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RootPath: Root Cause and Critical Path Analysis to
Ensure Sustainable and Resilient Consumer-Centric

Big Data Processing under Fault Scenarios
Umit Demirbaga, Member, IEEE and Gagangeet Singh Aujla, Senior Member, IEEE

Abstract—The exponential growth of consumer-centric big
data has led to increased concerns regarding the sustainability
and resilience of data processing systems, particularly in the face
of fault scenarios. This paper presents an innovative approach
integrating Root Cause Analysis (RCA) and Critical Path Anal-
ysis (CPA) to address these challenges and ensure sustainable,
resilient consumer-centric big data processing. The proposed
methodology enables the identification of root causes behind
system faults probabilistically, implementing Bayesian networks.
Furthermore, an Artificial Neural Network (ANN)-based critical
path method is employed to identify the critical path that
causes high makespan in MapReduce workflows to enhance
fault tolerance and optimize resource allocation. To evaluate the
effectiveness of the proposed methodology, we conduct a series of
fault injection experiments, simulating various real-world fault
scenarios commonly encountered in operational environments.
The experiment results show that both models perform very
well with high accuracies, 95%, and 98%, respectively, enabling
the development of more robust and reliable consumer-centric
systems.

Index Terms—Big data, Root cause analysis, Critical path
analysis, Artificial intelligence

I. INTRODUCTION

CONSUMER-centric touch is a paradigm that emphasizes
the need to foster personalized, engaging, and interactive

customer experiences in commercial settings. This conceptual
framework figuratively expands the concept of physical contact
to emphasize the necessity of developing emotional connec-
tions and connecting on a fundamental level with clients.
Consumer-centric touch emphasizes creating personalized ex-
periences prioritizing individual requirements, preferences,
and goals. It is located at the intersection of design, user
experience, and customer relationship management. Organiza-
tions strive to develop relationships based on trust, happiness,
and loyalty by utilizing intuitive interfaces, visually engaging
designs, and emotionally resonant encounters. Considering
the massive amounts of data produced by consumer-centric
touch, it is crucial to have a robust big data system to
perform low-cost and high-speed data analytics. Big data
systems enable organizations to efficiently gather, store, and
analyze large datasets generated by customer interactions,
offering insights into consumer behavior, preferences, and
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Fig. 1. Makespan evaluation in MapReduce workflow

trends. Organizations can obtain actionable knowledge from
data by using sophisticated analytics and machine learning
algorithms to enhance decision-making, develop consumer-
centric strategies, and personalize experiences at scale. As a
result, the incorporation of strong big data platforms becomes
critical in effectively processing and exploiting the quantity
of information created by consumer-centric contact, enabling
businesses to provide heightened value and optimize their
customer-centric activities.

Hadoop1 implements the MapReduce programming model.
MapReduce is developed for the parallel processing of large-
scale data by utilising map and reduce functions [1]. Numerous
map and reduce tasks are spread and carried out simultane-

1https://hadoop.apache.org/

https://hadoop.apache.org/
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TABLE I
END-TO-END PATH DURATION OF FIG. 1(B)

A B C D E F G H I J K L M Total
5 — — — 38 — — — 9 — 3 — 5 60
5 — — — 38 — — — — 13 — 4 5 65
— 6 — — — 40 — — 9 — 3 — 5 63
— 6 — — — 40 — — — 13 — 4 5 68
— — 5 — — — 37 — 9 — 3 — 5 59
— — 5 — — — 37 — — 13 — 4 5 64
— — — 6 — — — 35 9 — 3 — 5 58
— — — 6 — — — 35 — 13 — 4 5 63

Critical path = B + F + J + L + M = 68 (s)

ously depending on the amount of data. This complexity of
interactions and data transmission between dependent tasks
leads to high execution time and poor performance, making
it difficult to understand the root cause of problems (such as
data skew, resource heterogeneity, and network issues). The
performance of the MapReduce implementations is affected by
the specific task, such as the poorly performed mapper in the
red circle in Fig. 1(a), as well as a set of operations called paths
formed by interdependent tasks depicted in Fig. 1(b). Table I
presents the total execution times, measured in seconds, for
each path of the MapReduce workflow. The critical path of the
MapReduce workflow is the sequence of tasks that collectively
take the longest time to complete. In this case, the critical path
is identified to have a total execution time of 68 seconds. This
critical path plays a crucial role in determining the overall
efficiency and performance of the MapReduce workflow.

Such struggling tasks or paths within jobs significantly
influence the total execution time called makespan as the tasks
must be completed to finalize the job in MapReduce. Some
common reasons causing outlier problems and critical paths
in the MapReduce framework include insufficient computing
resources, network failures, and data skew, resulting in time
loss, energy waste, and increasing cost [2]. As a result, this
complexity in such systems makes it complicated to identify
the core reasons for high makespan resulting in performance
reduction. To address the issues defined above, in this paper,
we investigate the following research questions:

• (RQ1) How can one methodically and rigorously iden-
tify the underlying causal elements responsible for the
prevalent issue of extended makespan, specifically within
consumer-centric touch, while considering the intricate
complexities and interdependencies inherent to contem-
porary big data systems?

• (RQ2) How can we proficiently employ predictive
methodologies and approaches to systematically predict
the critical path embedded within the MapReduce work-
flow, which invariably exacerbates prolonged makespan
while considering various fault scenarios and their poten-
tial impacts in consumer-centric interactions?

Much recent work focus on addressing big data systems
problems, including debugging [3], [4], task scheduling [5],
[6], modelling [7], [8]. Numerous papers discussing the root
cause analysis in big data systems have been published in the
literature. The authors of [9] propose an offline framework for
root cause analysis for MapReduce workflows by defining an
outlier detection model. Garraghan et al. [10] suggest a new

approach to identifying long-tail behavior in big data systems,
evaluated through Google cluster workload traces. The authors
of [11] propose a root cause analysis method based on Regres-
sion Neural Network (RNN) that defines the outlier tasks for
Apache Spark. Another ML-based root cause analysis method
is proposed by [12] implementing Reinforcement Learning
for performing root cause analysis of outliers. A statistical
approach is proposed by [13] to perform real-time performance
diagnosis for big data systems. They develop user-defined
functions to find outliers by referring to a threshold, then
process the collected logs to find the reasons for outliers based
on common big data issues, namely data skew, resource hetero-
geneity, and network problems (e.g., disconnection). However,
these works can perform root cause analysis by considering
the complex relationship between stochastic factors and not
analysing such features probabilistically.

Some published works discuss critical path analysis to
diagnose big data systems. Gianniti et al. [14] suggest a critical
path approach that models the prediction of execution time
for MapReduce and Spark applications by deploying Fluid
Petri Nets techniques. They, however, consider only the limited
features determining the job execution time, not considering
the faults scenarios. Böhme et al. [15] introduce an innovative
and adaptable performance analysis methodology by consider-
ing the critical path method. They suggest numerous concise
performance indicators that intuitively direct the examination
of complicated load-imbalance phenomena by illuminating
the connection between critical and non-critical operations to
calculate the performance indicators in a very scalable manner
by replaying event traces for massively parallel programs with
thousands of processes. Heath et al. [16] propose a high-
level abstract tool that depicts the critical path in a space-
time diagram for performance visualization. The performed
case studies demonstrate the relationships between the funda-
mental data visualisation ideas and the model. The authors in
[17] propose a distributed big data analytics framework that
implements projection insertion to extract unused data and re-
dundant codes to optimize the performance of the applications
based on the critical path. To evaluate the proposed method,
they implement it for both Spark and Hadoop frameworks.
However, these works do not consider end-to-end critical path
analysis for big data systems.

As indicated above, the existing literature on consumer-
centric touch and big data systems has primarily focused
on the importance of personalized customer experiences and
the utilization of big data platforms for gathering insights.
However, there is a considerable gap in the literature surround-
ing identifying and analysing the core causes of performance
degradation and high execution time in big data systems.
Moreover, while the literature acknowledges that issues such
as data skew, resource heterogeneity, and network failures can
impact performance, there is limited research on understanding
and addressing these complex interactions and transmission
problems between dependent tasks in MapReduce frameworks.
Bridging this gap would give useful information for organiza-
tions looking to optimize their customer-centric operations and
improve big data platforms’ performance in customer-centric
contact.
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TABLE II
BIG DATA PERFORMANCE METRICS

Metrics Description
dataSplit Time spent on data splitting in seconds.
mapperTime Execution time since the mapper task started in seconds.
shuffleTime Execution time spent on the shuffle phase in seconds.
reducerTime Execution time since the reducer task started in seconds.
dataCombine Time spent on data combining in seconds.
networkTraff Network upload/download traffic of nodes in kilobytes.
CPUusage CPU utilization of nodes as a percentage.
memUsage Memory utilization of nodes as a percentage.
makespan The total time spent on completing the job in seconds.

A. Contributions

To the extent of our knowledge, no study has examined
the research questions (RQ1 and RQ2) about performing the
root cause analysis for dependent components in MapReduce
workflow and forecasting the makespan under fault conditions.
To this end, in this paper, we focus on performing the
contributions indicated below:

• To address RQ1, we propose a root cause analysis tech-
nique that implements the Complex Bayesian Network
algorithm that allows us to represent the causal relation-
ships between MapReduce performance variables in a
graphical form to detect the main reason for the high
makespan probabilistically.

• To address RQ2, we develop an Artificial Neural Net-
works (ANNs)-based prediction model defining the criti-
cal path that causes high makespan in MapReduce work-
flow. We adopt ANNs as they are particularly well-suited
for applications where the relationships between input
and output variables are complex and non-linear and can
learn from large amounts of data and identify patterns
and relationships.

The proposed system is presented in §II. While §III discuss
the experimental results, §IV concludes the paper.

II. PROPOSED SYSTEM: ROOTPATH

In this section, we present RootPath, which comprises
two systems: a Bayesian network-based root cause analysis
method and an ANN-based critical path prediction model for
big data systems. We deploy SmartMonit [18] to monitor
and collect the performance metrics in one-second intervals.
SmartMonit employs counters to collect statistics related to
the MapReduce job. These counters include MapInputRecords,
MapOutRecords, and ShuffleErrors, which facilitate progress
monitoring within User-Defined Functions (UDFs). Concur-
rently, the collected time series data is injected into InfluxDB,
a time series database, via the RabbitMQ message broker
system to enable comprehensive data analysis and visualiza-
tion. This robust architecture ensures efficient monitoring and
data collection, enhancing the reliability and performance of
consumer-centric big data processing systems. While Fig. 2
depicts the RootPath architecture for consumer-centric touch
big data processing, Table II shows these performance metrics
used in implementing the proposed systems in this paper.

To create real-world big data systems problems, such as
insufficient computing resources, network failures, and data
skew, we injected different faults, such as data skew, CPU and
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Fig. 2. RootPath diagnosing architecture

memory faults that increase resource utilization, and network
connectivity issues.

A. Bayesian Network for Root Cause Analysis

Bayesian networks, also known as probabilistic networks,
are versatile models operating at the intersection of statistics
and machine learning [19]. They can replicate complex in-
teraction systems with a network topology that uses nodes
to represent measured characteristics and directed edges to
indicate the interactions between those nodes. As a result,
Bayesian networks provide a clear graphical representation
of multivariate interdependencies, showing how information
spreads. By leveraging such abilities of Bayesian networks,
discovering the relationship among the components of big data
applications can provide a deep understanding and insight into
the context of root cause analysis for big data systems [20]. In
our approach, probabilistic inference, structure estimation, and
parameter estimation methods collectively contribute to the
effectiveness of the Complex Bayesian network. Probabilis-
tic inference, realized through rejection sampling, facilitates
the computation of conditional probabilities for unobserved
variables, aiding in root cause identification. The network’s
predefined structure is complemented by dynamic structure
estimation, enabling adaptability to specific data scenarios.
Bayesian parameter estimation iteratively refines Conditional
Probability Tables (CPTs), capturing intricate dependencies
and enhancing accuracy in representing system dynamics.
These methods empower the network to discern complex inter-
dependencies and probabilistic relationships within consumer-
centric big data systems, crucial for robust root cause analysis.
The proposed root cause analysis method offers several distinct
advantages over conventional UDFs in the context of big
data systems. While UDFs are typically manually crafted and
necessitate extensive domain-specific expertise, the proposed
method leverages automated algorithms and machine learn-
ing techniques to autonomously identify and categorize root
causes of performance anomalies. This expedites the analysis
process and enhances accuracy by eliminating potential human
biases. Additionally, the scalability and adaptability of our
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Algorithm 1: Complex Bayesian Network
Input: X: random variable

G: directed acyclic graph,
V : nodes,
E: directed edges,
CPT : conditional probability table,

Output: P (X e|e 1, ..., e k): probability of the evidence X e.
1 //Sort the V in G topologically to obtain a list W .
2 Wl ← Sort V in G
3 for each X i in Wl do
4 if (Xi observed Xe) then
5 Xi ← Set ei
6 end
7 else
8 X i = RejectionSampling(P (X i|Pa(X i), CPT ))
9 end

10 end
11 for each X i in Wl do
12 if (Xi not observed Xe) then
13 //Estimate CPT
14 CPT = BayesianParameEst(X i, Pa(X i), data)
15 end
16 end
17 //Compute the X e given the evidence e 1, ..., e k using CPT .
18 P (Xe|e1, . . . , ek, G) = πiP (Xi|Pa(Xi), CPT )

system to diverse data sets and evolving system conditions
make it particularly well-suited for the dynamic and complex
nature of consumer-centric big data processing systems.

To this end, we develop a novel root cause analysis tech-
nique built on a Complex Bayesian network, which reveals
the complex and hidden relationship between the performance
metrics (see Table II) and between them and makespan. By
leveraging the CPTs associated with each variable (X), the
algorithm calculates the joint probability distribution (P ),
enabling the assessment of how changes in various perfor-
mance metrics probabilistically affect the makespan within our
consumer-centric big data processing system. The complex
Bayesian network algorithm is selected due to its capac-
ity to model intricate variable dependencies in consumer-
centric big data. Unlike simpler methods like Naive Bayes,
it accommodates non-linear relationships. It captures nuanced
interactions, which better aligns with the complex and dynamic
nature of consumer-centric data, enhancing the accuracy and
robustness of our analysis. This enables us to build a root
cause analysis for big data systems. Algorithm 1 explains the
Complex Bayesian Network learning model to determine the
probability of the evidence given some observed evidence.
It initially arranges the nodes in a topological order (line
2) before utilizing rejection sampling to provide samples for
unseen nodes (line 8). We optimized rejection sampling by em-
ploying topological sorting to streamline the sampling order,
estimating accurate CPTs from available data, and fine-tuning
the sampling strategy to balance accuracy and computational
efficiency. Following that, Bayesian parameter estimation is
used to estimate the CPTs for unobserved nodes (line 14).
Finally, it uses CPTs to calculate the likelihood of the evidence
given the evidence (line 18). The approach relies on CPTs
that are known or estimable and an acyclic Complex Bayesian
network.

B. Critical Path Prediction using ANN

Critical path helps to model the Program Activity Graph
(PAG) for parallel-running applications. The critical path
within a MapReduce workflow holds significant importance
as it represents the sequence of tasks that, if delayed, would
result in the maximum extension of the job’s completion time.
Identifying and predicting the critical path is instrumental in
optimizing the overall efficiency of MapReduce computations.
By focusing on the critical path, resource allocation and
task scheduling decisions can be tailored to prioritize the
most time-sensitive tasks, thereby minimizing job completion
times. Predicting the critical path aids in understanding job
completion times by offering insights into the factors that
exert the most substantial influence on the workflow’s overall
duration. As seen from Fig. 1(b), the longest way drawn in
the red line also defines the end-to-end job completion time.
Prediction of the critical path gives us preliminary information
about the completion time of the job. ANN is a deep learning
technique that is a valuable model for classification, clustering,
pattern recognition, and prediction in numerous domains.
In our proposed methodology, the ANN-based critical path
prediction model employs a learning algorithm to adapt its
network parameters and enhance its accuracy in predicting
critical paths within consumer-centric big data processing
workflows. This algorithm leverages a backpropagation mech-
anism, a widely utilized technique in neural network training,
to iteratively adjust the model’s weights and biases based on
the discrepancy between predicted critical paths and ground
truth data. Through this iterative process, the ANN endeavors
to minimize the prediction error by updating its parameters,
effectively learning the intricate patterns and relationships that
govern critical paths in MapReduce workflows. The iterative
ANN-based critical path model employs mechanisms to ensure
convergence and prevent overfitting. We use dropout layers,
randomly deactivating neurons in training to reduce reliance
on specific ones, mitigating overfitting. We employ early
stopping criteria, monitoring validation performance during
training. Training is halted to prevent overfitting if the model’s
performance on the validation set deteriorates.

Our proposed algorithm (Algorithm 2) executes an iterative
loop that goes through each instance in the training set for
each epoch time. The iterative loop (line 8) is instrumental in
detecting the critical path within our MapReduce workflow,
aligning with the temporal nature of performance metric
collection facilitated by our adopted big data monitoring
framework, SmartMonit [18]. This framework captures perfor-
mance metrics at three-second intervals and stores them in a
time-series database for analysis. Our critical path prediction
module employs this iterative loop to analyze the collected
data within predefined time intervals to pinpoint the critical
path effectively. This approach accommodates the dynamic
nature of performance metrics in big data processing, ensuring
adaptive and responsive critical path detection. After that, the
ANN learning algorithm gains insights into how often each
hidden node contributes to the predictions of networks (line
10) before gaining insights into the behavior and performance
of the ANN by computing the output node activation rates (line
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Algorithm 2: Neural network learning algorithm
Input: a ∈ Rnin : input data

k ∈ Rnout : target output data,
U ∈ Rnin×nhidden : weights from input to hidden,
V ∈ Rnhidden×nout : weights from hidden to output,
α ∈ R: learning rate,
g(): activation function.

Output: z ∈ Rnout : final output prediction.
1 Function backPropagate(U, V, a, b, δz , δb, α): begin
2 //Update weights from input to hidden
3 U ← U − αaT δb
4 //Update weights from hidden to output
5 V ← V − αbT δz
6 end
7 //Begin an iterative loop
8 for each epoch do
9 //Compute the hidden node activation rates

10 b = g(aU)
11 //Compute the output node activation rates
12 z = g(bV )
13 //Compute the output error rate
14 δz = (z − k)⊙ g′(bV )
15 //Compute the hidden error rate
16 δb = δzV T ⊙ g′(aU)
17 //Update weights using backpropagation algorithm
18 backPropagate(U, V, a, b, δz , δb, α)
19 end
20 //Compute the final activation rate of output nodes
21 z = g(aUV )

TABLE III
DATASET STATISTICS OF THE PERFORMANCE METRICS.

Metrics Mean Std. dev. Min. Max. Count
dataSplit 8.757 3.006 4 14 24000
mapperTime 40.743 2.908 35 47 24000
shuffleTime 11.604 2.484 3 17 24000
reducerTime 5.009 1.152 3 7 24000
dataCombine 6.499 1.439 4 10 24000
networkTraffic 1121.24 1583.2 20.03 6000.18 24000
CPUusage 78.99 4.839 72 89 24000
memUsage 30.499 3.035 25 36 24000
makespan 72.615 6.555 54.48 90.45 24000

12). The network’s parameters are modified by measuring the
difference between expected and desired outputs to reduce this
error and increase the network’s capacity to produce accurate
predictions (line 14) after the hidden error rate is computed to
alter the network’s parameters measuring each hidden node’s
contribution to the error to allow ANN to learn and improve
itself (line 16). With the Backpropagation function (line 18),
ANN extracts important features and representations from
input data by changing the weights from the input to the hidden
layer (line 3). Updating the weights from the hidden to the
output layers allows the network to produce more accurate
predictions or classifications based on the hidden layer’s
characteristics (line 5). As a final step, the final activation
rate of output nodes is determined to acquire the network’s
predictions or outputs for a given input (line 21).

III. RESULT AND DISCUSSION

RootPath is validated and tested extensively to evaluate
its performance in big data processing systems under fault
scenarios. The details are discussed in the subsequent sections.
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A. Experiment Setup

Environments and benchmark. We deploy a Hadoop cluster
over Ubuntu-based 30 AWS virtual machines (VMs). All the
nodes have 4 CPUs and 16 GB memory, with SSD-based
storage. We process the data, Consumer electronic dataset2,
consisting of 20 features, taken from Kaggle to gather perfor-
mance metrics and train and test the proposed models.

B. Training Dataset

Table III summarises the dataset used to develop the models
for big data processing systems. It provides a concise summary
of various performance metrics and their statistical character-
istics, where each metric is followed by its mean, standard
deviation, minimum, maximum, and count values.

C. Fault Injection

Fault injections are required for testing diagnosis systems
developed for big data systems to validate their accuracy,
efficacy, and resilience in identifying and fixing failures or
performance issues. They provide a controlled environment
for recreating difficult fault scenarios, allowing for complete
evaluation and development of the capabilities of the diagnosis
systems. To this end, we develop fault injection models to
create real-world problems encountered in big data systems:
CPU fault, memory fault, network fault, and data skew fault.
The CPU fault injection module emulates the generation of
Pascal’s Triangle, initializing with an initial row containing the
value 1. Subsequently, it iteratively constructs each successive
row by performing addition operations on the two numbers
immediately preceding a given position. This process persists
indefinitely until the user intervenes to halt it. To measure the
impact of CPU faults, we monitor key performance metrics,
including execution time, CPU utilization, and error rates,
during fault injection experiments. The memory fault injection
module initiates memory allocation operations, progressively
allocating memory until it attains the predefined threshold
established by the user. Similarly, we assessed the impact of
memory faults by tracking memory usage, execution time, and
error rates. The network fault injection module disrupts the
network connectivity of the host machine upon its execution,
and we quantified its impact on network latency, data transfer
rates, and communication errors. Lastly, the data skew fault

2https://www.kaggle.com/datasets/ashydv/consumer-electronics-data

https://www.kaggle.com/datasets/ashydv/consumer-electronics-data
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TABLE IV
CONDITIONAL PROBABILITY TABLE (CPT) FOR MAKESPAN AND SOME OTHER PERFORMANCE METRICS

CPUusage (%) CPUusage (<75) CPUusage (<75) CPUusage (<75) CPUusage (<75) CPUusage (<75)
dataSplit (s) dataSplit (>11) dataSplit (>11) dataSplit (>11) dataSplit (>11) dataSplit (>11)
reduce (s) reduce (>4 & <5.5) reduce (>4 & <5.5) reduce (>4 & <5.5) reduce (>4 & <5.5) reduce (>4 & <5.5)
dataCombine (s) dataCombine (<6) dataCombine (>6 & <7) dataCombine (>6 & <7) dataCombine (>7) dataCombine (>7)
makespan (s) (<67) 0.16% 0.01% 0.01% 0.04% 0.04%
makespan (s) (67 - 75) 73.72% 51.82% 36.50% 24.74% 14.68%

makespan (s) (>75) 26.11% 48.27% 63.48% 75.25% 85.30%
Abbreviations: <, less than; >, greater than; &, and.

dataSplit

Musage

makespanshuffle

dataCombine

criticalPath

map

reduce networkTraffic

CPUusage

Fig. 4. Dependency network for Complex Bayesian network

injection module is responsible for deleting all data blocks
resident on the machine, inducing delays from the need to
transfer data from an alternate node. We analyze the effect on
data transfer times, job completion rates, and loss for this fault.
By measuring these specific performance indicators, we could
comprehensively evaluate the impact of various fault scenarios
on our system’s resilience and performance. Fig. 3 shows the
performance degradation when the system experiences faults,
presenting the time differences between the tasks executed
under different scenarios.

D. Experimental Findings and Interpretations

This section presents all the results for root cause analysis
using the Complex Bayesian network and ANN-based critical
path prediction.

1) Bayesian Network-based Root Cause Analysis Results:
In this section, we provide two important results of implement-
ing a Complex Bayesian network: the complex relationships
between features and the probabilities of the features depend-
ing on other feature(s). The complex relationships between
performance metrics and makespan are shown in Fig. 4. The
connections show the dependencies between the features, and
the directions of the arrows indicate the parent-child status. For
example, CPU usage is the parent of data split while data split
is the parent of shuffle. In other words, CPU usage affects the
data split, and shuffle is affected by data split. Considering
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the makespan, data split and makespan are the main factors
that directly affect the critical path.

Table IV shows the CPTs uncovering the interdependencies
between the different ranges of makespan and other perfor-
mance metrics, such as CPUusage, dataSplit, reduce, and dat-
aCombine. The numbers for dataSplit, reduce, dataCombine,
and makespan are evaluated in seconds while CPUusage is
considered as a percentage. We discretize the makespan into
three different values based on the values in the dataset and
focus on high makespan, namely the values higher than 75
seconds. Let us focus on the highest makespan values, higher
than 75 seconds, as it is one of the factors that directly affects
the critical path as shown in Fig. 4. In this CPT, dataCombine
greatly impacts makespan. There is a 26.11% probability of
the makespan being over 75 seconds when the dataCombine
is under 6 seconds, while there is an 85.3% probability of the
makespan being over 75 seconds when the dataCombine is
over 7 seconds. Fig. 5 demonstrates the structure correlation
scores, namely F1 score, precision, recall, and overall accuracy
of the developed Complex Bayesian network. The model
performs well, with an accuracy of over 95%.

2) ANN-based Critical Path Prediction Results: Now, we
will discuss the critical path prediction model performance
results. Fig. 6 demonstrates the distributions of time densities
for performance-related measures, evaluated as a healthy and
unhealthy path. The unhealthy path, namely the critical path,
represents the path of processes that cause long-term process-
ing periods, called high makespan. As seen from the figures,
for example, Fig. 6(g) shows the CPU utilization distribution
that critical path metrics are concentrated between 72% and
78% while health path metrics reach up to 90%. To give
another example, the distribution of dataCombine time for the
critical paths reaches up to 10 seconds while the distribution
of healthy paths starts going down after 8 seconds, as shown
in Fig 6(e). Here, the makespan, which is the main criteria
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Fig. 6. Time density distributions for performance metrics
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defining the critical path, shows that the distribution of critical
paths lies between 80 and 90 seconds while health paths vary
from 55 to 85 seconds, in Fig. 6(i).

Fig. 7 shows the accuracies of training and validation over
the number of epochs to monitor the performance of the
ANN during the training process. The aim is to maintain
a small gap between training and validation accuracy while
achieving high accuracy on both the training and validation
sets, which helps minimize overfitting. The performance of
the critical path prediction model is shown through different
performance values in Fig. 8. The model reaches a high
performance with a 98% accuracy rate. Fig. 9 depicts the
relationship between the number of big data tasks running in
parallel and the corresponding response time in seconds for
two algorithms, Complex Bayesian Networks and ANN. Both
algorithms demonstrate a similar increasing trend in response
time as the workload intensifies. The Bayesian Networks
algorithm’s response time starts at 0.09 seconds for 50 tasks
and gradually grows to 2.852 seconds for 500 tasks. Similarly,
the ANN algorithm displays an initial response time of 0.12
seconds for 50 tasks, which escalates to 4.656 seconds for 500
tasks.

3) Comparative Analysis: We implement different algo-
rithms along with ANN to evaluate the performance of
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other techniques and identify the best approach. Accuracy
is considered the essential criterion in analyzing performance
metrics for algorithms, including Principal Component Anal-
ysis (PCA), Independent Component Analysis (ICA), Au-
toencoders (AE), and K-means shown in Fig. 10. According
to the results, the ANN has the maximum accuracy with a
score of 0.980 (see Fig. 8), making it the best-performing
algorithm in this respect. While other methods, such as PCA
and AE, have comparable accuracy ratings (0.974 and 0.976,
respectively), the ANN surpassed them. However, when other
measures such as F1 score, accuracy, and recall are included,
PCA demonstrates greater performance. These data illustrate
the trade-off between accuracy and other measures, implying
that the ANN is excellent in accuracy while other algorithms
excelled in various aspects of performance. Moreover, the
ANN’s multilayer structure allows it to automatically extract
essential features from input data in the critical path prediction
process. Weight adjustments through backpropagation fine-
tune the network, helping it capture intricate data patterns
that enhance the ANN’s ability to identify critical paths by
adapting its parameters to minimize prediction errors. Fig.
11 shows training and testing times, which vary due to
their unique specifications. The ANN algorithm has complex
architecture and computational requirements as it involves
iterative adjustments of weights and biases, resulting in longer
training and testing times. In contrast, PCA and ICA, which
have lower times, employ linear transformations without ex-
tensive iterative computations. AE’ training time depends
on factors like the number of layers and data complexity,
while the K-means algorithm’s training time relies on data
size, dimensionality, and convergence criteria. In summary,
AE demonstrates superior performance regarding the temporal
efficiency exhibited during the model’s training and testing
phases.

In evaluating the ANN-based prediction model against tradi-
tional regression and statistical models, we found that the ANN
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demonstrated superior accuracy and adaptability. It achieved
an accuracy score of 0.980, surpassing traditional models. The
ANN’s multilayer structure allows it to automatically extract
crucial features, enhancing its suitability for critical path
prediction. Weight adjustments via backpropagation further
improve its ability to capture intricate data patterns. While the
ANN’s training/testing times are longer due to its complexity,
its advantages in accuracy and adaptability make it a strong
choice for this task compared to traditional models.

IV. CONCLUSION

This study introduces RootPath, which comprises two inno-
vative models to address challenges associated with debugging
big data systems. The first model, centred on probabilistic root
cause analysis and implemented within a Bayesian Network
framework, is designed to identify the contributing features
responsible for performance degradation in large-scale data
processing systems. The second model, focused on critical
path prediction and utilizing ANN, aims to forecast the critical
path duration within MapReduce-based big data frameworks,
offering insights into potential performance bottlenecks. Ex-
tensive experimentation has been conducted across various
fault scenarios to assess the reliability and robustness of both
models. The experimental results underscore the efficacy of
RootPath, with the probabilistic root cause analysis achieving
an impressive accuracy rate of ≈95%, while the ANN-based
critical path prediction attains a notable accuracy rate of 98%.
These findings underscore the potential of RootPath as a
valuable tool for enhancing the diagnosis and optimization of
big data systems.
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