuration xi to configuration xiþ1. The calculation of the rate
constant associated with the AB transition is based on the estimate of the correlation function C tð Þ¼ hA x0ð ÞhB xtð Þh i

hA x0ð Þh i , where
hi is a characteristic function that is equal to one in state i, and null everywhere else. As discussed in detail in references
153, 170, 171 the calculation of the kinetic constant requires the generation of trajectories targeting intermediate states
between A and B, typically generated using an order parameter, or CV. It should be noted that, while the sampling of
trajectories is independent from the choice of CVs, the rate calculation does depend on the CV choice.

Transition interface sampling (TIS) was introduced to improve the efficiency of the rate calculation, associated with
TPS. In TIS, configuration space is sectioned into non-intersecting interfaces based on a CV (usually indicated with λ in
the TPS/TIS literature). The order parameter lambda should enable a mutually exclusive partitioning of the

FIGURE 4 MetaD simulations of crystal nucleation from solutions. (a) Combining CμMD104,110 and WTMetaD Karmakar et al.

compute the free energy surface for NaCl nucleation from solution, limiting the finite-size effects due to confinement. Here the CV

enhanced the sampling of crystal structures, and the method was focused on the calculation of the free energy barrier to nucleation. Adapted

with permission from Ref.,104 copyright 2019 Americal Chemical Society. (b) Nucleation of urea from solution. Different solvents induce

different nucleation mechanisms: while MeOH and EtOH promote a single-step classical-like process, water and ACN lead to a two-step

process. Reproduced from Ref.93 with permission from the Royal Society of Chemistry. (c) Metadynamics enables the discovery of a two-step

nucleation mechanism for the synthesis of Methylammonium Lead Iodide Perovskites from solution. Reproduced with permission from

Ref.,165 copyright 2020 American Chemical Society.
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configuration space between a reactant basin, where λ< λA ¼ λ0 and a product basin where λ> λB ¼ λn. The reaction rate
constant kAB is then obtained as167:

kAB ¼ΦA,0

hA

Yn�1

i¼0

P λiþ1jλið Þ, ð12Þ

where ΦA,0 is the steady state flux of trajectories leaving the reactant state, which can be easily evaluated by a brute-
force MD simulation of the system in the reactant state; hA is a function that is equal to unity if a trajectory was more
recently in the reactant state than in the product state; while

Qn�1
i¼0 P λiþ1jλið Þ¼ P λnjλ0ð Þ is the probability that a trajec-

tory crosses the product interface λn, when starting from reactant interface λ0. In order to improve the efficiency of the
computational evaluation of P λnjλ0ð Þ, further developments of the TIS algorithm, such as replica exchange TIS
(RETIS171,172), were proposed, introducing exchange moves between interface ensembles in order to enhance the ergo-
dicity of the sampling. As for TPS, in TIS the CV λ is used to conveniently partition configuration space, and does not
affect the sampling of reactive trajectories.

Forward flux sampling
Forward flux sampling (FFS) is a computational method used to study rare events in complex systems. Unlike TPS and
TIS, FFS does not require the system to be at equilibrium, and can thus be applied to out-of-equilibrium processes. Sim-
ilarly to TIS, FFS is based on sampling transitions between non-intersecting interfaces defined in a low-dimensional
order parameter space describing the transition from a reactant state, A, to a product state, B. Analogously to TIS, the
initial interface λA marks the boundary in CV space between the reactants and all other configurations, and λB indicates
the boundary between the products and all other configurations. The pathway from A to B is described by crossing a
series of intermediate interfaces λ : λi,…,λn�1, with λiþ1 > λiþ1 for every value of i.

FFS uses the same expression proposed by TIS for the calculation of the transition rate between A and B, namely
Equation (12). However, it differs in the computational approach adopted for the calculation of the term P λiþ1jλið Þ,
that provides the attribute forward to the method's name. In FFS the probability of crossing interface λiþ1 starting from
interface λi is obtained from the forward-only integration of the system's dynamics. This term is obtained as the fraction
of trial runs initiated in λi that reach λiþ1.

79 Implementations of the FFS algorithm differ in the specifics of the algo-
rithm adopted to generate configurations at interfaces and thus in the details associated with the calculation of
P λiþ1jλið Þ. Additional information on FFS can be found in original publications and a number of reviews describing spe-
cific of the method. Particularly important in the context of nucleation, where the size of the largest nucleus is typically
a good choice of order parameter (see Section 4.2.3), is the fact that jumpy order parameters require a specialized treat-
ment in order to consistently yield estimates P λiþ1jλið Þ as discussed in detail by Haji-Akbari.173 Furthermore, Hall
et al.168 provide a practical guide and comparison between the RETIS and FFS methods.

The need to spawn many MD trajectories (typically, more than 100 crossings are required to achieve good statistical
accuracy in the probabilities) along many points (the density of interfaces must be high if the free energy barrier to
nucleation is large) in a reaction coordinate make FFS particularly expensive. As FFS requires unbiased MD, it can be
performed with all MD packages and using scripts to automate the spawning and analysis of trajectories. Of course, the
CV must be implemented in order to use the method. In this regard, SSAGES174 is software that interfaces with popular
MD engines and facilitates FFS simulations with several FFS protocols implemented. Though several CVs are available,
they are not typically used to study nucleation; however, a guide is provided in the software documentation on how to
add CVs to the code.

4.2.3 | Collective variables

Crystal nucleation from solution is a collective process of assembly that involves, by definition, an ensemble of growth
units (molecules, ions, atoms, particles, etc.) that are inherently equivalent and that come together to form a nucleus of
a new phase characterized by a well-defined structural arrangement. In order to describe and ultimately understand the
salient features of the assembly process, it is necessary to develop low-dimensional descriptors of the system character-
izing the transformation. In the theoretical and computational literature on phase transitions, such descriptors take the
name of order parameters (OPs). In the context of enhanced sampling, OPs fall into the broader category of Collective
Variables (CVs, often indicated as s r

!� 	
). These are typically functions of the atomic coordinates that are used to define
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the bias potential added to the Hamiltonian in biased enhanced sampling or that mark the progress between reactants
and products in unbiased enhanced sampling and MD. Very simple CVs to monitor the emergence of crystalline order
include average monomer coordination number, system potential energy and local density, though the correct choice of
CVs will depend upon the simulated system. In addition, these simple examples may not be able to distinguish between
different crystal polymorphs, in which case some characterization of the local symmetry between coordinated mono-
mers in crystal structures should be captured by the (combination of) CVs.

It is important that CVs approximate the reaction coordinate associated with the nucleation process and therefore
distinguish important states along the reaction path, such as reactant, product and, ideally, configurations belonging to
the transition state ensemble.175 Moreover, to be used in biased enhanced sampling simulations, CVs should be contin-
uous and differentiable functions of the atomic coordinates. It was demonstrated by Peters et al. that to study single-
step nucleation mechanisms and to determine rates, CVs should characterize the size of the largest crystalline cluster in
solution; indeed, the application of CVs to describe phase separation can be tested to ensure they are good ones to deter-
mine mechanisms and rates and to compare to reaction coordinates adopted in established nucleation theories.86,175 In
two-step processes, a two-dimensional CV space representing the extent of the largest cluster and of the largest ordered
domain in the nucleating phase have also emerged as good descriptors of the reaction coordinate,46,49,92,93 which also
lend themselves to a theoretical description of two-step nucleation.48 More recently, the application of Machine Learn-
ing methods and the data-driven identification of low-dimensional reaction coordinates for nucleation has emerged as
a viable strategy to identify combinations of CVs that enable an effective, low-dimensional description of nucleation
processes,46,143,176–178 and that allow for the application of biased enhanced sampling to drive polymorph-specific crys-
tal nucleation.162

The definition of effective CVs to describe and enhance the sampling of complex nucleation processes in solution
also hinges on our ability to define order parameters that can resolve well the atomic environments that are characteris-
tic of specific crystalline structures. While this is routinely done for crystals constructed from atomic or (spherically uni-
form) single particle monomers—simple colloids being an example—using bond-orientational OPs such as the
Steinhardt order parameters87,143,179,180 it remains a challenge for molecular crystals. Approaches based on the calcula-
tion of generalized pair distribution functions181 or on the calculation of properties of the distributions of order
parameters182–184 appear promising options but still require significant improvements in terms of computational effi-
ciency, generalizability to molecular systems with a significant degree of conformational complexity185 and with hun-
dreds of putative polymorphs.186,187 All these aspects limit their current applicability to study nucleation from solution
and represent one of the most limiting bottlenecks in the current applicability of systematic nucleation studies in
molecular systems.

5 | COMPARING APPROACHES: NACL NUCLEATION FROM AQUEOUS
SOLUTION

As anticipated in Section 4, here we report on the results obtained for the nucleation of NaCl in aqueous solution by dif-
ferent researchers over the previous decade. NaCl(aq) is arguably one of the simplest mineralizing solutions and repre-
sents one of the earliest case studies for crystallization,88,188 instrumental for our understanding of crystal nucleation
from solution and for assessing simulation methods applied to this problem. The examples we report are representative
of the methods that we briefly introduced in the previous sections and show how different approaches can yield com-
plementary information on NaCl nucleation kinetics and mechanisms from aqueous solutions spanning a wide range
of concentrations. Many of the studies conducted on this system employ the same solute and solvent forcefield combi-
nation and can thus be quantitatively compared, such as in Figure 5. The force field of reference in the studies described
in this section, unless otherwise stated, is the NaCl Joung-Cheatham (JC)189 force field that makes use of the SPC/E
water model.190 The force field is very simple, using Naþ and Cl� ions in water modeled using a three-point water
model with a constrained geometry. This force field performs reasonably well to capture the solution properties, includ-
ing ion solvation energies.189 This is perhaps surprising for such a simple model that offers a cheap solution to simulate
NaCl(aq). It was demonstrated that scaling the charges on ions can improve the model of the solution and several
schemes are available in order to do this; see references 191, 192. However, these improvements to modeling the solu-
tion phase do not always lead to improved thermodynamic and mechanical properties for the solid NaCl phase when
compared to experimental measurements. Recent parameterization strategies reduce some of these errors and provide
force fields that predict solubilities close to those determined experimentally.193
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Despite more accurate force fields being available, the JC/SPC/E force field is, arguably, the most characterized
model to simulate NaCl(aq) and has been adopted in most studies of nucleation where both mechanisms and nucle-
ation rates have been extracted from simulations. Importantly, for the JC/SPC/E force field, consensus on the room
temperature solubility has been reached by multiple groups, using a range of different approaches based both on free
energy calculations and direct coexistence methods.118,192,194–200 An accurate determination of the solubility enables
the correct assessment of Δμ that is used to evaluate rates in the seeding method (see Section 4.1.1),89,115,116 and to con-
sistently attribute a supersaturation level to simulations performed with theory-agnostic methods such as FFS, and Mar-
kov State Models (MSMs).49,152,169,201 The accepted solubility for JC NaCl in SPC/E water at 298.15 K and 1 bar is 3.7m,
which we label bsat.202 As discussed in detail by Zimmermann et al.,116 this estimate is based on the values indepen-
dently estimated by Moucka et al. (3.64� 0.2m), Mester et al. (3.71� 0.04m), Benavides et al. (3.71� 0.20m), Kolafa
et al. (3.6� 0.4m) and Espinosa et al. (3.7� 0.4m), and is the product of a process that has seen the refinement of simu-
lation approaches and correction of earlier inaccurate estimates.

5.1 | Nucleation kinetics and mechanisms at moderate supersaturation with forward
flux sampling

Employing Forward flux Sampling (see Section 4.2), Jiang et al. have investigated the nucleation of NaCl from brine at
supersaturation ratios (S¼ b=bsat) ranging between 2.1 and 4.5.169 FFS allows evaluation of both the nucleation mecha-
nism and nucleation kinetics at these conditions. Concerning the former, the authors observe that nuclei tend to assem-
ble directly into an FCC-like rocksalt structure, independently of their size, and that the level of crystallinity of the

FIGURE 5 Rates for NaCl crystal nucleation from aqueous solution taken from the literature. Here, BF refers to brute force MD

simulations in which crystal nuclei emerge spontaneously. The limit of solution stability is indicated by the vertical dashed line at S¼ 4:05.

The rate for Bulutoglu was evaluated using their literature rate value of 4�103 s�1 and with an ionic density for NaCl(aq) of 6.5 nm�3 at

15mol/kg. Crosses indicate experimental literature values taken from reference 115. All simulations are performed at 298K, except in the

case of Karmakar et al.,104 where simulations were performed at 350K. The data reported in this plot are available at https://github.com/

mme-ucl/NaCl_water_Nucleation_Rates.git.
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nuclei has a strong influence on their lifetime and probability of growing. This suggests that the nucleation process at
moderate supersaturations follows a mechanism that can be described by CNT. The nucleation kinetics obtained by
FFS tend to underestimate experimental measurements, possibly due to an overestimation of the crystal/solution inter-
facial tension.169 Nevertheless, this dataset provides an important benchmark for studying nucleation from solution as
rates here are computed independently from any theoretical interpretation of the self-assembly process.

5.2 | Nucleation kinetics within the remits of CNT

The quality of the dataset provided by Jiang et al.169 comes with a significant computational cost. Hence, there is
a strong incentive to test this result against less computationally intensive methods such as seeding (see
Section 4.1.1). Two papers115,116 have provided independent attempts at comparing nucleation kinetics of seeding
with the FFS dataset. Zimmerman et al.89,116 exploit the fact that the ion attachment frequency fþ is dominated by
ion desolvation and adopt the theoretical expression of the nucleation rate prefactor reported in Equation (8). More-
over, in contrast with other seeding studies,118 the authors adopt the Girshick–Chiu correction203 Γ¼ exp F 1ð Þ=kBTð Þ
(where F 1ð Þ corresponds to the free energy associated to the formation of a monomer in a crystalline configuration) in
the prefactor to the rate expression. Adopting the correct value of Δμℓ!xtal

116 allowed Zimmerman et al. to estimate
nucleation rates in a range of supersaturations overlapping with the Jiang dataset. A similar simulation strategy was
recently employed by Lamas et al.115 who adopted the Auer and Frenkel expression of the attachment frequency fþ

(see Equation 9) and did not explicitly introduce the Girshick–Chiu correction in their working expression for the cal-
culation of the nucleation rates, yielding a set of results slightly less reliant on theoretical considerations than those of
Zimmermann et al.

As shown in Figure 5, these two approaches yield substantial discrepancies in the estimate of the nucleation
rates, which can only partly be attributed to subtle differences in the expressions adopted for the nucleation rate
prefactor. The discrepancy appears to originate, instead, from the classification criteria used to estimate the num-
ber of crystalline particles in the evolving seeds. The classification problem is discussed at length by both
Zimmerman et al.116 and Lamas et al.115 In particular, Zimmerman et al. show that nucleation rates are
extremely sensitive to the number of crystal-like neighbors necessary to consider an ion part of the crystal
nucleus. For example, Figure 5 demonstrates how the predicted rates change by around 10�15 orders of magni-
tude when crystalline ions are identified as those with a coordination number ≥ 4 or ≥ 6. Lamas et al., instead, resort
to developing a systematic approach for the classification of the ions as part of a crystalline particle based on the analy-
sis of the overlap of distributions of the local q4 order parameter for a bulk crystalline phase and a bulk solution. The
identification of the optimal threshold yields nucleus size estimates that give rise to nucleation rates in good agreement
with FFS results.

5.3 | Overcoming solution depletion

Karmakar et al.,104 compute the nucleation barrier at two distinct supersaturation conditions from unseeded simula-
tions (see Section 4.2 and Figure 4a) by combining WTmetaD155 with CμMD.102 This approach allows a decoupling of
the size of the nucleus from the chemical potential of the parent phase by mimicking an open boundary system at con-
stant composition, therefore overcoming the depletion issues that typically affect both the qualitative and quantitative
behavior of nucleating systems in small volumes (see Section 3.2).33,92 Depletion artifacts affect the shape of the nucle-
ation free energy profile, the estimate of the critical nucleus size, and in severe cases, can even completely inhibit nucle-
ation. Depletion effects are also present in regular seeding simulations. However, depletion only affects the estimate of
nucleation rates when the critical nucleus size n� < <V c� csatð Þ,89 where csat is the concentration of a saturated solu-
tion. For systems where csat is large, satisfying this equation may require very large simulation volumes.

Karmakar et al. use the nucleation barriers estimated via WTmetaD and CμMD to compute the exponential
term in the nucleation rate expression (Equation 4). The prefactor is then estimated with the approach adopted by
Espinosa et al.118 The values of the nucleation rates obtained by Karmakar et al. following this route are reported in
Figure 5. It should be noted that while the forcefield used in this study is the JC/SPC/E model, the results are not
directly comparable as calculations were performed at 350K, rather than at room temperature.
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5.4 | NaCl nucleation mechanism is supersaturation-dependent

As mentioned in the introductory section, an important feature of nucleation from solutions is the fact that both the
rates and the mechanism (or pathway) for nucleation depends on the composition of the mother phase93 and, in partic-
ular, its degree of supersaturation. Studies based on seeding cannot lead to the discovery of pathways departing from
CNT-compliant ones by construction. In contrast, unseeded simulations can reveal pathways that depart from CNT pre-
dictions (see Section 2).

Using unseeded simulations, Panagiotopoulos and co-workers152 discovered the mechanism of NaCl nucleation
from aqueous solution depends on supersaturation. By employing large-scale MD simulations and free energy calcula-
tions, they identified the limit of stability for aqueous NaCl solutions with respect to a liquid/amorphous phase separa-
tion (reported in Figure 5 as a vertical dashed line). The dense amorphous salt clusters observed beyond the limit of
solution stability act as intermediates in the crystallization of NaCl, where crystalline order emerges within these disor-
dered clusters following a two-step nucleation pathway152 (see Section 2). Nucleation rates in this region of the phase
diagram were obtained by Jiang et al. by estimating Mean First Passage times (MFPTs) from brute force sampling of
nucleating trajectories and by performing umbrella sampling simulations to estimate nucleation barriers. Lamas
et al.115 corroborate these values of nucleation rates in the proximity of the limit of solution stability by constructing
survival probability distributions from brute force simulations that yield nucleation rates within the same order of mag-
nitude (see Figure 5). An overview of both the MFPT and survival probability methods for the calculation of nucleation
rates from brute force simulation is provided by Chkonia et al.204

The fact that at the limit of solution stability, the nucleation of NaCl follows a nonclassical, multi-step pathway has
been further corroborated by the work of Bulutoglu et al.,205 where the nucleation mechanism of NaCl is analyzed by
performing free energy calculations and by developing a theoretical approach based on the composite-cluster model59

able to interpret the atomistic simulation results. Most notably, fitting the composite-cluster model to simulation data
revealed that beyond the limit of solution stability, the amorphous salt clusters are thermodynamically favored com-
pared to the aqueous solution, thus further validating the existence of a two-step nucleation pathway for NaCl at high
supersaturation.

5.5 | Discovering nucleation mechanisms by combining biased and unbiased
simulations

Motivated by the observation of dense liquid-like ionic clusters emerging in the double layer in simulations of a solid–
liquid interface206 at supersaturation levels significantly lower than the limit of solution stability discovered by Jiang
et al.,152 and by recent experimental and simulation observations suggesting significant ion-ion correlations occurring
in supersaturated NaCl121; we have recently investigated the emergent nucleation mechanism for NaCl(s) in supersatu-
rated solutions below the limit of solution stability. To this aim, we performed multiple metadynamics simulations
where we enhanced fluctuations in the local ion density to explore the configuration space of the nuclei forming in an
aqueous solution. By mapping the nuclei configurations as a function of two order parameters indicative of the size of a
dense cluster and of the size of a dense cluster with a crystalline structure, we collected configurations able to describe
the emergence of crystalline NaCl nuclei without prescribing a specific pathway.49

By initializing hundreds of brute force MD simulations from uniformly distributed configurations in the n, n q6ð Þ
space (q6 being a sixth-order Steinhardt bond-order parameter), we then constructed a MSM able to yield model-free
estimates of the nucleation rate of the committor surface in order parameter space. The MSM reveals that when S¼ 3:7,
both one and two-step nucleation mechanisms are indeed accessible, with the two-step nucleation pathways being
slightly more favorable. Interestingly, the analysis of the committor probability surface in the n, n q6ð Þ space suggests
that at these conditions, one may need to extend the attribute critical to an ensemble of clusters that, despite displaying
a broad range of structures, include sizeable disordered domains and have an equal probability of evolving toward a
macroscopic crystal or dissolving.

As well as characterizing the nucleation mechanisms far into the metastable solution zone, we also ruled out the
PNC pathway for NaCl. Using umbrella sampling, we computed the equilibrium constant K for ion pair association in
the dilute limit. Despite the significant ion association that occurs in solutions across all of the metastable solutions
investigated S¼ 1�4, the result that K <1 means that ion dissociation is thermodynamically favorable in dilute solu-
tions and ion assembly into liquid-like clusters is due to non-idealities in the solution phase. These liquid-like entities
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can reach significant sizes, containing up to hundreds of ions at the high end of concentration, and evolve their topol-
ogy rapidly over simulation timescales.

5.6 | Uncovering multi-step processes involving crystal polymorphs

Using simulations as computational experiments, involves methods that enable the discovery of nucleation mechanisms
as emergent, collective evolution of systems. The nucleation of NaCl from aqueous solution offers an interesting case
study in this regard, showcasing the potential of simulation approaches while contextually providing a cautionary tale
about the quality of the models used to explore nucleation.163 Performing WTMetaD simulations of NaCl nucleation
from an aqueous solution, where the NaCl ions were modeled with the GROMOS forcefield,207 Giberti et al. discovered
that small NaCl clusters might preferentially adopt structures that differ from that of bulk rock salt.163 By employing a
CV designed to enhance local density fluctuations without favoring a specific crystal structure,46,163 the authors discov-
ered that for the model adopted there is a competition between hydrated amorphous NaCl, rocksalt nuclei, and nuclei
of a new wurtzite-like phase. An analysis of the CNT nucleation free energies of the rocksalt and wurtzite phases rev-
ealed that indeed, according to the molecular model, wurtzite-like arrangements are more favorable than rocksalt at
small sizes. While this result is not representative of the real NaCl nucleation mechanism, due to the fact that the
GROMOS model for NaCl strongly underestimates its aqueous solubility169 and overestimates the stability of
the wurtzite structure at the supersaturation conditions sampled by Giberti, it nevertheless provides a very important
observation pertaining to simulation methods. This study, in fact, demonstrates that unexpected pathways can be dis-
covered from a direct sampling obtained with enhanced MD techniques.

6 | PERSPECTIVES AND CONCLUSIONS

Molecule and particle based simulation methods provide useful tools to gain mechanistic insight into the nucleation of
crystals from solutions. With proper sampling, quantitative thermodynamics and kinetics can be obtained to compare
with experiments and test theories for crystal nucleation. In this review, we have highlighted state-of-the-art techniques
to gain such information. These can be broadly categorized as methods which rely on theory with a well-defined reac-
tion coordinate—mainly CNT—and those which are truly explorative.

Simulating nucleation in multicomponent solutions has been facilitated by the advent of enhanced sampling tech-
niques and novel approaches to simulate nucleation using standard MD, for example, seeding. Exemplary studies of
NaCl crystal nucleation, which we have discussed, highlight the range of methods available to overcome time- and
length-scale challenges associated with the direct simulation of crystal nucleation in microscopic, closed systems.
Alongside the referenced simulations to study a wide range of nucleating systems, these works demonstrate the capabil-
ity of molecular simulations to predict crystallization outcomes and determine rates.

Figure 5 presents NaCl crystal nucleation rates evaluated from simulations and measured in experiments. Accepting
that the y-axis spans 45 orders of magnitude, and given the known intricacies associated with nucleation rate
calculations,208 there appears to be reasonable consensus in the rates from unbiased and biased simulation strategies.
System size effects (including the large critical nucleus sizes that are observed at low supersaturation, as well as solute
depletion) mean that simulation studies typically adopt high values of S. In experiments, however, NaCl nucleation
becomes so fast at the higher end of S that special experimental techniques must be used to determine rates even up to
S≈ 2. In the small range of S where simulations overlap with experiments, a comparison of the rates leaves much to be
desired. While it is clear from Zimmerman et al.116 that the vast difference in the rates from seeding simulations
depends on the definition of the order parameter (OP), this issue is addressed by the mislabeling analysis of Lamas
et al.115 Taking the latter seeding results along with the forward flux sampling (FFS) rates from Jiang et al.,169 the force
field predicts crystal nucleation rates that are approximately 20 orders of magnitude lower than experiments. This dis-
crepancy may indicate inaccuracies in the molecular model; however, we note that there is even a discrepancy in the
experimental data, spanning around five orders of magnitude. This example, simple system typifies the challenge of
comparing simulation and experimental studies of crystal nucleation. The moonshot challenge, therefore, is to develop
simulation and experimental strategies that consistently reproduce rates that can be confidently compared to one
another. Mechanistically, the outlook is less bleak, as both simulations and experiments indicate one- and two-step
crystal nucleation according to the solution supersaturation.49,121,152,205
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Impressive advances in simulation capabilities were made over the previous decade; however, it is undoubtedly evi-
dent to the reader that the studies we highlight where quantitative thermodynamics and kinetics were evaluated apply
to very simple systems. Even so, the determination of nucleation rates requires exhaustive computational resources.
Sampling crystal nucleation pathways in more complex systems, such as in solutions of molecules with conformational
freedom that are so important to the pharmaceutical industry, is still a major challenge that is yet to be realized beyond
small molecules. Nevertheless, increasing computational power and the progress made in machine learning techniques
may make the routine simulation of crystal nucleation realizable in the near future.

Assuming that computational resources are abundant, we doubt that a one-size-fits-all simulation approach will be
achieved any time soon. This is principally due to the many different crystallization pathways that are evident in differ-
ent systems. Indeed, simulations are utilized to support perspectives regarding the invalidity of established theories to
describe nucleation generally. Adopting the most suitable simulation strategy can therefore be of critical importance.
When departing from CNT-compliant methods, it is far less obvious what reaction coordinate should be sampled. As
we have discussed, even in the CNT framework, how the cluster size is determined can drastically affect the predicted
nucleation rates. While methods based on transition path sampling are less susceptible to errors in rates due to inappro-
priately defined reaction coordinates, a rigorous mechanistic understanding requires appropriate variables to describe
crystal nucleation and countless examples are found in the literature. Unfortunately, there is no silver bullet when it
comes to quantifying the emergence of order, though perhaps, this is good for explorative purposes.

Simulating crystal nucleation in extremely large atomic systems is unlikely to be achieved in the near future. For
instance, some systems, such as proteins, are just too big; others have such low solubility that simulating crystallization
directly from monomers in solution at experimental concentrations requires system's sizes that are simply beyond our
reach (hence, the necessity to develop increasingly accurate coarse-grained representations of these systems). However,
with continued advances in simulation techniques and an increased understanding of the factors that govern nucleation
from solution, we believe that the next step will be to systematically extend nucleation studies to systems where the
growth units are conformationally flexible organic molecules and/or are polymorphic. In turn, this will enable account-
ing for crucial out-of-equilibrium effects in computationally-assisted material design.

AUTHOR CONTRIBUTIONS
Matteo Salvalaglio: Conceptualization (equal); data curation (supporting); funding acquisition (lead); project adminis-
tration (lead); supervision (lead); visualization (equal); writing – original draft (equal); writing – review and editing
(equal). Aaron R. Finney: Conceptualization (equal); data curation (lead); visualization (equal); writing – original
draft (equal); writing – review and editing (equal).

ACKNOWLEDGMENTS
We thank Dr. Gabriele Cesare Sosso for his feedback on an early version of the manuscript. We acknowledge funding
from the Crystallisation in the Real World EPSRC Programme Grant (Grant EP/R018820/1). Matteo Salvalaglio
acknowledges support from the EPSRC via the UKRI Horizon Frontier Research Guarantee Grant (EP/X033139/1).

FUNDING INFORMATION
This study was supported by the EPSRC, UKRI Horizon Frontier Research Guarantee Grant, EP/X033139/1; EPSRC,
Crystallisation in the Real World Programme Grant, EP/R018820/1.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

OPEN RESEARCH BADGES

This article has earned an Open Data badge for making publicly available the digitally-shareable data necessary to
reproduce the reported results. The data is available at https://github.com/mme-ucl/NaCl_water_Nucleation_Rates.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

FINNEY and SALVALAGLIO 23 of 30

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/mme-ucl/NaCl_water_Nucleation_Rates


ORCID
Matteo Salvalaglio https://orcid.org/0000-0003-3371-2090

RELATED WIREs ARTICLES
Metadynamics
Umbrella Sampling

REFERENCES
1. Price SL. Control and prediction of the organic solid state: a challenge to theory and experiment. Proc R Soc A Math Phys Eng Sci.

2018;474(2217):20180351.
2. Price SL. Predicting crystal structures of organic compounds. Chem Soc Rev. 2014;43(7):2098–111.
3. Day GM. Current approaches to predicting molecular organic crystal structures. Crystallogr Rev. 2011;17(1):3–52.
4. Hoja J, Ko HY, Neumann MA, Car R, DiStasio RA, Tkatchenko A. Reliable and practical computational description of molecular crys-

tal polymorphs. Sci Adv. 2019;5(1):eaau3338.
5. Rossi M, Gasparotto P, Ceriotti M. Anharmonic and quantum fluctuations in molecular crystals: a first-principles study of the stability

of paracetamol. Phys Rev Lett. 2016;117(11):115702.
6. Kapil V, Engel EA. A complete description of thermodynamic stabilities of molecular crystals. Proc Natl Acad Sci. 2022;119(6):

e2111769119.
7. Li L, Totton T, Frenkel D. Computational methodology for solubility prediction: application to the sparingly soluble solutes. J Chem

Phys. 2017;146(21):214110.
8. Cheng B, Ceriotti M. Computing the absolute Gibbs free energy in atomistic simulations: applications to defects in solids. Phys Rev B.

2018;97(5):054102.
9. Li L, Totton T, Frenkel D. Computational methodology for solubility prediction: application to sparingly soluble organic/inorganic

materials. J Chem Phys. 2018;149(5):054102.
10. Kapil V, Engel E, Rossi M, Ceriotti M. Assessment of approximate methods for anharmonic free energies. J Chem Theory Comput.

2019;15(11):5845–57.
11. Abraham NS, Shirts MR. Adding anisotropy to the standard quasi-harmonic approximation still fails in several ways to capture organic

crystal thermodynamics. Cryst Growth des. 2019;19(12):6911–24.
12. Abraham NS, Shirts MR. Statistical mechanical approximations to more efficiently determine polymorph free energy differences for

small organic molecules. J Chem Theory Comput. 2020;16(10):6503–12.
13. Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, et al. Report on the sixth blind test of organic crystal

structure prediction methods. Acta Crystallogr Sect B Struct Sci Crystal Eng Mater. 2016;72(4):439–59.
14. Zhang P, Wood GP, Ma J, Yang M, Liu Y, Sun G, et al. Harnessing cloud architecture for crystal structure prediction calculations. Cryst

Growth Des. 2018;18(11):6891–900.
15. Mortazavi M, Hoja J, Aerts L, Quéré L, van de Streek J, Neumann MA, et al. Computational polymorph screening reveals late-

appearing and poorly-soluble form of rotigotine. Commun Chem. 2019;2(1):1–7.
16. Yang M, Dybeck E, Sun G, Peng C, Samas B, Burger VM, et al. Prediction of the relative free energies of drug polymorphs above zero

kelvin. Cryst Growth Des. 2020;20(8):5211–24.
17. Kendrick J, Leusen FJ, Neumann MA, van de Streek J. Progress in crystal structure prediction. Chem A Eur J. 2011;17(38):10736–44.
18. Cruz-Cabeza AJ, Reutzel-Edens SM, Bernstein J. Facts and fictions about polymorphism. Chem Soc Rev. 2015;44(23):8619–35.
19. Nyman J, Reutzel-Edens SM. Crystal structure prediction is changing from basic science to applied technology. Faraday Discuss. 2018;

211:459–76.
20. Srinivasan K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J Cryst Growth. 2008;311(1):

156–62.
21. Price SL. Why don't we find more polymorphs? Acta Crystallogr Sect B. 2013;69(4):313–28.
22. Gadewar SB, Doherty MF. A dynamic model for evolution of crystal shape. J Cryst Growth. 2004;267:239–50.
23. Gadewar SB, Hofmann HM, Doherty MF. Evolution of crystal shape. Cryst Growth Des. 2004;4:109–12.
24. Zhang Y, Sizemore JP, Doherty MF. Shape evolution of 3-dimensional faceted crystals. AIChE J. 2006;52:1906–15.
25. Davey RJ, Dent G, Mughal RK, Parveen S. Concerning the relationship between structural and growth synthons in crystal nucleation:

solution and crystal chemistry of carboxylic acids as revealed through ir spectroscopy. Cryst Growth Des. 2006;6:1788–96.
26. Davey RJ, Schroeder SLM, Ter Horst JH. Nucleation of organic crystals—a molecular perspective. Angew Chem Int Ed. 2013;52(8):

2167–79.
27. Sun CC, Sun W, Price S, Hughes C, Ter Horst J, Veesler S, et al. Solvent and additive interactions as determinants in the nucleation

pathway: general discussion. Faraday Discuss. 2015;179:383–420.
28. Piana S, Reyhani M, Gale JD. Simulating micrometre-scale crystal growth from solution. Nature. 2005;438:70–3.
29. Piana S, Gale JD. Three-dimensional kinetic Monte Carlo simulation of crystal growth from solution. J Cryst Growth. 2006;294:46–52.
30. Piana S, Gale JD. Understanding the barriers to crystal growth: dynamical simulation of the dissolution and growth of urea from aque-

ous solution. J Am Chem Soc. 2005;127:1975–82.

24 of 30 FINNEY and SALVALAGLIO

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-3371-2090
https://orcid.org/0000-0003-3371-2090
https://doi.org/10.1002/wcms.31
https://doi.org/10.1002/wcms.66


31. Piana S, Jones F, Gale JD. Aspartic acid as a crystal growth catalyst. CrstEngComm. 2007;9:1187–91.
32. Agarwal V, Peters B. Nucleation near the eutectic point in a Potts-lattice gas model. J Chem Phys. 2014;140(8):084111.
33. Sosso GC, Chen J, Cox SJ, Fitzner M, Pedevilla P, Zen A, et al. Crystal nucleation in liquids: open questions and future challenges in

molecular dynamics simulations. Chem Rev. 2016;116(12):7078–116.
34. Anwar J, Khan S, Lindfors L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew Chem Int Ed. 2015;54(49):

14681–4.
35. Sosso GC, Tribello GA, Zen A, Pedevilla P, Michaelides A. Ice formation on kaolinite: insights from molecular dynamics simulations.

J Chem Phys. 2016;145(21):211927.
36. Sosso GC, Sudera P, Backes AT, Whale TF, Fröhlich-Nowoisky J, Bonn M, et al. The role of structural order in heterogeneous ice nucle-

ation. Chem Sci. 2022;13(17):5014–26.
37. Factorovich MH, Naullage PM, Molinero V. Can clathrates heterogeneously nucleate ice? J Chem Phys. 2019;151(11):114707.
38. Glatz B, Sarupria S. Heterogeneous ice nucleation: interplay of surface properties and their impact on water orientations. Langmuir.

2018;34(3):1190–8.
39. Lata NN, Zhou J, Hamilton P, Larsen M, Sarupria S, Cantrell W. Multivalent surface cations enhance heterogeneous freezing of water

on muscovite mica. J Phys Chem Lett. 2020;11(20):8682–9.
40. Mullin JW. Crystallization. 4th ed. Oxford, UK: Butterworth-Heinemann; 2001.
41. De Yoreo JJ, Vekilov PG. Principles of crystal nucleation and growth. Rev Mineral Geochem. 2003;54(1):57–93.
42. Erdemir D, Lee AY, Myerson AS. Nucleation of crystals from solution: classical and two-step models. Acc Chem Res. 2009;42(5):621–9.
43. Vekilov PG. The two-step mechanism of nucleation of crystals in solution. Nanoscale. 2010;2(11):2346.
44. Schöpe HJ, Bryant G, van Megen W. Two-step crystallization kinetics in colloidal hard-sphere systems. Phys Rev Lett. 2006;96(17):

175701.
45. Vatamanu J, Kusalik PG. Observation of two-step nucleation in methane hydrates. Phys Chem Chem Phys. 2010;12(45):15065.
46. Finney AR, Salvalaglio M. A variational approach to assess reaction coordinates for two-step crystallization. J Chem Phys. 2023;158(9):

094503.
47. ten Wolde PR, Frenkel D. Enhancement of protein crystal nucleation by critical density fluctuations. Science. 1997;277:1975–8.
48. Kashchiev D. Classical nucleation theory approach to two-step nucleation of crystals. J Cryst Growth. 2020;530:125300.
49. Finney AR, Salvalaglio M. Multiple pathways in NaCl homogeneous crystal nucleation. Faraday Discuss. 2022;235:56–80.
50. De Yoreo JJ, Biao J, Chen Y, Pyles H, Baer M, Legg B, et al. Formation, chemical evolution, and solidification of the calcium carbonate

dense liquid phase. Res Sq. 2022.
51. Whitehead CB, Finke RG. Particle formation mechanisms supported by in situ synchrotron XAFS and SAXS studies: a review of metal,

metal-oxide, semiconductor and selected other nanoparticle formation reactions. Mater Adv. 2021;2(20):6532–68.
52. Krautwurst N, Nicoleau L, Dietzsch M, Lieberwirth I, Labbez C, Fernandez-Martinez A, et al. Two-step nucleation process of calcium

silicate hydrate, the Nanobrick of cement. Chem Mater. 2018;30(9):2895–904.
53. Kashchiev D. Nucleation theorem. Nucleation. Oxford, UK: Elsevier; 2000.
54. Dillmann A, Meier GEA. A refined droplet approach to the problem of homogeneous nucleation from the vapor phase. J Chem Phys.

1991;94(5):3872–84.
55. Ford IJ, Laaksonen A, Kulmala M. Modification of the Dillmann–Meier theory of homogeneous nucleation. J Chem Phys. 1993;99(1):

764–5.
56. Prestipino S, Laio A, Tosatti E. Systematic improvement of classical nucleation theory. Phys Rev Lett. 2012;108(22):225701.
57. Ten Wolde PR, Frenkel D. Computer simulation study of gas–liquid nucleation in a Lennard–Jones system. J Chem Phys. 1998;

109(22):9901–18.
58. Lutsko JF, Dur�an-Olivencia MA. A two-parameter extension of classical nucleation theory. J Phys Condens Matter. 2015;27(23):235101.
59. Iwamatsu M. Free-energy landscape of nucleation with an intermediate metastable phase studied using capillarity approximation.

J Chem Phys. 2011;134(16):164508.
60. Sear RP. The non-classical nucleation of crystals: microscopic mechanisms and applications to molecular crystals, ice and calcium car-

bonate. Int Mater Rev. 2012;57(6):328–56.
61. Lee J, Yang J, Kwon SG, Hyeon T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat Rev Mater. 2016;1(8):16034.
62. Karthika S, Radhakrishnan TK, Kalaichelvi P. A review of classical and nonclassical nucleation theories. Cryst Growth Des. 2016;

16(11):6663–81.
63. De Yoreo J. A perspective on multistep pathways of nucleation. In: Zhang X, editor. ACS symposium series. Volume 1358. Washington,

DC: American Chemical Society; 2020. p. 1–17.
64. Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, et al. Classical and nonclassical nucleation and growth mechanisms for nanoparticle

formation. Annu Rev Phys Chem. 2022;73(1):453–77.
65. Gebauer D, Volkel A, Colfen H. Stable prenucleation calcium carbonate clusters. Science. 2008;322(5909):1819–22.
66. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H. Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc

Rev. 2014;43(7):2348–71.
67. Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat

Commun. 2011;2(1):590.
68. Avaro JT, Wolf SLP, Hauser K, Gebauer D. Stable prenucleation calcium carbonate clusters define liquid–liquid phase separation.

Angew Chem Int Ed. 2020;59(15):6155–9.

FINNEY and SALVALAGLIO 25 of 30

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



69. Palmer JC, Debenedetti PG. Recent advances in molecular simulation: a chemical engineering perspective. AIChE J. 2015;61(2):
370–83.

70. Frenkel D, Smit B. Understanding molecular simulation. Cambridge, MA: Elsevier; 2002.
71. Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, et al. The ReaxFF reactive force-field: development, applications and

future directions. npj Comput Mater. 2016;2(1):15011.
72. Meuwly M. Reactive molecular dynamics: from small molecules to proteins. WIREs Comput Mol Sci. 2019;9(1):1–22.
73. Meuwly M. Machine learning for chemical reactions. Chem Rev. 2021;121(16):10218–39.
74. Tuckerman ME. Statistical mechanics: theory and molecular simulation. 2nd ed. Oxford, UK: Oxford Graduate Texts; 2019.
75. Salvalaglio M, Tiwary P, Maggioni GM, Mazzotti M, Parrinello M. Overcoming timescale and finite-size limitations to compute conden-

sation rates at physically relevant conditions. J Chem Phys. 2016;145:211925.
76. Diemand J, Angélil R, Tanaka KK, Tanaka H. Large scale molecular dynamics simulations of homogeneous nucleation. J Chem Phys.

2013;139(7):074309.
77. Auer S, Frenkel D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature. 2001;409:1020–3.
78. Valeriani C, Sanz E, Frenkel D. Rate of homogeneous crystal nucleation in molten NaCl. J Chem Phys. 2005;122:194501.
79. Allen RJ, Valeriani C, Tanase-Nicola S, ten Wolde PR, Frenkel D. Homogeneous nucleation under shear in a two-dimensional Ising

model: cluster growth, coalescence, and breakup. J Chem Phys. 2008;129:134704.
80. Schilling T, Schöpe HJ, Oettel M, Opletal G, Snook I. Precursor-mediated crystallization process in suspensions of hard spheres. Phys

Rev Lett. 2010;105:025701.
81. Haji-Akbari A, Debenedetti PG. Direct calculation of ice homogeneous nucleation rate for a molecular model of water. Proc Natl Acad

Sci. 2015;112(34):10582–8.
82. Ectors P, Anwar J, Zahn D. Two-step nucleation rather than self-poisoning: an unexpected mechanism of asymmetrical molecular crys-

tal growth. Cryst Growth Des. 2015;15(10):5118–23.
83. Lifanov Y, Vorselaars B, Quigley D. Nucleation barrier reconstruction via the seeding method in a lattice model with competing nucle-

ation pathways. J Chem Phys. 2016;145(21):211912.
84. Anwar J, Boateng PK. Computer simulation of crystallization from solution. J Am Chem Soc. 1998;120:9600–4.
85. Kawska A, Brickmann J, Kniep R, Hochrein O, Zahn D. An atomistic simulation scheme for modeling crystal formation from solution.

J Chem Phys. 2006;124:024513.
86. Agarwal V, Peters B. Solute precipitate nucleation: a review of theory and simulation advances. In: Rice SA, Dinner AR, editors.

Advances in Chemical Physics. New York: John Wiley & Sons; 2014. p. 97–160.
87. Giberti F, Salvalaglio M, Parrinello M. Metadynamics studies of crystal nucleation. IUCrJ. 2015;2(2):256–66.
88. Anwar J, Zahn D. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew Chem Int

Ed. 2011;50(9):1996–2013.
89. Zimmermann NE, Vorselaars B, Quigley D, Peters B. Nucleation of NaCl from aqueous solution: critical sizes, ion-attachment kinetics,

and rates. J Am Chem Soc. 2015;137(41):13352–61.
90. Ectors P, Duchstein P, Zahn D. From oligomers towards a racemic crystal: molecular simulation of dl-norleucine crystal nucleation

from solution. CrstEngComm. 2015;17:6884–9.
91. Salvalaglio M, Giberti F, Parrinello M. 1,3,5-Tris (4-bromophenyl) benzene prenucleation clusters from metadynamics. Acta Cryst Sect

C. 2014;70(2):132–6.
92. Salvalaglio M, Perego C, Giberti F, Mazzotti M, Parrinello M. Molecular-dynamics simulations of urea nucleation from aqueous solu-

tion. Proc Natl Acad Sci. 2015;112(1):E6–E14.
93. Salvalaglio M, Mazzotti M, Parrinello M. Urea homogeneous nucleation mechanism is solvent dependent. Faraday Discuss. 2015;179:

291–307.
94. Price S, Rimez B, Sun W, Peters B, Christenson H, Hughes C, et al. Nucleation in complex multi-component and multi-phase systems:

general discussion. Faraday Discuss. 2015;179:503–42.
95. Farkas L. Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Aus Z Z Phys Chem. 1927;125U(1):236–42.
96. Volmer M, Weber A. Keimbildung in ubersattigten Gebilden. Z Phys Chem. 1926;119U(1):277–301.
97. Becker R, Döring W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann Phys. 1935;416(8):719–52.
98. Sunyaev RA, editor. 10. On the theory of new phase formation. Cavitation Princeton University Press. 1992;140:120–37.
99. Wedekind J, Reguera D, Strey R. Finite-size effects in simulations of nucleation. J Chem Phys. 2006;125(21):214505.

100. Salvalaglio M, Vetter T, Mazzotti M, Parrinello M. Controlling and predicting crystal shapes: the case of urea. Angew Chem Int Ed.
2013;52(50):13369–72.

101. Dur�an-Olivencia MA, Lutsko JF. Mesoscopic nucleation theory for confined systems: a one-parameter model. Phys Rev E. 2015;91(2):
022402.

102. Perego C, Salvalaglio M, Parrinello M. Molecular dynamics simulations of solutions at constant chemical potential. J Chem Phys. 2015;
142(14):144113.

103. Ozcan A, Perego C, Salvalaglio M, Parrinello M, Yazaydin O. Concentration gradient driven molecular dynamics: a new method for
simulations of membrane permeation and separation. Chem Sci. 2017;8(5):3858–65.

104. Karmakar T, Piaggi PM, Parrinello M. Molecular dynamics simulations of crystal nucleation from solution at constant chemical poten-
tial. J Chem Theory Comput. 2019;15(12):6923–30.

26 of 30 FINNEY and SALVALAGLIO

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1697 by M
atteo Salvalaglio - U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services , W
iley O

nline L
ibrary on [07/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



105. Liu C, Wood GP, Santiso EE. Modelling nucleation from solution with the string method in the osmotic ensemble. Mol Phy. 2018;
116(21–22):2998–3007.

106. Liu C, Cao F, Kulkarni SA, Wood GPF, Santiso EE. Understanding polymorph selection of Sulfamerazine in solution. Cryst Growth
Des. 2019;19(12):6925–34.

107. Reguera D, Bowles RK, Djikaev Y, Reiss H. Phase transitions in systems small enough to be clusters. J Chem Phys. 2003;118(1):340–53.
108. Li L, Paloni M, Finney AR, Barducci A, Salvalaglio M. Nucleation of biomolecular condensates from finite-sized simulations. J Phys

Chem Lett. 2023;14(7):1748–55.
109. Lutsko JF, Dur�an-Olivencia MA. Classical nucleation theory from a dynamical approach to nucleation. J Chem Phys. 2013;138(24):

244908.
110. Karmakar T, Finney AR, Salvalaglio M, Yazaydin AO, Perego C. Non-equilibrium modeling of concentration-driven processes with

constant chemical potential molecular dynamics simulations. Acc Chem Res. 2023;56(10):1156–67.
111. Han D, Karmakar T, Bjelobrk Z, Gong J, Parrinello M. Solvent-mediated morphology selection of the active pharmaceutical ingredient

isoniazid: experimental and simulation studies. Chem Eng Sci. 2019;204:320–8.
112. Bjelobrk Z, Piaggi PM, Weber T, Karmakar T, Mazzotti M, Parrinello M. Naphthalene crystal shape prediction from molecular dynam-

ics simulations. CrstEngComm. 2019;21(21):3280–8.
113. Praprotnik M, Site LD, Kremer K. Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Ann Rev Phys Chem.

2008;59(1):545–71.
114. Espinosa JR, Vega C, Valeriani C, Sanz E. Seeding approach to crystal nucleation. J Chem Phys. 2016;144(3):034501.
115. Lamas C, Espinosa J, Conde M, Ramírez J, de Hijes PM, Noya EG, et al. Homogeneous nucleation of NaCl in supersaturated solutions.

Phys Chem Chem Phys. 2021;23(47):26843–52.
116. Zimmermann NE, Vorselaars B, Espinosa JR, Quigley D, Smith WR, Sanz E, et al. NaCl nucleation from brine in seeded simulations:

sources of uncertainty in rate estimates. J Chem Phys. 2018;148(22):222838.
117. Pedevilla P, Fitzner M, Sosso GC, Michaelides A. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability

of crystalline surfaces. J Chem Phys. 2018;149(7):072327.
118. Espinosa J, Young J, Jiang H, Gupta D, Vega C, Sanz E, et al. On the calculation of solubilities via direct coexistence simulations: inves-

tigation of NaCl aqueous solutions and Lennard-Jones binary mixtures. J Chem Phys. 2016;145(15):154111.
119. Knott BC, Molinero V, Doherty MF, Peters B. Homogeneous nucleation of methane hydrates: unrealistic under realistic conditions.

J Am Chem Soc. 2012;134(48):19544–7.
120. Mandal T, Larson RG. Nucleation of urea from aqueous solution: structure, critical size, and rate. J Chem Phys. 2017;146(13):134501.
121. Hwang H, Cho YC, Lee S, Lee YH, Kim S, Kim Y, et al. Hydration breaking and chemical ordering in a levitated NaCl solution droplet

beyond the metastable zone width limit: evidence for the early stage of two-step nucleation. Chem Sci. 2021;12(1):179–87.
122. Garcia NA, Malini RI, Freeman CL, Demichelis R, Raiteri P, Sommerdijk NAJM, et al. Simulation of calcium phosphate prenucleation

clusters in aqueous solution: association beyond ion pairing. Cryst Growth Des. 2019;19(11):6422–30.
123. Habraken WJEM, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, et al. Ion-association complexes unite classical and non-

classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun. 2013;4(1):1507.
124. Kollias L, Cantu DC, Tubbs MA, Rousseau R, Glezakou VA, Salvalaglio M. Molecular level understanding of the free energy landscape

in early stages of metal–organic framework nucleation. J Am Chem Soc. 2019;141(14):6073–81.
125. Kollias L, Rousseau R, Glezakou VA, Salvalaglio M. Understanding metal–organic framework nucleation from a solution with evolving

graphs. J Am Chem Soc. 2022;144(25):11099–109.
126. Balestra SR, Semino R. Computer simulation of the early stages of self-assembly and thermal decomposition of ZIF-8. J Chem Phys.

2022;157(18):184502.
127. Hamad S, Moon C, Catlow CRA, Hulme AT, Price SL. Kinetic insights into the role of the solvent in the polymorphism of

5-fluorouracil from molecular dynamics simulations. J Phys Chem B. 2006;110(7):3323–9.
128. Chen J, Trout BL. Computational study of solvent effects on the molecular self-assembly of tetrolic acid in solution and implications

for the polymorph formed from crystallization. J Phys Chem B. 2008;112(26):7794–802.
129. Chen J, Trout BL. A computational study of the mechanism of the selective crystallization of α- and β-glycine from water and

methanol–water mixture. J Phys Chem B. 2010;114(43):13764–72.
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