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Many cosmological phenomena lead to the production of primordial black holes in the early Universe.
These phenomena often create a population of black holes with extended mass and spin distributions. As
these black holes evaporate via Hawking radiation, they can modify various cosmological observables, lead
to the production of dark matter, modify the number of effective relativistic degrees of freedom,Neff , source
a stochastic gravitational wave background and alter the dynamics of baryogenesis. We consider the
Hawking evaporation of primordial black holes that feature nontrivial mass and spin distributions in the
early Universe. We demonstrate that the shape of such a distribution can strongly affect most of
the aforementioned cosmological observables. We outline the numerical machinery we use to undertake
this task. We also release a new version of FRISBHEE that handles the evaporation of primordial black
holes with an arbitrary mass and spin distribution throughout cosmic history.
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I. INTRODUCTION

The birth of gravitational wave astronomy [1,2] has
produced a flurry of interest in primordial black holes
(PBHs) [3]. Unlike astrophysical black holes, which result
from stellar collapse, PBHs formed in the early Universe
when large overdensities collapse under their Schwarzchild
radius. If proven to exist, the implications for our under-
standing of the postinflationary Universe would be tremen-
dous. This is because the primordial power spectrum
implied by the cosmic microwave background (CMB) is
insufficient to produce them. Evidence of PBHs would
represent a concrete way to move beyond the current model
of inflationary cosmology [4]. Measuring the PBH distri-
bution would provide a direct view into their production,
the early Universe [5–7] and inflation [8–23]. Even after
their initial production, BHs can accrete the Standard
Model (SM) plasma, merge with their peers, acquiring
rotational momentum [24,25].

PBHs can therefore feature various mass and spin
distributions depending on the cosmological scenario
considered. Whereas PBHs with masses larger than
1015 g are stable on cosmological time scales, lighter black
holes may have evaporated via Hawking radiation before
the current epoch [26,27]. The effect of this evaporation
was studied in many different contexts (see, e.g., Ref. [28]
for a recent review). PBHs with intermediate masses in the
range 108–1012 g are known to evaporate after big-bang
nucleosynthesis (BBN) [29] and, therefore, cannot con-
stitute a sizable fraction of the Universe’s energy density
since, through Hawking radiation, they would change the
neutron-to-proton ratio at the onset of BBN and therefore,
the abundance of light elements that are measured today
with excellent accuracy. However, a sizable abundance of
lighter PBHs may have formed in cosmic history without
affecting the post-BBN era. Interestingly, such PBHs may
even have dominated the energy density of the Universe
before they evaporated, leading to a phase of early matter
domination (EMD) and a subsequent reheating of the
Universe. In both cases, several works have recently
studied the imprints of such PBHs Hawking evaporation
on particle and astrophysical data by studying its effect
on the dark matter (DM) relic density and phase space
distribution [30–47], the effective number of relativistic
degrees of freedom, Neff , at the time of CMB emission
[25,32,33,43,48–50], the dynamics of baryo/leptogenesis
[34,51–62], the hydrogen 21-cm line [63], the production
of gravitational waves [64–66], and the electroweak
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vacuum stability [67–69]. In most of these studies, the
distribution of PBHs considered was monochromatic,
either in mass, or in spin; see, however, Refs. [70,71]
regarding the evaporation of a power-law mass distribution
in the early Universe, Ref. [72] for a study of the impact of
mass distributions on limits of PBH as DM, and Ref. [73]
for a first attempt in considering baryogenesis in the context
of extended distributions. In this paper, we consider the
detailed evaporation of PBH populations that are not
monochromatic, but instead spread over extended distri-
butions in mass and/or in spin, tracking the evolution of the
Universe carefully.
The paper is organized as follows: In Sec. II A, we

review the most well-studied mass and spin distributions
that have been reported in the literature and that we will be
considering throughout this work. We then review in
Sec. III the dynamics of the spin, a⋆, and mass, M, of a
Kerr black hole during Hawking evaporation, and we
extend this description in Sec. IV to the evaporation of
an extended distribution in the plane ðM; a⋆Þ. Details
regarding the calculations are presented in Sec. IV and
expanded in Appendixes A–C, which are used in our
numerical simulations. In the remainder of the paper, we
consider the various observables that can be affected by
nonmonochromatic PBH distributions. Specifically, in
Sec. VI A, we explore the effect of extended mass dis-
tributions on the dynamics of the Universe when PBH that
dominate the energy density evaporate and reheat the SM
sector and follow in Sec. VI B where we study similar
effects on the production of DM and explore how the
DM relic density is affected by the extension of the
distribution in various examples. In particular, we explore
how the constraints on warm DM from measurements of
the Lyman-α forest are accordingly affected. In Sec. VI C,
we derive constraints on PBHs that have an extended
distribution in mass and spin, by looking at their con-
tribution to ΔNeff . In Sec. VI D, we comment on the
possible imprints that extended distributions of PBHs could
leave in the spectrum of primordial gravitational wave that
could be observed in the future, and we finally conclude
in Sec. VII.
Throughout, we use natural units where ℏ ¼ c ¼

kB ¼ 1, and we define the Planck mass to be Mp ¼
1=

ffiffiffiffi
G

p
, with G the gravitational constant.

II. EXTENDED PBH DISTRIBUTIONS

Depending on their formation mechanism, the PBHs
may form with a mass [74] and spin distribution. In this
section, we review some well-motivated PBH mass and
spin distributions that we consider throughout this paper.
Further, we assume that the mass and spin distributions
form at the same time in the evolution of the Universe and
their distributions can be convoluted. We will discuss these
assumptions later on.

A. Mass distributions

In what follows, we will, for each of the mass distribu-
tions considered, denote by Mc the value of the mass at
which the corresponding mass fraction M × fPBHðMÞ
peaks, and by σ its width in logarithmic space.

1. Log-normal (LN)

The production of PBHs from inflation usually requires
the existence of a short period of ultra-slow-roll that
produces a peak in the primordial power spectrum of
scalar curvature perturbations [22,75–77]. Generically,
such peak is known to produce a log-normal mass function
[78] and this has been numerically and analytically verified
for slow-roll inflation [79,80]. The corresponding PBH
mass distribution has the following form

fPBHðMÞ ¼ 1ffiffiffiffiffiffi
2π

p
σM

exp

�
−
log2ðM=McÞ

2σ2

�
; ð1Þ

where Mc is the initial peak of the distribution and σ is the
width of the distribution. In the leftmost plot of Fig. 1, we
show M × fPBHðMÞ as a function of M for a central initial
mass of PBH, Mc ¼ 106 g with varying values of the
width σ.

2. Power-law (PL)

Another possible formation mechanism of PBHs is the
case where a large scale-invariant power spectrum of
primordial perturbations collapses in a Universe that is
dominated by a perfect fluid with constant equation-of-state
parameter, w. In that case, the distribution of PBHs takes
the form [85]

fPBHðMÞ ∝
�
M−α; for Mc ≤ M ≤ Mc × 10σ;

0; else;
ð2Þ

where the exponent α is given by

α≡ 4wþ 2

ðwþ 1Þ ; ð3Þ

and the mass range ½Mc;Mc10
σ� depends on the domain of

frequencies over which this scale-invariant power spectrum
was formed. Physical situations in which the Universe is
not inflating anymore typically correspond to values of w in
the range −1=3 < w ⩽ 1, and thus to a scaling exponent

1 < α ⩽ 3: ð4Þ

In the central plot of Fig. 1, we show the power law mass
distribution for varying α values with McðMc10

σÞ taking
the value 10ð106Þ g.
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3. Critical collapse (CC)

The application of critical scaling to gravitational col-
lapse is thought to describe the process of PBH formation
from primordial fluctuations in a rigorous way [82–84,86].
Traditionally, overdensities were assumed to produce PBHs
that had the same mass as their horizon mass. Instead, there
is an upper cutoff at around the horizon mass but then a tail
in the distribution for lower masses; this is a fairly generic
finding over many inflationary models [86]. The resulting
PBH distribution can attain a range of masses with the
following form:

fPBHðMÞ ∝ M1.25 exp

��
M
Mc

�
2.85

�
; ð5Þ

where Mc is the initial peak of the distribution. In the
rightmost plot of Fig. 1, the brown line indicates a typical
mass distribution from such a PBH formation mechanism.

4. Metric preheating (MP)

Generically, PBHs are expected to form from the
collapse of primordial perturbations that may form during
or after inflation. In realistic particle physics models,
inflation is usually followed by a phase of matter domi-
nation where the energy density of the Universe is
dominated by the coherent oscillations of the inflaton field.
In Refs. [81,87,88], it was noted that during that time,
perturbations that were generated during the late infla-
tionary era can get resonantly amplified and collapse into
black holes before the Universe is reheated. Depending on
the reheating temperature, the PBH mass fraction can peak
at different masses.
In order to obtain such a distribution, as shown by the

green line in the rightmost plot of Fig. 1, one should in
principle trace the collapse of the oscillating inflaton modes
into PBHs numerically. In practice, such a production

mechanism leads to an energy fraction of PBHs that is
close to one and the PBHs formed dominate the energy
density of the Universe quickly. For simplicity, we will
consider in what follows the distribution exhibited in the
Appendix of Ref. [81]. This distribution (let us denote it by
fAVPBH) shows a maximum around MAV

c ∼ 105.6 g. Later, to
extrapolate these results and explore different mass ranges,
we assumed that the overall shape of the distribution does
not change for different values of the reheating temperature,
and we simply translate the distribution in log-space as
follows:

fPBHðMÞ ¼ fAVPBH

�
M ×

MAV
c

Mc

�
: ð6Þ

B. Spin distributions

PBHs formed from the collapse of primordial perturba-
tions reentering the Hubble horizon are typically created
without angular momentum, but may acquire some spin
distribution via mergers or during phases of early matter
domination [89–93]. In particular, if the rate of PBH binary
capture is significant compared to the Hubble rate, the in-
spiral phase may end before light PBHs start evaporating.
After they merge repeatedly, the PBH spin distribution is
expected to stabilize to a universal distribution, which does
not depend anymore on the PBH masses [94]. This spin
distribution peaks strongly at ha⋆i ∼ 0.7, with few BHs
with a⋆ < 0.4. Another spin distribution involving hierar-
chical mergers was proposed in Ref. [95] based on LIGO/
VIRGO data regarding mergers in the Milky Way. As a
matter of fact, this distribution peaks as well at a⋆ ∼ 0.7,
and in both cases, the spin distribution is almost entirely
independent of the masses or the initial spin distribution of
the merging binaries [94,95]. Although the black holes we
consider are much lighter, as compared to the ones used in

FIG. 1. The left plot shows the log normal mass distribution with Mc ¼ 106 g for σ ¼ 0.5, 1.0, 2.0 shown in violet, teal and yellow,
respectively. The central plot shows the power law mass distribution with Mc ¼ 10 g and Mc10

σ ¼ 106 g for α ¼ 1, 2, 3 shown in
violet, teal and yellow, respectively. The right plot shows the mass distributions generated through metric preheating [81] (taken from
Appendix C, Fig. 8) and critical collapse [82–84], using Mc ¼ 105.6 g to align the two distributions.
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these different studies, it was shown that two nonrotating
BHs with similar masses acquire a spin of order a⋆ ≈ 0.69
after merging [96]. This universality suggests that the full
distribution of PBHs before they start evaporating can be
written as a product of the form

fPBHðM; a⋆Þ ¼ fMPBHðMÞ × faPBHða⋆Þ: ð7Þ

In what follows, we will assume that this universality
property holds for light PBHs produced in the early
Universe, and consider the evaporation of distributions
that take the form of Eq. (7). Note that this simplifying
assumption and our code are able to handle any general
distribution fPBHðM; a⋆Þ. For concreteness, we will con-
sider either the spin distribution obtained in Ref. [94] or
simply take a Gaussian distribution centered around a⋆ ¼
0.7 and having width σa⋆ . Other mechanisms of PBH
production, such as Q balls, oscillons, or cosmic strings,
may as well be created with specific spin distributions
[91–93,97,98]. However, giving a comprehensive review of
the effect of different distributions is beyond the scope
of this work. In this paper, we focus on the spin distri-
bution from hierarchical mergers as a simple case study to
exhibit the general phenomenological effects of spin
distributions.

III. PRIMORDIAL BLACK HOLE EVAPORATION

In this section, we review the physics of PBH evapo-
ration. For the sake of generality, we consider the case of a
Kerr PBH, which is characterized by both its mass and
angular momentum. The evaporation of a Schwarzschild
PBH will simply correspond to the special case of
vanishing angular momentum. In what follows, we do
not consider effects from dynamical horizons on the
particle production given the lack of consensus on which
metric is the correct one to describe cosmological black
holes; see [99] and references therein for the status of this
topic. In other words, we assume that the Hawking
evaporation operates in the same way as in vacuum.
We denote the mass of a PBH and its dimensionless spin

parameter by M and a⋆ ¼ JM2
p=M2, respectively, where J

is the angular momentum of the black hole. The Hawking
emission rate for a particle species i with three-momentum
p, total energy Ei and gi internal degrees of freedom is
given by [26,27]

d2N i

dpdt
¼ gi

2π2
X
l¼si

Xl

m¼−l

d2N ilm

dpdt
; ð8Þ

where

d2N ilm

dpdt
¼ σlmsi ðM;p; a⋆Þ

exp ½ðEi −mΩÞ=TBH� − ð−1Þ2si
p3

Ei
: ð9Þ

In this expression, Ω ¼ ða⋆=2GMÞð1=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2⋆

p
ÞÞ is

the horizon’s angular velocity, and l, m are the total and
axial angular momentum quantum numbers, respectively.
In Eq. (8), it is necessary to write explicitly the sum over the
angular momentum quantum numbers as the PBH spin
breaks the spherical symmetry, given the explicit depend-
ence of the Hawking rate on m. For the case of
Schwarzschild PBHs, a⋆ ¼ 0, the emission rate is inde-
pendent ofm so one can replace the sum over m by a factor
of (2lþ 1). σlmsi appearing in Eq. (8) corresponds to the BH
absorption cross section, which describes the effects of the
centrifugal and gravitational potential on the particle
emission [26,27,100–102]. These quantities are determined
by solving the spin-dependent equations of motion for a
field in the Kerr spacetime. We have adopted the method-
ology described in Refs. [103–105] to obtain such cross
sections.
To derive evolution equations for the BH mass and spin,

we multiply the Hawking rate shown in Eq. (8) by the total
energy of a given particle Ei or by the m quantum number,
and then we integrate over the phase space. Defining the
evaporation functions for mass and angular momentum,
εiðM; a⋆Þ and γiðM;a⋆Þ per particle i, respectively, as

εiðM; a⋆Þ ¼
gi
2π2

Z
∞

0

X∞
l¼si

Xl

m¼−l

d2N ilm

dpdt
EdE; ð10Þ

γiðM; a⋆Þ ¼
gi
2π2

Z
∞

0

X∞
l¼si

Xl

m¼−l
m
d2N ilm

dpdt
dE; ð11Þ

where gi is the particle species i’s internal degree of
freedom, we can sum over all existing species to obtain
the following system of coupled equations [30,106,107]

dM
dt

¼ −εðM;a⋆Þ
M4

p

M2
; ð12aÞ

da⋆
dt

¼ −a⋆½γðM; a⋆Þ − 2εðM; a⋆Þ�
M4

p

M3
: ð12bÞ

We refer the interested reader for further details of the
derivation of these equations to Refs. [30,48]. In this
equation, we introduced the total evaporation functions
for mass and angular distribution,

ε≡X
i

εi; and γ ≡X
i

γi: ð13Þ

Later in the paper, we will use similar notations with
additional subscripts “SM,” “DM,” and “DR,” indicating
that the sum over i is restricted, respectively, to Standard
Model, dark-matter, and dark-radiation species only.
In general, obtaining the time evolution of a Kerr

PBH mass and spin parameters requires using numerical
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methods. In our code, we solve numerically the system of
equations Eq. (12) including the dependence of the
evaporation functions on the mass of the emitted particles.
Thus, our approach can be readily extended to include
any number of degrees-of-freedom. For instance, the
production of an extended sector having a large number
of degrees-of-freedom, as explored in, e.g., Refs. [108,109],
could be included which could lead to interesting
phenomenology.
For the sake of numerical efficiency, we will, however,

restrict our analysis to evaporation products with masses
smaller than the initial PBH Hawking temperatures. Note
that in the case where the evaporation functions ε and γ
only depend on the PBH spin, that is, in the limit where
the evaporation products can be considered to be exactly
massless, there is a formal solution of these equations, as
first described in Ref. [101]. For completeness, we briefly
revisit this derivation in the Appendix A.

IV. EVAPORATION OF AN EXTENDED
DISTRIBUTION

In this section, we derive the Boltzmann and Friedmann
equations that allow tracking the evolution of PBH abun-
dance and the Universe’s energy density throughout cosmic
history, for an evaporating distribution of PBH. We start by
defining fPBHðM; a⋆; tÞ as the distribution of PBH of mass
M, spin a⋆ at time t. The number density of PBHs, nBH, is
then given by

nBHðtÞ ¼
Z

1

0

Z
∞

0

fPBHðM; a⋆; tÞdMda⋆: ð14Þ

Similarly, one can write the comoving energy density of the
black hole distribution as

ρBHðtÞ ¼
Z

1

0

Z
∞

0

MfPBHðM; a⋆; tÞdMda⋆: ð15Þ

Demanding that the comoving number of PBHs is con-
served throughout cosmic history,1 we obtain the continuity
equation

3HfPBH ¼ −
∂fPBH
∂M

dM
dt

−
∂fPBH
∂a⋆

da⋆
dt

−
∂fPBH
∂t

; ð16Þ

H being the Hubble parameter. Taking the time deriva-
tive of Eq. (15) and using the relation in Eq. (16) (see
Appendix A), one obtains the Friedmann-Boltzmann
equation

_ρBH þ 3HρBH ¼
Z

1

0

Z
∞

0

dM
dt

fPBHdMda⋆; ð17Þ

which has to be solved simultaneously with the equation
describing the evolution of the StandardModel plasma, ρSM,

_ρSM þ 4HρSM ¼ −
Z

1

0

Z
∞

0

εSM
ε

dM
dt

fPBHdMda⋆: ð18Þ

To solve these equations numerically, one needs to evaluate,
at every time t, the integrals in the right-hand sides of
Eqs. (17) and (18). However, the distribution fPBHðMÞ is
only known at the time of PBH formation tin. In order to
obtain the values of these integrals, it is useful to change
variables and map the mass spectrum at time t to the
corresponding initial masses Min, defined such that

ðtin;Min; ain⋆Þ → ðt;M; a⋆Þ: ð19Þ

In that case, the conservation of the infinitesimal PBH
comoving number density2 provides that

a3ðtÞdnBH ≡ a3ðtÞfPBHðM; a⋆; tÞdMda⋆

¼ a3ðtinÞfPBHðMin; ain⋆ ; tinÞdMindain⋆

≡ F indMindain⋆ ; ð20Þ

where a stands for the scale factor. For future convenience,
we definedF in ≡ a3ðtinÞfPBHðMin; ain⋆ ; tinÞ. The Boltzmann
equations that are solved, after defining ϱBH ≡ a3ρBH and
ϱSM ≡ a4ρSM, are

_ϱBH ¼
ZZ

dM
dt

F indMindain⋆ ;

_ϱSM ¼ −aðtÞ
ZZ

εSM
ε

dM
dt

F indMindain⋆ : ð21Þ

Note that in these expressions, dM=dt remains a function of
M ¼ Mðt;Min; ain⋆ ; tinÞ and a⋆ ¼ a⋆ðt;Min; ain⋆ ; tinÞ, which
can be found numerically by integrating Eq. (12). Moreover,
one should pay attention to the fact that at the end of the
evaporation dM=dt diverges, and thus the mass integrals in
the right-hand sides of Eq. (12) have to be restricted to initial
masses that have not yet reached 0 at time t.

V. NUMERICAL IMPLEMENTATION

Numerically, to solve the system of Eq. (21), we adopt
the following procedure:
(1) For a given particle physicsmodel, i.e., specifying the

particle content, calculate the evolution of a close-to-
maximally rotating PBH by numerically solving the

1Note that, when referring to the total comoving number
density of PBHs, we include the number of PBHs that have
already evaporated, and thus have mass zero. This allows us to
track the evolution of the PBH population as a whole without
qualitative distinction.

2The number of PBHs with mass and spin within the range
½M;M þ dM� and ½a⋆; a⋆ þ da⋆�.
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system in Eq. (12), which will be required for the
determination of the evolution of any other PBH [48].

(2) Determine the PBH lifetime for a fixed massMfix as
function of the spin parameter ain⋆. With this, we can
determine the lifetime of any PBH using the relation

τðMin; ain⋆Þ ≈ τðMfix; ain⋆ÞðMin=MfixÞ3: ð22Þ

(3) Fixing the time t and a set ðMin; ain⋆Þ, calculate the
value of MðtÞ and aðtÞ.

(4) Evaluate numerically the corresponding evaporation
rate dM=dtðMðtÞ; aðtÞÞ, as well as the graybody
factors εðMðtÞÞ and εSMðMðtÞÞ.

(5) Integrate over ðMin; ain⋆Þ restricting the 2D integra-
tion volume of Eq. (21) to initial masses and spins
that satisfy τðMin; ain⋆Þ ≥ t. Indeed, we assume that
BHs with shorter lifetimes have fully evaporated at
time t and do not contribute neither to the comoving
energy density of PBHs, nor to its variation with
time written in Eq. (21).3

We assume that the PBH distribution is formed simu-
latenously when the Universe is radiation dominated after
inflation, and we take as formation time tin—or temperature
T in—when the particle horizon mass is equal to mass of the
initial peak of the distribution Mc

Mc ¼
4π

3
κ
ρRðT inÞ
H3ðT inÞ

; ð23Þ

with κ ∼ 0.2. We stress that this is a simplifying assumption
since it is expected that each formation mechanism will
predict different initial conditions, such as tin. We note
however that our code can be easily modified to specify
the initial conditions and the initial time tin. Alternatively, if
one had a PBHproductionmechanism that continued to form
black holeswhile some smaller PBHswere evaporating,more
substantial modifications of FRISBHEE would be required.
The double integration is performed at every time step in the
range t ∈ ½tin; tfn�, tfn being the time when the whole PBH
population has evaporated.We then track the evolution of the
PBH population and the expansion dynamics of the Universe
by solving the Friedmann and Boltzmann equations of
Eq. (21), making use of the precalculated 2D integrals.
We have implemented this numerical strategy in the

publicly available code4 FRISBHEE, which follows these

steps and is able to include SM and BSM particles
in the Hawking evaporation spectrum considered. We
have double-checked that we recover the results from
Refs. [30,31,48] when we take the monochromatic limit
for a given mass and/or spin distribution. To our knowl-
edge, this is the first implementation of mass and spin
distributions into the Boltzmann and Friedmann of the
early Universe. Although the tool, BlackHawk [110,111]
includes the facility to compute Hawking radiation from a
distribution of black holes, it does not solve the cosmic
evolution alongside BH evaportation. That’s because
BlackHawk’s main focus is the accurate determination
of primary and secondary spectra from black holes that are
currently evaporating, M ∼ 1014 g, which with existing
constraints will simply be a background matter density
in the early Universe.
Note that the relation we used in Eq. (22) does not hold in

full generality. It is true tovery good accuracy for evaporation
products that are much lighter than the Hawking temper-
atures of the PBHs in the distribution. However, a PBH’s
lifetime starts deviating from its true value as soon as a large
number of new degrees of freedom with masses larger than
the Hawking temperature of the PBH are introduced in the
spectrum. As a matter of fact, when adding 200 new degrees
of freedomwithmassesm ≪ TBH, this equation is verified to
0.005% accuracy. It reduces to a 30% error form > TBH. For
the sake of numerical efficiency, we have therefore imple-
mented this approximation in FRISBHEE to improve its
calculation speed. However, we stress that employing
the lifetime of PBHs for any interval ½M;M þ dM� ×
½a⋆; a⋆ þ da⋆�, which our code is capable to perform,would
not require a significant modification, although it would
imply a larger run-time.
It is possible to trace the evolution of the distribution at

any time by computing the relevant Jacobian,

a3ðtÞfPBHðM; a⋆; tÞ ¼ a3ðtinÞ
fPBHðMin; ain⋆ ; tinÞ

J
: ð24Þ

As described in Appendixes A–C, in the case of relativistic
evaporation products, we find an explicit expression for the
Jacobian

J ≡
���� ∂M
∂Min

∂a⋆
∂ain⋆

−
∂M
∂ain⋆

∂a⋆
∂Min

����: ð25Þ

We present in Fig. 2 an example of the time evolution of the
mass only and mass and spin distributions as function of
time. In the case of only mass distribution (top panels), we
present the time evolution of a log-normal (left), power-law
(middle) and critical collapse (right) scenarios, for different
values of time, as indicated in the figures by the different
color scale. Note that we recover, for the power-law
distribution, the results derived analytically in Ref. [70].
In the case of a mass and spin distribution (lower panels),

3Note that if PBHs were assumed to stop evaporating when
their mass equals the Planck mass, then one would need to keep
track of Planck relics when computing the comoving energy
density. Similarly, the evaporation rate dM=dt should be set to
zero when M ¼ Mp.

4Available at https://github.com/yfperezg/frisbhee. We provide
codes for scenarios with mass only and mass and spin distribu-
tions. The mass only code follows the same established procedure
detailed above, although it does not use the approximated PBH
lifetime, instead using its full numerical value.
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we present three different snapshots for the initial time tin
(left), a time equal to 10% of the lifetime of the peak τ
(middle) and t ¼ τ (left). The shaded region represents the
PBH parameters, which cannot be present in the Universe
since such PBHs would have a lifetime shorter than t − tin.
Note that, although it looks like all these distributions get
depleted with time, that the comoving number density of
PBHs (including those whose masses is zero after evapo-
ration) is conserved in such simulations. Indeed, the
evaporation of a black hole is a process that accelerates
with time and, therefore, the mass of PBHs that start
evaporating quickly runs toward zero. Numerically, the
depletion of the distributions that is visible in the figure is
balanced by a delta function for mass and spin located at the
origin and increasing with time. Note that in practice,
FRISBHEE stops tracking the evolution of the PBH mass
once it falls below 10% of the Planck mass and sets it to
zero, but keeping and tracking Planck relics in the code is
possible.

We have included some animations of the time evolution
of mass only and mass and spin distributions for benchmark
parameters. These are included in the wiki5 page of
FRISBHEE’s GitHub.

VI. COSMOLOGICAL IMPRINTS
OF PBH DISTRIBUTIONS

In this section, we explore the possible consequences
that the evaporation of an extended distribution of PBHs
can have in cosmology and how one can attempt to probe
the shape of such a distribution using cosmological
observables. In Refs. [30,31,48], it was shown that the
evaporation of PBHs can leave various imprints in dark-
matter searches, small-scale structures, and dark radiation
measurements. In the next sections, we will see how the

FIG. 2. Top panels: Time evolution of the comoving mass distribution f≡ a3ðtÞfPBH for a log-normal (left panel), power-law (central
panel), and critical collapse (right panel) distributions. The log-normal distribution is taken to have a width σ ¼ 1 and the central mass
considered is Mc ¼ 102 g. τMc

indicates the lifetime of a PBH with a mass equal to Mc. Bottom panels: Evolution of a mass and spin
distribution fPBHðM;a⋆; tÞ as a function of time, starting with a log-normal distribution in mass, and the universal spin distribution
obtained in Ref. [94]. The left (right) most plot shows the initial (final) distribution at time an initial (final) time. The colored lines are
iso-contours of the distribution, whereas the lifetime τ denotes the lifetime of the PBH with initial mass and spin at the peak of the
distribution. The shaded region represents the region where PBHs would have a lifetime shorter than the corresponding time t − tin, and
can therefore not be present in the Universe at time t.

5https://github.com/yfperezg/frisbhee/wiki/Animations-Mass-
and-Spin-Distributions.
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modification of the cosmological background’s evolution
arising from the extension of the PBH distribution can
affect such observables.
In fact, it is expected that any mechanism that involves

the production of particles out of equilibrium (such as, e.g.,
leptogenesis, see Ref. [51]) throughout cosmic history can
be affected by such dynamics. Gravitational waves induced
at second order in perturbation theory constitute interesting
signatures of a possible PBH dominated era. Arising from
the successive onset of the PBH domination and PBH
evaporation, they could also reveal interesting signatures
regarding the shape of the PBH distribution [66]. We will
briefly discuss this possibility and leave an extensive study
of these different imprints for future works.

A. PBH domination

In the case of a monochromatic distribution, fPBHðMÞ ¼
δðM −MinÞ, PBH domination can be assimilated to an
early matter-domination period that ends when the whole
population of PBHs evaporates. Such sudden evaporation
can have many consequences in cosmology and possibly
leave observable imprints in cosmological data. The exist-
ence of a PBH dominated era typically affects the dynamics
of the Universe expansion as compared to the temperature
evolution of the SM sector, as well as the time evolution of
the Universe’s equation of state parameter. If primordial
black holes form in the early Universe with a sufficient
energy fraction, they can end up dominating the energy
density of the Universe before they evaporate. When this
is the case, their evaporation corresponds to an injection
of entropy into the SM sector that can strongly affect
its dynamic with respect to the Universe’s expansion.
In this section, we explore the effect that the extended
PBH distributions have on the dynamics of evaporation
and corresponding entropy injection into the SM bath.
For the sake of simplicity, this section only considers
Schwarzschild PBHs. Note that the presence of a spin

distribution would however affect the following results, as
spinning PBHs would have the tendency of evaporating
faster. However, we believe that the qualitative dynamics of
reheating that we present are not to be changed drastically.
Indeed, the universality of the spin distribution considered
in Eq. (7) guarantees that the lifetime of PBHs with
different masses would be shortened in a relatively uniform
way. Besides happening at a slightly earlier time, the
qualitative dynamics of the Universe’s reheating when
PBHs evaporate would not be significantly affected by
the shape of the spin distribution.
In Fig. 3, we present our results for the different mass

distributions listed in Sec. II A. We draw the evolution of
the PBH relative abundanceΩPBH ≡ ρPBH=ρtot as a function
of the number of e-folds N ≡ log a, with a denoting the
scale factor. In the case of a log-normal distribution (left
panel), we vary the width σ, introduced in Eq. (1), and we
fix the central mass Mc to be 104 g. In the small-σ limit,
one can observe that evaporation happens quickly, similar
to the case of a monochromatic distribution. On the other
hand, increasing σ corresponds to smearing the evaporation
over larger time scales, and one can see that the evaporation
can then happen over several e-folds of expansion. A
similar observation can be made in the case of the power-
law distribution introduced in Eq. (2). In the central plot of
Fig. 3, we used different powers α corresponding to the
formation of PBHs during matter domination (α ¼ 2),
kination (α ¼ 0), and a nearly inflating Universe (α≳ 1).
We fixed the mass Mc ¼ 10 g and varied the width
of the distribution by taking Mc × 10σ ¼ 102 g; 103.5 g,
and 106 g. As expected, increasing the width of the
distribution leads to extending the duration of the evapo-
ration process.
It is interesting to note that for certain choices of α

(namely 1 < α ≤ 3), as shown in the middle panel of Fig. 3,
the total black hole abundance initially falls but then
remains essentially fixed at a nonzero value over an interval

FIG. 3. The right plot shows the evolution of the PBH relative abundance ΩPBH as a function of the number of e-folds N for log-
normal distributions of PBHs with varying widths σ. The central plot shows the same but for power-law distributions of PBHs with
varying exponents α, and minimum mass Mc ¼ 10 g. Plain, dotted, and dashed lines stand for the evaporation of distributions with,
respectively, Mc10

σ ¼ 10; 102.5, and 105 g. The right plot shows the PBH evolution as a function of the number of e-folds N for the
distributions from critical collapse and metric preheating (see Sec. II A).
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lasting many e-folds before finally dropping to zero. It
turns out that this feature is a specific instance of a more
general phenomenon called cosmic stasis [112], wherein
the abundances of the different energy components of
the Universe remain fixed over an extended interval
despite cosmological expansion. In this case, the total
PBH abundance is remaining fixed because its natural
tendency to grow in this Universe as a result of redshifting
effects is precisely counterbalanced by the loss of PBH
energy density into radiation via Hawking evaporation
[70,113]. It is remarkable that distributions with power
1 < α ≤ 3 are all attracted to such a regime.
Finally, in the rightmost plot of Fig. 3, we illustrate the

evaporation dynamics, which is obtained when using the
distributions corresponding to the critical collapse and
metric preheating cases, as described in Sec. II A. Here,
both distributions peak toward heavy masses, and thus the
evaporation process is dominated by the end tail of the
distribution.

B. Dark matter relic density

In this section,we investigate the impact of the evaporation
of a PBH population with both mass and spin extended
distributions on DM production. Besides the equations for
the evolution of the SM radiation and PBH energy densities,
we need to track the number density of DM particles
produced from the evaporation. Here, we assume that such
particles only interact gravitationally, and, although there
might be other productionmechanisms, we focus only on the
DMfromHawking evaporation. Similarly to the Eq. (17), we
can write the equation for the DM comoving number density
NDM as

_NDM ¼ −
ZZ

εDM
ε

dM
dt

F indMindain⋆ ; ð26Þ

where now the evaporation function includes the contribu-
tion of the DM particle, εDM. At this point, we do not fix the
spin of the particle to make our discussion as general as
possible. In order to compare with previous results that
consider a monochromatic distribution, we parametrize the
initial PBH energy density via

β0 ≡ κ1=2
�
g⋆ðT inÞ
106.75

�
−1=4 ρinPBH

ρinrad
; ð27Þ

where ρinPBH is related to the mass and spin distribution as in
Eq. (15). After the complete evaporation of the PBH
population,weobtain theDMrelic abundance in the standard
manner. We present in Fig. 4 the PBH parameters that
produce the observed relic abundance assuming a scalar DM
particle with a mass of 1 GeV for a log-normal distribution
(left) and power law, critical collapse and metric preheating
(MP) scenarios (right) while considering a monochromatic
spin distribution with a⋆ ¼ 0. For comparison purposes, we
have included in both panels the results from a purely
monochromatic distribution. In the case where the mass
distribution is a log-normal, we observe a crucial dependence
on the width of such distributions. For values σ ≲ 0.1, we
find that the initial PBHenergydensity needed to produce the
correct abundance is quite similar to the monochromatic
case. Meanwhile, if the distributions are wider, that is, for
σ > 1.0, the initial PBH fraction is significantly modified.
Such modifications occur because wider distributions con-
tain a population of much heavier PBHs than the peak value
Mc; these will produce much more DM particles because
the number of emitted particles grows ∝ ðMinÞ2 in the case
where DM mass is smaller than the initial PBH temperature
mDM < T in

BH, cf. Ref. [30]. This implies that, for initial PBH
densities that do not lead to a PBH domination, the β0 value
that leads to the observed DM abundance is reduced by a
factor of ∼Oð104Þ for σ ¼ 2 in comparison with a

FIG. 4. Lines showing the β0 and Mc values required to produce the correct relic abundance from PBH evaporation only. The DM
particle we consider is a fermion with a mass of 1 GeV. We show a range of PBH distributions; on the left, we show log-normal
distributions with a range of widths, σ ¼ 0.1, 0.5, 1.0, 2.0 in orange, green, red and purple, respectively. On the right, we have a power
law distribution with α ¼ 2.5 and σ ¼ 3 in orange, the critical collapse (CC) distribution in green and the metric preheating (MP)
distribution in red. In both panels, the monochromatic PBH distribution is depicted with a blue dotted line for reference. The black
dashed lines that overlay the solid lines show where warm DM constraints are in conflict with the PBH-produced DM.
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Monochromatic mass distribution centered at M ¼ Mc.
Furthermore, the place where the PBH domination occurs,
which leads to vertical relic abundance contours, is shifted to
lower values of Mc as the σ becomes larger, due to the
presence of heavier PBHs. On the right panel of Fig. 4, we
present the relic abundance contours for a power law
distribution with α ¼ 2.0, σ ¼ 2 (orange), critical collapse
(green) and metric preheating (red). In the case of a power
law mass distribution, we observe a similar effect as in the
log-normal case: The presence of heavier PBHs enhances the
DMproduction, thus requiring a smaller initial PBH fraction.
In contrast, for the critical collapse and metric preheating
cases, the relic contours donot differ in a noticeableway from
the monochromatic case. Since such distributions extend to
lower PBH initial masses instead of higher ones, the DM
production is dominated by the PBH having a mass Mc,
corresponding to the peak of the distribution. Furthermore, in
both panels of Fig. 4, we overlay thick black dashed lines
when the PBH produced DM is no longer consistent with
observation and is too warm to support the small-scale
structures observed in our Universe.
Of course, when DM particles emerge from the

black holes, they are highly boosted. Through cosmic
redshift, these particles cool, and depending on their
masses, can constitute warm (∼10−2–103 GeV) or cold
DM (≳103 GeV) [35,40,43,48,114]. Previously, the mass
constraints on mDM have been applied for monochromatic
distributions in mass and spin of the PBH. Since now our
calculations allow for nonmonochromatic distributions, we
have adapted our interpretation of the warm DM constraints
accordingly. Once again, we make use of the computational
tool CLASS [115–117] to determine the matter power
spectrum in the CMB, where the input required for the DM
phase space distribution, fDM, is

fDM ¼ nBHðtinÞ
gDM

�
aðtinÞ
aðtÞ

�
3 1

p2

dN DM

dp

����
t¼tev

; ð28Þ

where gDM is the number of degrees of freedom, p is the
three-momentum, and nDM is the DM number density. With
a PBH distribution, the particle emission rate per momen-
tum is given by

dN DM

dp
¼

Z
dt0

aðtfnÞ
aðt0Þ

Z
dain⋆

Z
dMin

× F in
d2N DM

dp0dt0

�
p
aðtfnÞ
aðt0Þ ;M; a⋆

�
; ð29Þ

where similarly to above, d2N DM=dp0dt0 is a time-
dependent function of M ¼ Mðt;Min; ain⋆ ; tinÞ and a⋆ ¼
a⋆ðt;Min; ain⋆ ; tinÞ. The tfn here refers to the latest evapo-
ration time we consider for a given distribution as described
in Sec. V. In practice, we determine fDM by running
FRISBHEE to evaluate F in and aðtÞ, which is then used

to integrate numerically Eq. (29). Also, the time-indepen-
dent NCDM temperature is needed to interface the resulting
DM distribution with CLASS,

T ncdm ¼ T in
aðtfnÞ
Tðt0Þ

¼ T in

Tev

�
gs⋆ðT0Þ
gs⋆ðTevÞ

�
1=3

; ð30Þ

where Tev and T in are the SM plasma temperatures at
evaporation and PBH production, respectively. Of course,
because we are now working with distriutions of PBHs, the
evaporation temperature takes multiple values; Tev here is
simply the SM plasma temperature when the entire dis-
tribution has been evaporated, TðtfnÞ.
To determine whether a specific DM distribution is at

odds with observations of structure in the Universe, such as
those of the Lyman-α forest [118,119], we use CLASS to
calculate the matter power spectrum PðkÞ, quantifying the
deviation from CDM by way of the transfer function, TðkÞ,
defined in

PðkÞ ¼ PCDMðkÞT2ðkÞ; ð31Þ

where k is the wave number. The scales at which TðkÞ
can start to stray from 1 has been determined by the
parameter fit

TðkÞ ¼ ð1þ ðαkÞ2μÞ−5=μ; ð32Þ

where μ is dimensionless exponent, which is fixed to
μ ¼ 1.12 as in Ref. [120], and α is the breaking scale,
which we take to be saturated at α ¼ 1.3 × 10−2 Mpch−1

[40,119–121].
Returning to the results shown in Fig. 4, we see that the

warm DM constraints tend to be more constraining for
wider distributions such as log-normal with σ ≳ 1 and a
power law. This is because the heavier PBHs evaporate
later, providing less time for DM to redshift, and it is
exactly these heavier PBHs that produce the lion’s share of
DM. For the examples that reproduce a similar result for the
monochromatic, the WDM constraints are almost identical.
We would like to note that taking the 1D fit for Eq. (31)
may not be the most appropriate since when we take the 2D
fit, we see some variation in the μ parameter, away from the
quoted μ ¼ 1.12. We leave a more sophisticated analysis
for future work, but since the α parameter really controls
where the matter power spectrum diverges from CDM, we
are confident that the results we show here are correct to a
reasonable degree of precision.
Due to the computational expense of performing the 3D

integral, we have opted to only perform the above analysis
in the Schwarzchild case, and we refer readers to
Refs. [38,43,48] to get an impression of how spin ain⋆ , β

0
andMc parameters will affect the relic lines. We expect that
Kerr distributions of BHs only have an appreciable effect
on the relic lines for spin-2 DM.
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The main takeaway of this section is that broader
distributions may well enable smaller β0 values to produce
the correct relic density, but this itself will introduce more
aggressive warm DM constraints.
For DM having a mass larger than the initial PBH

temperature, we find that the overall behavior is similar to
the monochromatic scenario; i.e., depending on the DM
mass, the relic density contours are either directly or
inversely proportional to Mc. The change of behavior
occurs when T in

BH ¼ mDM and it is abrupt [30]. Such
change of behavior is much more gradual for wider
distributions.

C. Dark radiation

Similar to our previous discussion on DM generation, in
this section, we consider the emission of massless states
that will modify the number of relativistic neutrino species,
Neff . To do so, we solve an equation for the dark radiation
(DR) comoving energy density

_ϱDR ¼ −aðtÞ
ZZ

εDR
ε

dM
dt

F indMindain⋆ ; ð33Þ

where now εDR corresponds to the contribution to the
total evaporation function coming from the DR. We track
the evolution of all Universe species, and, after the full
evaporation of the PBH population occurring when the
plasma temperature is Tev, we determine the modification
to Neff , ΔNeff as [32]

ΔNeff ¼
�
8

7

�
4

11

�
−4
3 þ NSM

eff

	
ρDRðTevÞ
ρSMR ðTevÞ

�
g�ðTevÞ
g�ðTeqÞ

�

×

�
g�SðTeqÞ
g�SðTevÞ

�4
3

; ð34Þ

where NSM
eff ¼ 3.045 are effective number of neutrinos

[122], and Teq ¼ 0.75 eV is the matter-radiation equality
temperature.
Let us focus first on the specific case where the DR

particle is the spin-2 massless graviton, potentially the most
well-motivated undiscovered particle in fundamental phys-
ics. In Fig. 5, left, we present the modification on Neff
coming from hot gravitons produced from the evaporation.
Here, we assumed a close-to-monochromatic mass distri-
bution, σ ¼ 0.005, and considered the scenarios where the
spin distribution is Gaussian (colored full lines) and for the
case of the fourth generation merger distribution (red
dashed line), taken from Ref. [94]. For the Gaussian case,
the color indicates the value of the σa⋆ ∈ ½0.0; 0.2�, where
the value of zero corresponds to the monochromatic in spin
situation. The black dashed line corresponds to the mono-
chromatic Schwarzschild case, included here for compari-
son. We observe an enhancement on ΔNeff for wider
Gaussian distributions since such wider distributions can
increase the amount of emitted DR in comparison to the
monochromatic case, depending on where the mean value
lies. For instance, a Gaussian distribution with σa⋆ ¼ 0.1,
and mean value ha⋆i ¼ 0.71 will generate ∼34% more
gravitons than a monochromatic distribution with the same

FIG. 5. Contribution to ΔNeff for gravitons (left) and new light scalar degrees of freedom (right) from the evaporation of PBHs. In the
left panel, the mass distribution is log-normal, with a constant width σ ¼ 0.005 and central mass Mc, and the colorbar represents the
width of the spin distribution, taken to be Gaussian, centered at ha⋆i ¼ 0.7, and with width σa⋆ . The red dot-dashed line indicates the
result for the merger spin distribution from Ref. [94]. On the right panel, we consider Schwarzschild PBHs with different examples of
mass distributions, log-normal (red), power-law (yellow), critical collapse (emerald), and metric preheating (purple). The black dashed
lines indicate the values that are excluded from BBN limits.
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central value. This leads to an increase of ∼18% in ΔNeff
for σa⋆ ¼ 0.2. Interestingly, for broader distributions, the
contribution to ΔNeff is reduced since those start to include
PBHs that have a smaller angular momentum, for which the
emission of gravitons is significantly decreased. For other
DR particles with lower spins, this dependence is less
prominent. We have found that for vectors, the enhance-
ment only reaches ∼1% for Gaussian spin distributions
with σs⋆ ¼ 0.2; for fermions and scalars, the modification
is smaller. Such behavior is due to the mild dependence that
the graybody factors have on the angular momentum
parameter a⋆ for particles having lower spins [101].
If we consider extended mass distributions instead, we

observe a shift in the shape of the contribution to ΔNeff ; see
the right panel of Fig. 5. The black dashed lines in the same
figure indicate the parameters excluded by BBN con-
straints. We obtain such a limit by determining whether
such PBH populations reheat the Universe after evaporation
with a temperature Tev smaller than the lower BBN bound
of ∼5 MeV [123–126]. Since the overall population would
evaporate much later than in the monochromatic case,
especially for broad distributions, the value of the evapo-
ration temperature, Tev, is reduced. Therefore, the contri-
bution from the dark radiation becomes more substantial.
Assuming a log-normal distribution, we find that the
contribution to ΔNeff is shifted by a factor of ∼Oð103Þ
to lower masses for σ ¼ 1.5. For other types of mass
distributions, such as the power-law, the behavior is similar.
Moreover, for distributions such as critical collapse and
Auclair and Vennin (AV), the shift is less sizable since the
evaporation temperature of such distributions is closer to
the monochromatic one.

D. Gravitational waves from evaporation

There are several reasons why the presence of PBHs in
the early Universe is expected to be accompanied by a
sizable spectrum of gravitational waves (GWs). First, it is
clear that the production of PBHs, if it arises from the
collapse of primordial perturbations, has to be accompanied
by a large scalar power spectrum at a given scale. Such
scalar perturbations are known to induce GWs at second
order in perturbation theory [127–130]. However, the
specific shape of the corresponding spectrum is entirely
dependent on the shape of power spectrum considered,
and therefore, it is not a unique prediction that can be
obtained given a particular PBH distribution. Another
interesting manner via which PBHs can produce gravita-
tional waves is when they dominate the energy density of
the Universe before they evaporate. In the latter case, the
sudden transition from a matter to a radiation-dominated
Universe, as the PBHs evaporate rapidly at the end of their
lives, can cause the gravitational potential to oscillate (the
so-called poltergeist mechanism) [64–66,131–134]. In this
context, the faster the evaporation takes place, the sharper
the transition between matter domination and radiation is,

and the higher the peak of GWs expected to be probed by
future observatories is. Therefore, it is expected that the
extension of the mass and spin distributions, which mainly
smears out the evaporation process (as we have seen in
Sec. VI A), has the tendency to suppress the GW spectrum.
This can already be seen in Ref. [64]—see also Ref. [65]—
where it was shown that a width of order σ ¼ 10−2 for a
log-normal distribution leads to a suppression of the GW
spectrum of over 3 orders of magnitude. Another interest-
ing aspect of the PBH formation and subsequent domina-
tion is that it can act as a source of isocurvature perturbation
in the early Universe, which also leads to a peak in the GW
spectrum, at a different frequency than the effect described
previously [50,66,131]. Similarly, we expect that such a
peak would be suppressed in the presence of a broader
distribution of PBHs. Indeed, PBH of different masses are
expected to form at different times, and the isocurvature
perturbations that would be sourced by a smeared for-
mation process are likely to lead to a broadened GW
spectrum. For a fixed energy fraction of PBHs, this
broadening of the spectrum has thus to be accompanied
by a suppression of its overall amplitude. Such a claim
should in principle be verified numerically. However, the
study of induced gravitational waves from isocurvature
perturbation requires a dedicated study that we plan to
explore in a future work.
The last source of GWs arising from the evaporation of

PBHs comes from the direct production of gravitons via
Hawking evaporation [51,135,136]. The GW signal for a
monochromatic mass spectrum with Min ∼ 1ð104Þ g is
expected in this case to peak at frequencies of order 1013

(1015) Hz.While there are currently no technologies that can
detect such high-frequency GWs, there are proposed detec-
tors that could, in principle, detect THz GWs [137–142].
In the left panel of Fig. 6, we study the effect of having

an extended PBH mass distribution on these high-
frequency GWs. We use Mc ¼ 104 g, and an initial PBH
energy fraction of β0 ¼ 10−7, which are also parameters
leading to a poltergeist signal detectable by LISA. We find
that the GW spectrum due to direct Hawking radiation of
gravitons is not strongly affected by a nonmonochromatic
PBH distribution. The general trend is that for wider
PBH distributions, the peak of the stochastic gravitational
wave background (SGWB) shifts to either lower or higher
frequencies, depending on whether the PBH population
contains more light or heavy PBHs than the monochro-
matic case; moreover, the amplitude of the SGWB is not
affected. Of the various observables we have studied, the
SGWB produced from Hawking radiation is thus the least
sensitive to the population of PBHs having a nonmono-
chromatic spectrum, at least in terms of amplitude. This is
interesting as it constitutes a robust signature of the
existence of PBHs evaporating in the early Universe,
as opposed to the other aforementioned GW signals.
Furthermore, the fact that the peak frequency can change
by orders of magnitude is important because it has
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implications on the physics reach of proposed THz GW
detectors, which will have different frequency regions
where they are optimally sensitive.
For the case of GWs emitted by Kerr PBHs, Ref. [136]

first computed the spectrum showing the modification
coming from the enhancement due to the BH spin. We
have reproduced their results for monochromatic mass and
spin distributions. In the right panel of Fig. 6, we show the
effect a population of highly spinning PBHs has on the
SGWB signal. In order to exhibit how all effects intersect
with each other, we show the signals from monochromatic
(black dashed), power-law distributed in M but mono-
chromatic in a⋆ (blue), monochromatic in M but Gaussian
distributed in a⋆ (orange), and power-law in M and
Gaussian in a⋆ (green). As was shown in Ref. [136], the
amplitude of the SGWB is enhanced substantially when a⋆
is close to maximal; comparing the left panel to the right,
we observe that the peak amplitude is∼102 larger. The peak
frequency is at a similar position, but generally, the spectral
shape of the SGWB is quite different thanks to the nature of
the graviton emission spectrum as such high a⋆ values. We
see that introducing a Gaussian in distributed a⋆ weakens
the strength of the SGWB signal because fewer PBHs are
maximally spinning. When this effect is in concert with
mass distributed PBH population, we can see that the effect
is similar to the Schwarzschild case, whereby the mass
distribution causes the SGWB signal to shift in frequency
but the amplitude remains unchanged.

VII. SUMMARY AND CONCLUSION

In this paper, we have explored the effect of PBH mass
and spin distributions on various cosmological observables.

We outlined our numerical method, which simultaneously
evolves the mass and spin distributed PBH population
in time and focused on well-studied mass (log-normal,
power law, critical collapse and metric preheating) and
spin distributions (spin distribution from mergers and
Gaussian). While the results are unsurprising, to our
knowledge, this work is the first attempt at numerically
solving the evaporation of both the mass and spin of PBHs
together with the Friedmann-Boltzmann equations that
describe the time evolution of different Universe’s compo-
nents. We found that nonmonochromatic mass and spin
distributions reduced how suddenly the transition from
PBH to radiation domination occurred. Naturally, the wider
the distribution, the more slowly such a transition occurs. In
the case of light fermionic DM production from PBHs, we
studied Schwarzschild PBHs with a nontrivial mass dis-
tribution. We found that broader mass distributions required
a smaller initial number density to produce the observed
relic density, as compared to a monochromatic distribution
centered at M ¼ Mc. Intuitively, this occurs as a broader
mass distribution includes heavier PBHs and thus requires
less to produce the same overall energy density in PBHs.
Likewise, we found that the warm DM constraint was
significantly more stringent for broad distributions because
the heavier PBHs would evaporate later and thus diminish
the effect of redshifting the boosted DM. We studied the
effect of a nontrivial mass and spin distribution on ΔNeff .
We fixed the mass distribution and allowed the width of the
spin distribution to vary and vice versa. Widening the spin
distribution tends to produce an increase in ΔNeff as there
are a higher proportion of higher spin PBHs, which are
efficient at producing gravitons. The effect of increasing the
spin width, σa⋆ , from 0 to 0.2 has the effect of increasing

FIG. 6. Gravitational wave spectrum obtained from the evaporation of gravitons. We consider a variety of mass distributions (left),
Mc ¼ 104 g, and an initial PBH energy fraction of β0 ¼ 10−7. We also exhibit the effect of spin for BH distributions (right), where the
Mc and β0 is the same but ha⋆i ¼ 0.9999. The power-law distribution in mass has parameters σ ¼ 3 and α ¼ 2.5 and the Gaussian in a⋆
has the width σ ¼ 0.1.
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the contribution toΔNeff by ∼10%. On the other hand, for a
fixed central mass of PBH, for a Schwarzchild PBH, having
a nontrivial mass distribution can increase the contribution
to ΔNeff by a factor of a few (see the right panel of Fig. 5).
Finally, we consider the effect finite mass and spin PBH
widths had on the SGWB produced from direct Hawking
radiation of the PBHs. We found that, unlike for other
GW signals predicted from the evaporation of PBHs, the
amplitude of the graviton production via Hawking emission
is mainly insensitive to the extension of the PBH mass
distribution. This suggests that the production of GWs from
the evaporation of PBHs is among the most robust signals
that could be searched for with observations in the future
regarding the existence of light PBHs in the early Universe.
Our code FRISBHEE is publicly available at the address
https://github.com/yfperezg/frisbhee.
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APPENDIX A: MASS AND SPIN EVOLUTION

In the limit of relativistic evaporation products (with
masses m ≪ TBH), the system of equations presented in
Eq. (12) takes the simple form

dM
dt

¼ −ϵða⋆Þ
M4

p

M2
: ðA1Þ

da⋆
dt

¼ −a⋆
Mp4

M3
½γða⋆Þ − 2ϵða⋆Þ�; ðA2Þ

where ϵða⋆Þ≡ ϵðMBH; a⋆Þ and γða⋆Þ≡ γðMBH; a⋆Þ
are now independent of M, which can be used to
simplify greatly the study of the system’s dynamic
[101]. Before studying the time evolution of the distribution
fPBHðM; a⋆; tÞ, let us first recall how to simply obtain t
he time evolution of any pair ðMðtÞ; a⋆ðtÞÞ starting with
initial condition ðMin; ai⋆Þ at time tin, using the formalism
introduced in [101]. First of all, the spin can be used as a
new time coordinate by defining

y≡ − lnða⋆Þ: ðA3Þ

Then, let us consider the generic solution starting at time
t ¼ 0 with ðM;a⋆Þ ¼ ðM1; 1Þ. After defining the mass
ratio function z as

z≡ − ln

�
M
M1

�
; ðA4Þ

and the time as

τ≡M−3
1 t; ðA5Þ

one can search for the solution of the system of Eq. (A1)
now rewritten as

dz
dy

¼ ϵða⋆Þ
γða⋆Þ − 2ϵða⋆Þ

;

dτ
dy

¼
�
M
M1

�
3 1

γða⋆Þ − 2ϵða⋆Þ
; ðA6Þ

using the initial conditions τ ¼ z ¼ 0 at y → −∞. Once
this solution is found, it is remarkable that any solution
ðM; a⋆Þ starting with initial conditions ðMin; ain⋆Þ at time
t ¼ tin and satisfying Eq. (A1) can be obtained by simply
computing

M ¼ Minezin−z;

ðt − tinÞ ¼ ðMinÞ3e3zinðτ − τinÞ; ðA7Þ

where z is the unique solution of the system (A6) satisfying
τ ¼ z ¼ 0 at y → −∞ and zin and yi are defined as

zin ≡ z½− lnðain⋆Þ�; ðA8Þ
τin ≡ τ½− lnðain⋆Þ�: ðA9Þ

In order to trace the evolution of the distribution function
fPBHðM; a⋆; tÞ, one is to compute the time evolution of the
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surface element dMda⋆ and impose that the infinitesimal
number of PBHs that sit in this elementary surface remains
constant with time:

a3ðtÞdnBH ≡ a3ðtÞfPBHðM; a⋆; tÞdMda⋆

¼ a3ðtinÞfPBHðMin; ain⋆ ; tinÞdMindain⋆ : ðA10Þ

At a fixed time, t, the set of equations of Eq. (A7) provide
implicit relations between ðM;a⋆Þ and ðMin; ain⋆Þ, meaning
that one can perform a time-dependent change of coor-
dinate from one set of variables to the other. Using the
Jacobian

J ≡
���� ∂M
∂Min

∂a⋆
∂ain⋆

−
∂M
∂ain⋆

∂a⋆
∂Min

����; ðA11Þ

one then simply obtain that

dMda⋆ ¼ J dMindain⋆ : ðA12Þ

From Eq. (A10), we can thus deduce that

a3ðtÞfPBHðM; a⋆; tÞ ¼ a3ðtinÞ
fPBHðMin; ain⋆ ; tinÞ

J
: ðA13Þ

APPENDIX B: CALCULATION OF THE
JACOBIAN

Let us first recall Eq. (A7):

M ¼ Minezin−z;

ðt − tinÞ ¼ ðMinÞ3e3zinðτ − τinÞ:

In this equation, z and τ are functions of a, meaning that zin
and τin are independent of Min:

∂zin
∂Min

¼ ∂τin
∂Min

¼ 0;

∂z
∂M

¼ ∂τ

∂M
¼ 0: ðB1Þ

Moreover, one can use the fact that τ and z are solutions of
the system (A6) to write

∂z
∂Min

¼ ∂y
∂Min

dz
dy

¼ −
1

a⋆

∂a⋆
∂Min

ϵ

γ − 2ϵ
;

∂τ

∂Min
¼ ∂y

∂Min

dτ
dy

¼ −
1

a⋆

∂a⋆
∂Min

�
M
Min

�
3 1

γ − 2ϵ
; ðB2Þ

and

∂z
∂ain⋆

¼ ∂y
∂ain⋆

dz
dy

¼ −
1

a⋆

∂a⋆
∂ain⋆

ϵ

γ − 2ϵ
;

∂τ

∂ain⋆
¼ ∂y

∂ain⋆

dτ
dy

¼ −
1

a
∂a
∂ain⋆

�
M
Min

�
3 1

γ − 2ϵ
: ðB3Þ

Deriving the first line of Eq. (B1), one can obtain the
relations

∂M
∂Min

¼ M
Min

þ M
a⋆

∂a⋆
∂Min

ϵ

γ − 2ϵ
; ðB4Þ

∂M
∂ain⋆

¼
�
−

1

ain⋆

ϵin
γin

þ 1

a⋆

∂a⋆
∂ain⋆

ϵ

γ − 2ϵ

�
M: ðB5Þ

Similarly, the second line of Eq. (B1) provides

∂τ

∂Min
¼ −3ðMinÞ−4ðt − tinÞe−3zin ;

∂τ

∂ain⋆
¼ 3

ain⋆

ϵin
γin − 2ϵin

ðMinÞ−3ðt − tinÞe−3zin

−
1

ain⋆

�
Min

M

�
3 1

γ − 2ϵ

����
a¼ain⋆

: ðB6Þ

From those two expressions, together with Eqs. (B2) and
(B3), we can extract

∂a⋆
∂Min

¼ 3aðγ − 2ϵÞ
ðMinÞ4

�
Min

M

�
3

ðt − tinÞ;

∂a⋆
∂ain⋆

¼ a⋆
ain⋆

γ − 2ϵ

γin − 2ϵin

�
1

M

�
3

½−3ϵinðt − tinÞ þM3
in�: ðB7Þ

Using those expressions, one can compute

J ≡
���� ∂M
∂Min

∂a⋆
∂ain⋆

−
∂M
∂ain⋆

∂a⋆
∂Min

����;
¼

���� a⋆ain⋆
γ − 2ϵ

γin − 2ϵin

�
Min

M

�
2
����; ðB8Þ

APPENDIX C: NUMBER DENSITY
CONSERVATION

When performing an integral over ðM; aÞ at time t, it is
convenient to use the Jacobian J in order to change
variables and integrate over ðMin; ain⋆Þ at time tin. To see
how this change of variable operates, let us first write down
the comoving number density of PBH as

aðtÞ3nBHðtÞ≡ aðtÞ3
Z

∞

0

Z
1

0

fPBHðM; a⋆; tÞdMda⋆: ðC1Þ

Using Eq. (A13), we obtain
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aðtÞ3nBHðtÞ ¼ aðtinÞ3
Z

∞

0

Z
1

0

fPBHðMin; ain⋆ ; tinÞ
J

J dMindain⋆ ;

¼ aðtinÞ3
Z

∞

0

Z
1

0

fPBHðMin; ain⋆ ; tinÞdMindain⋆ :

¼ aðtinÞ3nBHðtinÞ: ðC2Þ

As expected, the number of comoving PBHs is thus conserved.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 119, 161101 (2017).
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