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Genome-Wide Association Study of 
Pericardial Fat Area in 28 161 UK Biobank 
Participants
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Liliana Szabo, PhD; Mina Ryten , PhD; Steffen E. Petersen , DPHIL; André Altmann , PhD†;   

Zahra Raisi-Estabragh , PhD†

BACKGROUND: Pericardial adipose tissue (PAT) is the visceral adipose tissue compartment surrounding the heart. Experimental 
and observational research has suggested that greater PAT deposition might mediate cardiovascular disease, independent 
of general or subcutaneous adiposity. We characterize the genetic architecture of adiposity-adjusted PAT and identify causal 
associations between PAT and adverse cardiac magnetic resonance imaging measures of cardiac structure and function in 
28 161 UK Biobank participants.

METHODS AND RESULTS: The PAT phenotype was extracted from cardiac magnetic resonance images using an automated 
image analysis tool previously developed and validated in this cohort. A genome-wide association study was performed with 
PAT area set as the phenotype, adjusting for age, sex, and other measures of obesity. Functional mapping and Bayesian 
colocalization were used to understand the biologic role of identified variants. Mendelian randomization analysis was used to 
examine potential causal links between genetically determined PAT and cardiac magnetic resonance–derived measures of left 
ventricular structure and function. We discovered 12 genome-wide significant variants, with 2 independent sentinel variants 
(rs6428792, P=4.20×10−9 and rs11992444, P=1.30×10−12) at 2 distinct genomic loci, that were mapped to 3 potentially causal 
genes: T-box transcription factor 15 (TBX15), tryptophanyl tRNA synthetase 2, mitochondrial (WARS2) and early B-cell fac-
tor-2 (EBF2) through functional annotation. Bayesian colocalization additionally suggested a role of RP4-712E4.1. Genetically 
predicted differences in adiposity-adjusted PAT were causally associated with adverse left ventricular remodeling.

CONCLUSIONS: This study provides insights into the genetic architecture determining differential PAT deposition, identifies 
causal links with left structural and functional parameters, and provides novel data about the pathophysiological importance 
of adiposity distribution.
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Pericardial adipose tissue (PAT) is the visceral adi-
pose tissue compartment surrounding the heart. 
Experimental research has suggested that a 

proportionally greater deposition of PAT might me-
diate the risk of cardiovascular disease in addition to 
that conferred by general adiposity through paracrine 

proinflammatory effects of the fat tissue on adjacent 
myocardium and coronary arteries.1–4 In line with this, 
observational studies have reported associations be-
tween PAT and the risk of coronary artery disease,5 
heart failure,6 atrial fibrillation7,8 and adverse imaging 
markers of cardiac structure and function9,10 even 
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after an adjustment for multiple measures of general 
adiposity and its visceral and subcutaneous tissue 
distribution.

Body fat distribution is a highly heritable trait, with 
twin-based estimates for body mass index (BMI)–ad-
justed waist:hip ratio (WHR) estimated between 30% 
and 60%,11 and single nucleotide polymorphisms 
(SNP)–based heritability in the region of 20% to 50%.12 
So far, BMI-adjusted WHR13 has been the main focus 
of large-scale studies exploring the genetic determi-
nants of fat distribution. Consequently, the genetic 
architecture and disease consequences of this trait 
have been thoroughly explored.14–17 On the other hand, 
current understanding of the genetic determinants of 
fat deposition specifically in the pericardial tissue, in-
dependent of general adiposity and its distribution, re-
mains limited.

At present, only 2 genome-wide association stud-
ies (GWAS) have evaluated the genetic determinants 

of PAT in relation to whole-body adiposity.18,19 The 
largest of these, carried out in 2017 by Chu et  al, 
included 18 332 participants and discovered 3 ge-
netic variants in distinct loci associated with PAT after 
height and weight adjustment: rs6587515 in ENSA, 
rs1650505 in EBF1, and rs10198628 in TRIB2.19 
Genetic discovery in this field has been limited by 
the lack of large-scale data. We recently developed a 
fully automated, quality-controlled tool for PAT quan-
tification from cardiac magnetic resonance (CMR) 
images,20 enabling extraction of PAT measurements 
in 42 598 participants in the UK Biobank, a large-
scale cohort study collecting clinical, genetic, imag-
ing, and laboratory data from participants throughout 
the United Kingdom.

In this study, we employed UK Biobank data to in-
vestigate the genetic variants predisposed to the depo-
sition of PAT independent of other measures of total 
adiposity and its distribution. We additionally leverage 
these variants to assess the causal role of PAT on left 
ventricular (LV) structure and function.

METHODS
Data Access and Availability
This study was conducted using the UK Biobank 
under application 2964. The work is covered by ethi-
cal approval from the National Health Service National 
Research Ethics Service on June 17, 2011 (reference 
11/NW/0382) and extended on June 18,2021 (refer-
ence 21/NW/0157). Written, informed consent was ob-
tained from all participants.

The data produced from this study, including 
summary statistics, methods, and materials, will be 
returned to the UK Biobank. These will become avail-
able to all bona fide researchers for the purpose of 
health-related research under approved applications, 
without preferential or exclusive access. Further details 
about application and access procedures are available 
at the UK Biobank website (http://​www.​ukbio​bank.​ac.​
uk/​regis​ter-​apply/​​).

Study Population
The UK Biobank is a population-based cohort study 
based in the United Kingdom. Between 2006 and 
2010, >500 000 participants aged 40 to 69 years 
were recruited and underwent a baseline assessment 
and regular integration of health outcomes through 
healthcare record linkage. The detailed study proto-
col is publicly available.21 The UK Biobank Imaging 
Study is an ongoing subset of the UK Biobank aim-
ing to perform multiorgan magnetic resonance imag-
ing of the heart, brain, and abdomen in a randomly 
selected 20% (n=100 000) subset of UK Biobank 
participants.

CLINICAL PERSPECTIVE

What Is New?
•	 This study identifies multiple distinct genetic 

loci associated with pericardial fat area after ac-
counting for multiple measures of whole-body 
adiposity.

•	 Mendelian randomization analyses identified an 
association of likely causal relevance of geneti-
cally predicted pericardial fat with adverse car-
diac structural and functional parameters.

What Are the Clinical Implications?
•	 In addition to being determined by whole-body 

adiposity, this study suggests that the propor-
tional deposition of pericardial adipose tissue is, 
to an extent, genetically determined.

•	 Greater genetically predicted pericardial adi-
pose tissue is linked with markers of adverse 
left cardiac structure and function, suggesting 
a role in determining adverse left ventricular 
remodeling.

Nonstandard Abbreviations and Acronyms

CADD	 combined annotation dependent 
depletion

MR	 Mendelian randomization
PAT	 pericardial adipose tissue
PC	 principal component
PPH	 posterior probability of hypothesis
WHR	 waist:hip ratio
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Pericardial Fat Quantification
CMR scans were performed using 1.5 Tesla scanners 
(MAGNETOM Aera, Syngo Platform VD13A, Siemens 
Healthcare, Erlangen, Germany) in specific imaging 
units. Scanning was performed according to prede-
fined protocols.22 PAT area was extracted from CMR 
4-chamber cine images in end diastole using an auto-
mated tool that has been developed and validated in 
the UK Biobank and an external cohort.20 This involves 
a neural network trained to perform fully automated PAT 
segmentation through a multiresidual U-net architec-
ture. It includes an in-built quality-control feature, which 
uses Dice scores as a measure of segmentation quality. 
In this analysis, we limited to scans with good segmen-
tation quality (Dice score > 0.7). In the study population, 
PAT areas had a right-skewed distribution and were 
therefore log-transformed for linear modeling.

Measures of Adiposity
A key aim of the study was to determine whether the re-
lationship between PAT and cardiovascular phenotypes 
was distinct from other obesity measures. We consid-
ered anthropometric measures of obesity, impedance 
fat measures, and abdominal magnetic resonance imag-
ing–derived measures of visceral and subcutaneous adi-
posity. BMI and WHR were calculated from UK Biobank 
body size measures. Bioelectrical impedance measures 
of obesity were derived using the Tanita BC418MA body 
composition analyzer as per UK Biobank protocols.23 
We included whole-body fat mass and trunk fat mass 
impedance measures. From abdominal magnetic reso-
nance imaging (available for 15 518 participants), we se-
lected abdominal subcutaneous, visceral adipose tissue, 
and total adipose tissue volume measures, which are 
only available for a subset of participants.24

Genetic Data and Quality Control
Genotyping was performed in all consenting individu-
als. Genotypes were directly called using the 2 closely 
related arrays UK Biobank Axiom (Affymetrix, Santa 
Clara, California) and UK Applied Biosystems UK 
BiLEVE Axiom Array (BiLEVE) Axiom. Imputation was 
carried out using the Haplotype Reference Consortium 
and UK10K+1000Genomes (phase 3) reference panels.

Genome-Wide Association Study
For genome-wide association analysis, participants 
were excluded if their genetic samples failed bioinfor-
matic quality control (missing rate on autosomes of 
>0.2 or mismatch between reported and genetically 
inferred sex), or if they were related (based on a kin-
ship matrix with threshold K>0.175) by excluding 1 
of the pair. The cohort was restricted to individuals 
of European ancestry. After exclusion criteria were 

applied, 28 161 participants were included. Among 
the available imputed and genotyped variants, we re-
stricted the analysis to autosomal variants with a minor 
allele frequency>0.01 and imputation quality score (in-
formation score) >0.3. This resulted in ≈9 283 970 mil-
lion variants. Genome-wide association analysis was 
performed using PLINK25 and BOLT-linear mixed 
model (BOLT-LMM).26

In the main model, we assessed the association 
between variants and PAT after adjusting for sex, 
age, age2, age*sex, 10 genetic principal components 
(PCs), assessment center, genotype array, BMI, WHR, 
whole-body fat mass, trunk fat mass, and body fat 
percentage. In this analysis, PC analysis was applied 
to BMI, WHR, whole-body fat mass, trunk fat mass, 
and body fat percentage to explain at least 90% of the 
variance, which resulted in 2 PCs that explained 99% 
of the variance in the included phenotypes. These 2 
PCs were included when GWAS was run instead of 
the BMI, WHR, whole-body fat mass, trunk fat mass, 
and body fat percentage. For this model, the popula-
tion was randomly split into set of 18 774 participants 
for discovery and a replication set of 9 387 participants 
for replication. This is the primary analysis of the study.

For discovery analysis, the threshold for statistical 
significance was considered P<5×10−8 to account for  
multiple tests. Replication analyses were carried out for 
all genome-wide significant variant associations in the 
primary model. For replication analysis, the statistical 
significance threshold was calculated using Bonferroni 
correction based on the number of variants tested for 
validation (P<0.05/n; where n=number of lead variants 
to validate).

To increase the power for detection of significant 
signals using the whole sample, we additionally per-
formed a meta-analysis GWAS by combining the 
GWAS summary statistics of the discovery and rep-
lication analyses. This analysis was conducted using 
the Metal tool.27

We have also carried out a more relaxed GWAS 
without adjustment for different fat measures. The 
analysis was adjusted for sex, age, age2, age*sex, 10 
genetic PCs, assessment center, and genotype array.

Functional Annotation
Functional mapping was carried out using functional 
mapping and annotation (FUMA) of GWAS version 
1.5.0.28 Independent significant SNPs were defined 
as those associated with PAT in the primary discov-
ery analysis model with P<5×10−8 that were correlated 
with r2<0.6. Additional candidate SNPs were identified 
by extracting SNPs in linkage disequilibrium with these 
at r2>0.6 using the 1000Genomes phase 3 European 
reference panel.29 Finally, lead SNPs were identified 
among the candidates as the uncorrelated (r2<0.1) 
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SNPs with prioritization of those with lowest P value 
for the association with PAT. For lead SNPs and any 
SNPs in linkage disequilibrium with these at r2>0.8, all 
reported phenotypic associations were listed using the 
GWAS Catalog.30

The functional consequences of the candidate 
SNPs on genes were determined using ANNOtate 
VARiation (ANNOVAR).31 Deleteriousness score was 
described using combined annotation dependent 
depletion (CADD) scores (with scores>12.37 consid-
ered likely deleterious),32 and SNPs were annotated 
for regulatory functions using regulatory elements 
database (RegulomeDB) score,33 for 15-core chro-
matin state using chromatin hidden Markov model 
(ChromHMM),34,35 tissue-specific expression quanti-
tative trait loci (eQTLs),36 and for 3-dimensional chro-
matin interactions using high-throughput adaptation of 
chromosome conformation capture (Hi-C) data.37

Gene mapping was performed using positional, 
eQTL, and chromatin interactions mapping. First, 
genomic risk loci near independent significant SNPs 
were outlined using a maximum distance of 10 kB. 
Within each risk locus, the SNP with the lowest P value 
was defined as the lead SNP for the locus. Probability 
of loss of function intolerance was annotated using 
probability of being loss-of-function intolerant (pLI) 
scores for coding genes,38 and with noncoding re-
sidual variation intolerance scores for noncoding 
genes.39 Multi-marker Analysis of GenoMic Annotation 
(MAGMA) gene-based analysis was performed to as-
sess the association between protein coding genes 
and PAT.40 Because the input SNPs were mapped 
to 19 086 protein coding genes, genome-wide sig-
nificance for this analysis was Bonferroni corrected 
at P value=0.05/19086=2.620×10−6. Tissue-specific 
eQTL mapping was then performed using data from 
single-cell RNA sequencing41 in immune cells, and 
GTEx (Genotype-Tissue Expression) Project version 
836 tissue-specific eQTL data for arterial, adipose, 
and cardiac tissues. Finally, chromatin mapping was 
performed using tissue-specific chromatin interac-
tion (Hi-C) data for the aorta, left ventricle, and right 
ventricle.37,42–44

To understand putative biological mechanisms be-
hind mapped genes, gene-to-function mapping was 
performed within FUMA and GWASAtlas. GTEx version 
836 data were used to visualize normalized tissue-spe-
cific expression patterns for each gene. Differentially 
expressed gene set analyses were performed to test 
for differential expression of mapped genes across 
tissue types. Phenome-wide associations were identi-
fied for all potentially causal genes using GWASAtlas.45 
Finally, the IMPC (International Mouse Phenotyping 
Consortium) database was searched for information 
about previous mouse models for potentially causal 
genes.46

Colocalization Analysis
To evaluate the probability that GWAS loci and eQTLs 
share a single causal variant, a colocalization analysis 
was performed using coloc (version 5.1.0.1) and colo-
chelpR (version 0.99.1).47,48 Cis-eQTLs were derived 
from GTEx version 8.36,49 GWAS loci within 1 Mb of the 
11 significant GWAS SNPs were explored. Loci iden-
tified through chromatin mapping were not included 
as these were expected to have trans-associations. 
Associations were explored in 7 GTEx tissues: aortic 
artery (N=387), coronary artery (N=213), tibial artery 
(N=584), subcutaneous adipose (N=581), visceral adi-
pose (N=469), the cardiac atrial appendage (N=372), 
and the cardiac LV (N=386). The prior probability that 
any random SNP in the region is associated with the 
GWAS (p1) or eQTL (p2) was set to the default 10−4, 
whereas the prior probability that any random SNP in 
the region is associated with both traits (p12) was set 
to 10−5. A posterior probability of hypothesis (PPH) 4 
measures the probability that a locus is colocalized as 
the result of a single causal variant, as opposed to 2 
distinct causal variants (PPH3). A PPH4≥0.8 was con-
sidered significant. All colocalizations were subjected 
to sensitivity analyses using coloc’s sensitivity func-
tion, which plots prior and posterior probabilities of 
each coloc hypothesis as a function of the p12 prior. 
This permits exploration of the robustness of results 
to changes in the p12 prior. Code for coloc analyses 
is openly available at https://​github.​com/​aaron​wagen/​​
Peric​ardial_​fat_​gwas_​coloc/​​.

Heritability and Genetic Associations
We used CTG-VL 0.5 beta (https://​vl-​dev.​genoma.​io/​
updates) to estimate trait heritability and calculate ge-
netic correlation between PAT and multiple disease 
phenotypes. These included adiposity traits (trunk fat 
mass as percentage, whole-body fat mass), cardio-
vascular risk factors (hypertension, diabetes, obesity), 
and cardiovascular outcomes (coronary heart disease, 
coronary event, heart failure, stroke, atrial fibrillation 
and flutter, and cardiac death).

Mendelian randomization (MR) was performed to 
assess the causal relevance of PAT on multiple CMR 
markers of LV structure and function, motivated by the 
previously established observational evidence sug-
gesting potential causal mechanisms.9 Genome-wide 
significant (P<5×10−8), uncorrelated (r2<0.001) vari-
ants for PAT were selected as instrumental variants. 
Instrument strength was quantified using F statistics. 
Gene-outcome association data were extracted from 
summary statistics on GWAS of 45 504 UK Biobank 
participants by Pirruccello et al50 for indexed LV end-di-
astolic volume, LV end-systolic volume, LV stroke 
volume, and LV ejection fraction. Additional gene-out-
come association data were extracted from the GWAS 
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of 16 923 participants for LV mass (LVM) and mass to 
end-diastolic volume ratio (LV mass:LVEDV) by Aung 
et  al.51 Inverse-variance weighted MR with fixed ef-
fects was used for primary analysis. Single-SNP 
analysis was performed using the Wald ratio method. 
Importantly, the data source for both gene-exposure 
and gene-outcome association estimates in this case 
is the UK Biobank cohort. Although the MR methods 
used are considered “2-sample” methods, they have 
been demonstrated to be robust for individual-level 
analysis when applied in the setting of large-scale bio-
banks.52 All MR analyses were performed using the 
MendelianRandomization package (version 0.7.0)53 in 
RStudio (R version 4.1.2).54

RESULTS
Genome-Wide Association Study
Genetic Variants Associated With Pericardial Fat 
Independent of BMI and Other Fat Distribution 
Measures

We used previously validated, automated, and qual-
ity-controlled tool to extract measures of PAT area in 
28 161 UKB participants who were randomly split into 
a discovery set of 18 774 participants and a testing set 
of 9 387 participants.

In the genome-wide association analysis in the dis-
covery set, and after adjusting for sex, age, age2, age*sex,  
10 genetic PCs, assessment center, genotype array, 
and 2 PCs reflecting BMI, WHR, whole-body fat mass, 
trunk fat mass, and body fat percentage, a total of 
11 genome-wide significant variants were identified 
(rs11992444, rs6428792, rs10923752, rs10923748, 
rs6428794, rs12036872, rs4304634, rs764891110, 
rs4659150, rs4659146, rs2885227) as reported in 
Figure S1, Table S1, and Table 1. The QQ plot for the 

results is presented in Figure S2. Genomic inflation fac-
tor (lambda, λ) was 1.026, and λ1000 was 1.001.

Among the discovered variants, 1 single variant was 
located on chromosome 8, rs11992444 (P=1.30×10−12), 
and 10 variants were located on chromosome 1, 
among which the variant with lowest the P value was 
rs6428792 (P=4.20×10−9). The association of all 11 
genome-wide significant variants with PAT was repli-
cated in the replication set at the Bonferroni-corrected 
P value threshold (P<0.0045), as reported in Table 2.

Functional Annotation
Functional annotation through positional, eQTL, and 
chromatin interaction mapping identified a total of 10 
potentially causal genes. A visual representation of 
the annotation process and key results are provided 
in Figure 1.

Positional Mapping

In addition to the 11 GWAS-tagged variants, 1 additional 
closely correlated variant (rs72707349) was extracted 
using the 1000 Genomes reference panel. Among the 12 
candidate SNPs, 2 lead variants were identified (r2<0.1)—
rs6428792 and rs11992444—in 2 separate genetic loci 
(Tables S1 through S3). All previously reported pheno-
typic associations for these 2 SNPs and SNPs in close 
linkage disequilibrium with these (r2>0.8) are reported  
in Table S4, and these included multiple BMI-adjusted 
adiposity traits, body shape indexes, and lipid traits.

Among the 12 candidate variants, the 11 variants on 
chromosome 1 were intronic (of which 1 in noncoding 
RNA), and the variant on chromosome 8 was intergenic 
(Table S5). RegulomeDB score for both variants was 7, 
indicating a lack of evidence about potential regulatory 
functions. The minimum 15-core chromatin state was 

Table 1.  Genome-Wide Significant Variants: Genome-Wide Analysis Identified 11 Sentinel Variants That Were Genome-
Wide Significant (P<5×10−8)

SNP Chromosome Position Allele 1 Allele 0
Allele 1  
frequency

Missing  
rate β

Standard  
error P value

rs11992444 8 25 464 690 G T 0.490 0.003 −0.012 0.002 1.30E-12

rs6428792 1 119 656 867 G A 0.380 0.006 −0.010 0.002 4.20E-09

rs10923752 1 119 658 925 G A 0.341 0.007 0.010 0.002 1.40E-08

rs10923748 1 119 647 946 G C 0.341 0.007 0.010 0.002 1.60E-08

rs6428794 1 119 657 743 A T 0.341 0.007 0.010 0.002 1.60E-08

rs12036872 1 119 660 505 C G 0.341 0.007 0.010 0.002 1.60E-08

rs4304634 1 119 650 931 T A 0.340 0.009 0.010 0.002 1.80E-08

rs764891110 1 119 651 167 T TTATGA 0.341 0.010 0.010 0.002 1.80E-08

rs4659150 1 119 660 819 T G 0.340 0.008 0.010 0.002 1.90E-08

rs4659146 1 119 645 535 T C 0.342 0.009 0.010 0.002 2.10E-08

rs2885227 1 119 650 928 C A 0.340 0.009 0.010 0.002 2.00E-08

The table displays β coefficients with standard errors, and P value estimates. Allele 1 is the effect allele. SNP indicates single nucleotide polymorphism.
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Table 2.  Replication of Association Between Genome-Wide Significant Variants and Adjusted Pericardial Fat Area in the 
Testing Set

SNP Chromosome Position Allele 1 Allele 0
Allele 1  
frequency

Missing  
rate β

Standard  
error P value

rs11992444 8 25 464 690 G T 0.489 0.002 −0.015 0.002 5.00E-11

rs6428792 1 119 656 867 G A 0.380 0.007 −0.008 0.002 0.00078

rs10923752 1 119 658 925 G A 0.339 0.008 0.007 0.002 0.0028

rs10923748 1 119 647 946 G C 0.339 0.008 0.007 0.002 0.0026

rs6428794 1 119 657 743 A T 0.339 0.008 0.007 0.002 0.0027

rs12036872 1 119 660 505 C G 0.339 0.008 0.007 0.002 0.0027

rs4304634 1 119 650 931 T A 0.338 0.009 0.007 0.002 0.0026

rs764891110 1 119 651 167 T TTATGA 0.339 0.011 0.007 0.002 0.0025

rs4659150 1 119 660 819 T G 0.338 0.008 0.007 0.002 0.0026

rs4659146 1 119 645 535 T C 0.339 0.010 0.007 0.002 0.0021

rs2885227 1 119 650 928 C A 0.338 0.009 0.007 0.002 0.0025

All variants passed replication at Bonferroni-adjusted statistical significance threshold (P<4.5×10−3). SNP indicates single nucleotide polymorphism.

Figure 1.  Methods and key results of functional annotation of genome-wide significant variants and exploration of 
functional consequences of prioritized variants and genes.
ANNOVAR indicates ANNOtate VARiation; BMI, body mass index; CADD, combined annotation dependent depletion; Chr, chromosome; 
DEG, differentially expressed gene; EBF2, early B-cell factor-2; eQTL, expression quantitative trait loci; GTEx, Genotype-Tissue 
Expression; GWASCatalog, GWAS Catalog; IMPC, International Mouse Phenotyping Consortium; LD, linkage disequilibrium; MAGMA, 
Multi-marker Analysis of GenoMic Annotation; OpenGWAS, IEU OpenGWAS project; PSMC1P12, proteasome 26S subunit, ATPase 
1 pseudogene 12; RegulomeDB, regulatory elements database; RNA5SP56, RNA, 5S ribosomal pseudogene 56; SDAD1P1, SDA1 
domain containing 1 pseudogene 1; SNP, single nucleotide polymorphism; TBX15, T-box transcription factor 15; WARS2, tryptophanyl 
tRNA synthetase 2, mitochondrial; and WHR, waist:hip ratio.
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5 for rs6428792, indicating weak transcription function, 
and 7 for rs11992444, indicating enhancer chromatin 
state. Positional mapping prioritized 3 genes: WARS2 
(protein coding), RPS3AP12 (pseudogenic) and RP11-
418J17.1 (antisense), all mapped to the chromosome 1 
locus (Table S6). Among these, WARS2 had the highest 
maximum SNP CADD score of 10.56, and the remain-
ing 2 had a low risk of deleteriousness (CADD 6.85 
for RPS3AP12, and CADD 3.06 for RP11-418J17.1). The 
nearest genes for the chromosome 8 risk locus were 
CDCA2 and RP11-219J21.1, although these were dis-
tant, respectively 99 254 and 78 624 bases from the 
risk locus (Table S5).

eQTL Mapping
eQTL mapping consistently prioritized WARS2 (protein 
coding, expressed in adipose, arterial, and cardiac tis-
sues) and RP11-418J17.1 (antisense, expressed in ad-
ipose, arterial, and cardiac tissues), but additionally 
identified regulatory functions of the candidate variants 
on TBX15 (protein coding, expressed in adipose tissues) 
and RP4-712E4.1 (lincRNA, expressed in adipose and ar-
terial tissue) (Tables S6 and S7). No chromosome 8 genes 
were mapped using eQTLs. The locus plots, positional 
mapping, and corresponding eQTLs for chromosome 1 
variants are summarized in Figure 2. Notably, the TBX15 
gene was also highlighted as the most strongly associated 

Figure 2.  Regional plot of the chromosome 1 locus. Genes prioritized by FUMA are highlighted in red, and colors of genome-
wide significant SNPs are based on r2.
From the top: genome-wide significance P value, CADD score, and eQTL P value. eQTLs are plotted for each gene, and colors are 
based on tissue types. CADD indicates combined annotation dependent depletion; eQTL, expression quantitative trait loci; GTE, 
Genotype-Tissue Expression; RBMX2P3, RNA binding motif protein X-Linked 2 pseudogene 3; SNP, single nucleotide polymorphism; 
TBX15, T-box transcription factor 15; and WARS2, tryptophanyl tRNA synthetase 2, mitochondrial.
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protein coding gene with adjusted PAT in MAGMA ge-
nome-wide analysis (Figure S3).

Chromatin Interaction Mapping

Finally, 11 chromatin interaction regions were identi-
fied (Table S8) mapping to 5 distinct genes (Table S6). 

These are depicted in Figure 3 and Figure 4. Using 
chromatin interaction mapping, a total of 3 genes 
were mapped in chromosome 8: EBF2, AC090103.1, 
and SDAD1P1. Among these, the protein coding EBF2 
gene appeared highly intolerant to loss of function 
(pLI 0.97).

Figure 3.  Chromatin interactions and expression quantitative trait loci of pericardial adipose tissue risk loci on chromosome 1.
The outer layer displays genome-wide association study P values, with the lead single nucleotide polymorphism labeled. Genes 
mapped by either expression quantitative trait loci or chromatin interactions are displayed in the innermost circle. Genes mapped by 
chromatin interactions are displayed in orange, expression quantitative trait loci in green, and those mapped by both in red. Orange 
links display chromatin interactions, and green links display expression quantitative trait loci. PSMC1P12 indicates proteasome 26S 
subunit, ATPase 1 seudogene 12; RNA5SP56, RNA, 5S ribosomal seudogene 56; TBX15, T-box transcription factor 15; and WARS2, 
tryptophanyl tRNA synthetase 2, mitochondrial.
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Colocalization Analysis

Colocalization analysis was performed to explore 
whether risk variants for PAT were associated with 
gene expression in adipose, arterial, and cardiac tis-
sues. Using cis-eQTLs from GTEx version 8, as-
sociations were explored within 1 Mb of significant 
GWAS SNPs. In the discovery GWAS, evidence for 

colocalization was found in the RP4-712E4.1 locus in 
subcutaneous adipose tissue (PPH4=0.93) and tibial 
artery (PPH4=0.96; Table S9, Figures S4 and S5). For 
SNPs in the region surrounding RP4-712E4.1, PAT risk 
and RP4-712E4.1 tended to correlate, suggesting that 
increased PAT risk is associated with increased RP4-
712E4.1 expression (Figures  S4D and S5D). These 

Figure 4.  Chromatin interactions and expression quantitative trait loci of pericardial adipose tissue risk loci on chromosome 
8. The outer layer displays genome-wide association study P values, with the lead single nucleotide polymorphism labeled.
Genes mapped by either expression quantitative trait loci or chromatin interactions are displayed in the innermost circle. Genes 
mapped by chromatin interactions are displayed in orange, expression quantitative trait loci in green, and those mapped by both in 
red. Orange links display chromatin interactions, and green links display expression quantitative trait loci. EBF2 indicates early B-cell 
factor-2; and SDAD1P1, SDA1 domain containing 1 pseudogene 1.
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results were not duplicated in the replication data set. 
Sensitivity analysis confirmed that these colocaliza-
tions were robust to changes in the prior probability 
of a variant associating with both traits (ie, p12 prior; 
Figure S6). An additional locus of high PPH4 was found 
between the gene CDCA2 in the LV, in both discovery 
and replication data sets, although these were driven 
by a single SNP (Figure S7). Multiple associations were 
found for loci where SNPs independently associated 
with PAT risk and gene expression in a region, in-
cluding the DOCK5 locus using the tibial artery eQTL 
(PPH3=0.93 in discovery and replication data sets) and 
in the WARS2 and RP11-418J17.1 loci in all 7 tissues 
tested (PPH3≥0.99 throughout the discovery GWAS; 
Table S9).

Gene to Function

To understand putative biological mechanisms behind 
the potentially causal genes (TBX15, WARS2, EBF2), 
gene-to-function mapping was performed in FUMA. 
A visual representation of normalized gene expression 
across tissue types is depicted in Figure S8, highlight-
ing the elevated expression of EBF2 and TBX15 in 
adipose tissue, with only EBF2 specifically expressed 
in visceral omental adipose tissue. Differentially ex-
pressed gene analyses did not identify any statistically 
significant differences in gene expression across tis-
sue types (Table S10). The gene-set enrichment and 
pathway analyses did not yield any significant results.

A phenome-wide association study was performed 
for protein coding potentially causal genes. The 2 pri-
oritized genes on chromosome 1, TBX15 and WARS2, 
were associated with similar phenotypes, including 
male pattern baldness, white blood cells, measures of 

overall adiposity and its distribution, bone mineral den-
sity, and height (Figure S9, Table S11). The prioritized 
chromosome 8 gene, EBF2, was associated with traits 
relating to adiposity and its distribution and height but 
was also associated with blood pressure traits. An 
association was also noted with inguinal hernias. The 
results are presented in Figure S10 and Table S11. In 
mice, homozygous loss of function in both EBF2 and 
WARS2 have been associated with embryonic lethal-
ity, whereas heterozygous loss-of-function mutations 
in EBF2 have been associated with a variety of cardiac, 
spleen, vascular, and other malformations. The full list 
of mouse phenotypes is reported in Table S12.

Heritability and Phenotypic Associations
Heritability and Genetic Correlations

The genome-wide heritability (h2
g SNP) of adiposity-

adjusted PAT was estimated at 9.15% (standard error, 
2.49%). The genetic correlations of adjusted PAT are 
displayed in Table S13. There was no significant cor-
relation with adiposity measures, which is expected 
given the adjustment for these measures in the GWAS 
analysis. A nominally significant correlation was noted 
between adjusted PAT and heart failure (genetic cor-
relation [rG]=0.36, standard error [se]=0.18, P=0.048). 
No further correlations were discovered with other car-
diovascular outcomes, and no associations were sig-
nificant after accounting for multiple testing.

Mendelian Randomization

The instrumental variants extracted for MR analyses 
corresponded with the 2 prioritized lead variants at the 
2 risk loci. F statistics were 34.5 for rs6428792 and 

Figure 5.  Inverse-variance weighted Mendelian randomization analysis exploring 
the association between pericardial fat area (pericardial adipose tissue) and left 
ventricular (LV) end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV 
ejection fraction (LVEF), LV mass (LVM), and LV mass to end-diastolic volume ratio 
(LVM:LVEDV).
LVSV indicates left ventricular stroke volume.
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50.3 for rs11992444, indicating adequate instrument 
strength.

Higher genetically predicted adjusted PAT was as-
sociated with lower LVEDV (β, −1.04 [95% CI, −1.88 to 
−0.19]; P=0.016) and LV end-systolic volume (β, −0.91 
[95% CI, −1.74 to −0.08]; P=0.032). There was no sig-
nificant association between genetically predicted PAT 
and LV stroke volume (β, −0.72 [95% CI, −1.73 to 0.07]; 
P=0.072), LV ejection fraction (β, 0.23 [95% CI, −0.64 
to 1.11]; P=0.602), and LV mass:LVEDV ratio (β, 1.14 
[95% CI, −0.28 to 2.55]; P=0.115).

The results of the MR analyses are summarized in 
Figure 5 and Table S14. Single-SNP analysis revealed 
consistency in effect estimate directions with the main 
analysis and between both instrumental variants, as 
depicted in Figure 6.

Sensitivity Analyses

The meta-analysis GWAS resulted in 185 SNPs that 
passed the GWAS P value threshold (5×10−8) mostly 
in chromosome 1 and 2 and 1 in chromosome 8 
(Table 3). The leading SNPs are rs6428792 (chromo-
some 1), rs1430788 (chromosome 2), and rs1199244 
(chromosome 8) which match the GWAS discovery 
and replication summaries. rs1430788 (chromosome 
2) was neither significant in the discovery nor in the 
replication GWAS, although it was among the leading 
SNPs in the meta-analysis.

The results of the more relaxed GWAS (without ad-
justment for fat measures) are presented in Table S15. 

rs11992444 (chromosome 8) SNP that was replicated 
in the adjusted model and in the meta-analysis was 
also significant in the relaxed GWAS. In addition, the 
rs143078898 (chromosome 2) SNP that was signifi-
cant in the meta-analysis GWAS was also significant in 
the relaxed GWAS analysis.

DISCUSSION
This study is the largest individual-level GWAS to date 
exploring the polygenic basis and genetic architecture 
of PAT. To add to previous literature, we specifically 
aimed to disentangle PAT from multiple other biometric 
measures of total adiposity and its distribution to iso-
late specific determinants of preferential fat deposition 
in the pericardial compartment. This strategy yielded 
a total of 11 genome-wide significant variants, with 2 
lead uncorrelated SNPs relating to 2 genomic risk loci. 
These were mapped to 10 potentially causal genes 
using positional, eQTL, and chromatin interaction 
mapping. Among these, 3 protein coding genes were 
identified: TBX15, WARS2, and EBF2. For the latter 2 
genes, enrichment analyses determined significant 
tissue-specific eQTLs and chromatin interactions in 
both adipose and cardiac tissue, supporting an over-
lapping physiology in these tissue types. Importantly, 
we also found that the proportion of phenotypic vari-
ance explained by the genotype was 9.1%, indicating 
a relatively high genetic determination of proportionally 
greater PAT deposition.

Figure 6.  Single–single nucleotide polymorphism Mendelian randomization analysis (Wald ratio method) exploring the 
association between pericardial fat area (pericardial adipose tissue) through rs6428792 and rs11992444 and left ventricular 
(LV) end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV ejection fraction (LVEF), LV mass (LVM), and LV mass 
to end-diastolic volume ratio (LVM:LVEDV).
LVSV indicates left ventricular stroke volume.
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Table 3.  Meta-analysis Genome-wide Association Studies Summary Statistics for the Lead SNPs Using the Metal Tool

SNP Chromosome BP Allele 1 Allele 2 Effect Standard error P value Direction

rs6428792 1 119 656 867 A G −0.0092 0.0014 1.67E-11 …

rs143078898 2 229 994 086 T C −0.0133 0.0023 1.53E-08 …

rs11992444 8 25 464 690 T G −0.0127 0.0013 8.77E-22 …

BP indicates base pair; and SNP, single nucleotide polymorphism.
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To date, only 2 genome-wide association stud-
ies18,19 have been performed exploring the polygenic 
basis of PAT. Fox et al18 explored the genetic determi-
nants of PAT adjusted for visceral fat volume, WHR, 
and BMI in 5487 participants of the Framingham Heart 
Study, uncovering 1 single genome-wide significant 
variant at 1 locus (rs10198628 mapped to the TRIB2 
gene). In our relaxed GWAS, this SNP was only nom-
inally associated with PAT (P value=0.029). The result 
was similar in the main GWAS analysis adjusted for fat 
measures (P value=0.037) and in the meta-analysis (P 
value=0.012). Chu et al19 explored the genetic determi-
nants of PAT, adjusted for height and weight only, in a 
cohort of 18 332 participants that included individuals 
in the study by Fox et  al. A total of 3 genome-wide 
significant variants were identified (rs6587515 mapped 
to the ENSA gene, rs1650505 mapped to the EBF1 
gene, and rs10198628 mapped to the TRIB2 gene). 
Among them, 1 was replicated from the study by Fox 
et  al (rs10198628 [chromosome 2]). In our “relaxed” 
GWAS, rs6689335 (P=0.320), rs6587515 (P=0.220), 
and rs10198628 (P=0.015) were replicated. In the main 
GWAS analysis with adjustment for fat measures, 
rs6689335 was not associated with PAT (P=0.900) and 
neither was rs6587515 (P=0.150), whereas rs10198628 
was (P=0.160). In the meta-analysis, rs6689335 
(P=0.657) and rs6587515 (P=0.383) were not asso-
ciated with PAT, whereas rs10198628 (P=0.011) was 
nominally significant but did not pass GWAS threshold. 
This discrepancy is likely to relate to the lack of sample 
overlap and more comprehensive adjustment for mea-
sures of total and relative adipose tissue distribution 
in our analysis. Importantly, we carried out a replica-
tion analysis in an independent subset of UK Biobank 
participants who were excluded from the discovery 
analysis. This replicated all the genome-wide signifi-
cant signals at Bonferroni-adjusted P value, increasing 
confidence in the validity of our results.

Among the genome-wide significant variants discov-
ered, 10 of the 11 were located in a single genomic risk 
locus on chromosome 1. Among these, 1 single lead 
variant was retained (rs6428792). Positional mapping 
identified 3 potential causal genes, eQTL mapping iden-
tified 4 potential causal genes (2 overlapping) and chro-
matin interaction using Hi-C data from the LV identified 
2 further potential causal genes. Colocalization analysis 
suggested that, for all the genes in the implicated region 
in chromosome 1, the risk of PAT in both subcutane-
ous adipose and tibial arterial regions were associated 
with increase gene expression of RP4-712E4.1, a long 
noncoding RNA, at this locus. For the chromosome 8 
variant (rs11992444), positional and eQTL mapping did 
not identify any genes, and the colocalization analysis 
was inconclusive. However, chromatin interaction map-
ping using Hi-C data from the LV identified 3 potentially 
causal genes. Overall, among the identified potentially 

causal genes at both loci, 5 had been previously as-
sociated with BMI-adjusted adiposity distribution traits 
(TBX15, WARS2, EBF2, PSMC1P12, RNA5SP56), and 1 
gene, SDAD1P1, has been previously associated with 
red cell distribution width. The remaining 4 genes had 
no previously reported associations.

The potentially causal protein coding genes have 
been implicated in a variety of physiological pathways. 
EBF2 is known to play a key role in activating the ex-
pression of brown fat–selective genes in adipocytes.55 
WARS2 encodes a cytoplasmic form of tryptopha-
nyl-tRNA synthetase, which has been shown to play 
a central role in angiogenesis, including cardiac angio-
genesis.56 In mouse models, a reduction of WARS2 
gene function was shown to lead to reduced food 
intake and depot-specific changes in fat mass and 
brown fat distribution.57 Similarly, TBX15 activation has 
been implicated in the preferential distribution of ab-
dominal adiposity58 as well as in adrenergic-induced 
adipocyte browning.59 Generally, white adipose tissue 
is considered predominantly an inactive energy stor-
age, whereas brown adipose tissue contains a higher 
concentration of mitochondria and expresses UCP1 
(uncoupling protein 1), a protein that enables its meta-
bolic use and thermogenesis.60 PAT is considered pre-
dominantly a white adipose tissue depot, although it is 
known to have higher expression of UCP1 compared 
with white adipose tissue in the rest of the body. The 
results of our study and functional annotation suggest 
that a reduced propensity toward fat browning likely 
contributes to higher proportional PAT deposition. 
Indeed, both lead variants in this study were inversely 
associated with PAT, and unaligned eQTL mapping dis-
played a predominantly inhibitory role of the unaligned 
variants on WARS2, but an enhancing role on TBX15. 
Thus, aligning the variants toward greater PAT would 
suggest an enhancing role on WARS2, and an inhibitory 
action on TBX15, both of which are consistent with a 
phenotype of inhibited adipose tissue browning. This is 
mechanistically consistent with previous observational 
work outlining an inverse association between brown 
adipose tissue and visceral adiposity deposition.61

To relate the genetic data with potential biological 
consequences of PAT, we examined genetic correla-
tion analyses and performed MR. A genetic correla-
tion was observed between adjusted PAT and heart 
failure, consistent with previous evidence linking PAT 
with heart failure6 and adverse cardiac structure and 
function independent of overall adiposity.9 Building on 
these observational data, we performed MR analyses 
to elucidate the potential causal relevance of PAT on 
cardiac structure and function. This revealed an as-
sociation of higher PAT with lower LVEDV, lower LV 
end-systolic volume, and a suggestive result for lower 
LV stroke volume. This is broadly reflective of a reduc-
tion in ventricular chamber volume, consistent with 

D
ow

nloaded from
 http://ahajournals.org by on N

ovem
ber 6, 2023



J Am Heart Assoc. 2023;12:e030661. DOI: 10.1161/JAHA.123.030661� 13

Salih et al� Genome-Wide Association Study of Pericardial Fat

remodeling patterns seen in aging62 and in heart failure 
with a preserved ejection fraction.63 Beyond the reduc-
tion in LV volumes and stroke volume, the aging heart 
with a preserved ejection fraction phenotype is charac-
terized by lower LV mass attributed to cardiomyocyte 
attrition,63,64 typically occurring to a lesser proportion 
to the reduction in volumes, leading to an increased LV 
mass:LVEDV ratio reflecting greater concentricity.63 In 
this phenotype, LV ejection fraction would be expected 
to remain similar or paradoxically increase with the rise 
in concentricity.65 Although not all of these associa-
tions were statistically significant, the directionality of 
the MR results is consistent with remodeling in a heart 
failure with a preserved ejection fraction cardiac phe-
notype. This is consistent with the cardiac remodeling 
pattern that has previously been associated with PAT 
in observational studies.6,66,67

We acknowledge some limitations. Despite being 
the largest currently available GWAS of PAT, the num-
ber of loci discovered remains small. In addition, be-
cause of the restricted sample size, the analysis was 
restricted to variants with a minor allele frequency>1%. 
Incorporation of rare variants in further analyses when 
larger sample sizes are available might enhance ge-
netic discovery. Finally, the UK Biobank population was 
restricted to European ancestry; therefore, further re-
search is warranted in populations of other ancestries.

In summary, the results of this study enhance the 
current knowledge about the genetic basis of prefer-
ential PAT deposition, prioritize a number of potentially 
causal genes that might exert influence through the 
modulation of adipose tissue browning, and provide 
genetic evidence to support causal relevance of PAT 
on cardiac structure and function that might contribute 
to heart failure risk.
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