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Abstract—Although much research has been done to improve
the performance of big data systems, predicting the performance
degradation of these systems quickly and efficiently remains
a significant challenge. Unfortunately, the complexity of big
data systems is so vast that predicting performance degradation
ahead of time is quite tricky. Long execution time is often
discussed in the context of performance degradation of big
data systems. This paper proposes MrPath, a Federated AI-
based critical path analysis approach for holistic performance
prediction of MapReduce workflows for consumer electronics
applications while enabling root-cause analysis of various types
of faults. We have implemented a federated artificial neural
network (FANN) to predict the critical path in a MapReduce
workflow. After the critical path components (e.g., mapper1,
reducer2) are predicted/detected, root cause analysis uses user-
defined functions (UDF) to pinpoint the most likely reasons
for the observed performance problems. Finally, health node
classification is performed using an ANN-based Self-Organising
Map (SOM). The results show that the AI-based critical path
analysis method can significantly illuminate the reasons behind
the long execution time in big data systems.

Index Terms—Federated artificial neural network, Critical
path, MapReduce, Performance analysis, Consumer electronics

I. INTRODUCTION

CONSUMER electronics (CE) have improvised the way
we communicate in our daily lives using smartphones

and gadgets. One of the major CE applications is entertain-
ment, wherein music applications [1] and Internet platforms
(e.g., Netflix) have become very popular. Health and fitness
applications are quite prevalent with the advent of smart-
watches and fitness applications. These applications help to
understand sleep patterns, health vitals, and fitness statistics.
After COVID-19, CEs have become more important as they
helped the world to run and function during lockdowns (e.g.,
Zoom/Teams and social media). Overall, CE applications have
encapsulated every domain of human lives and created a smart
world that relies on and is driven by data generated by the
underlying devices. CE play a critical role in developing and
implementing smart cities, providing a range of applications
(smart grids, intelligent transportation, public safety, waste
management, etc.) that enhance the efficiency and effective-
ness of city services. Consumer applications generate vast
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amounts of data that can provide valuable insights to inform
decision-making [2], thereby improving city operations, cit-
izen behaviour and public services. Thus, a robust, efficient
and fast big data processing system is required to analyse
the consumer data [3]. The system optimises devices and
services by analysing usage patterns and executing upgrades.
A comprehensive big data processing system provides real-
time insights, enabling personalisation, optimising devices
and services, and assuring security and performance. Fig. 1
illustrates the processing of large-scale data generated by CEs
applications and performance diagnostics of big data systems.
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Fig. 1. Consumer electronics applications data processing workflow

Distributed file systems such as Hadoop Distributed File
System (HDFS) are designed to store and process large
amounts of data across multiple machines, making it pos-
sible to process large volumes of data efficiently. Big data
systems, like Hadoop1, execute tasks on multiple machines
connected over a network in parallel to be efficient and fast.
MapReduce [4], a programming model that enables large-scale
data processing easily through such a distributed architecture,
has a rather complex background. It processes high-size data
through servers consisting of thousands of machines. Although
MapReduce seems to consist of a map and a reduce step, it
fundamentally consists of five main phases: data split, map,

1https://hadoop.apache.org/

https://hadoop.apache.org/
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shuffle, reduce, and data combine. The completion time of
each of the sequentially executed steps constitutes the overall
data processing time, namely makespan, which is one of
the main concerns in big data systems [5]. The individual
performance measures of these phases do not explain why
a big data system performs poorly because these phases are
like a piece of the puzzle that completes each other [6].
Therefore, it is necessary to identify a situation where the
cost is distributed between these primary phases to make an
accurate and reliable performance analysis. The critical path
is the longest average execution time between the start and
the end, identifying dependencies between tasks [7]. It defines
the activities that determine the running time of a process by
representing the longest execution time in a parallel process
based on a directed acyclic graph (DAG) [8]. The critical
path analysis uses a program activity graph (PAG) to simulate
the execution of a parallel program which shows the length
and order of priority of individual program operations. As
execution times of the task belonging to a job in parallel
and distributed systems directly affect the total workflow
completion time, these execution times can be used to predict
and diagnose the performance of the overall workflow. Thus,
critical path analysis can be used to identify problems.

Exception handling, known as escalation, occurs whenever
a workflow instance misses the deadline. The number of esca-
lated workflow instances should be kept to a minimum because
escalation typically adds significant overhead to workflow
systems. The critical path information can be used to assign
workflow and activity deadlines, as the execution times of
critical path activities directly impact the overall workflow
completion time. Moreover, evaluating the critical path in
distributed systems enables root-cause analysis that helps im-
prove the identification of performance issues. The critical path
method offers insightful guidance on organising systems and
scheduling tasks. It helps to evaluate the system’s performance
by comparing its current state with its expectations. Moreover,
it reveals bottlenecks in the design and prevents time loss.
There are steps to discover a critical path in a parallel or
distributed system [9]. First, the activities in the workflow are
listed. Then, based on the structure, the tasks dependent on
one another are identified. The next step is creating a network
diagram that displays the activities chronology. After that,
the execution time of each task is gathered and collected to
calculate the duration of all the paths. Finally, the critical path
of the system is located.

Numerous studies have been conducted on big data per-
formance analysis from various viewpoints. Authors in [10]
propose a stochastic performance model to understand the
effects of system failures on the performance of MapRe-
duce applications. They evaluate the robustness of big data
applications by considering parameters such as the number
of processes, the mean time between failures (MTBF) of
each cycle, and the cost of failure recovery. They also use
simulations to verify the accuracy of the suggested model.
However, these solutions for scrutinizing issues in big data
systems have a narrow focus as they concentrate solely on
specific scenarios, ultimately limiting their capacity to provide
a holistic evaluation of the system’s overall performance.

Although no study in the literature applies the Artificial
Intelligence (AI)-based critical path analysis technique for
performance analysis of big data systems, some studies are
about debugging MapReduce applications.

In this context, Böhme et al. [11] present a scalable algo-
rithm that uses the critical path analysis method to rank the
delays that occur in the system by the resources they consume.
This model calculates the costs after identifying the causes
of the delay. Qiu et al. [12] suggest a fine-grained resource
management system that uses the critical path analysis method
to avoid excessive CPU usage. However, this system cannot
detect anomalies [13] and provide end-to-end performance
insights. Authors in [7] obtain poor performance indicators by
subtracting the critical path from the event traces of parallel
programs. Authors in [14] propose a tool called tcpeval, which
deploys the critical path analysis method to locate the delays
in the context of HTTP transactions.

Several published papers discuss the performance analysis
of MapReduce applications. Ananthanarayanan et al. [15]
propose a system called Mantri that improves resource al-
location by revealing stragglers to improve the performance
of MapReduce applications. In this system, stragglers were
defined using statistical methods, and root cause analysis was
performed for such tasks as offline only. The authors of [16]
extensively analyse the variables influencing MapReduce ap-
plication performance. In our previous work [17], we propose
a generic and flexible approach called AutoDiagn that offers
comprehensive big data system monitoring while identifying
performance reduction and performing root-cause analysis.
Although AutoDiagn shows high performance and accuracy, it
cannot perform end-to-end performance analysis and predict
performance degradation. Authors in [18] describe a technique
that combines online and offline analysis to find abnormalities
in distributed systems’ Long Tail behaviour. These methods,
however, do not give a complete picture of the performance
study and instead concentrate on specific situations to examine
difficulties in large data systems.

Several gaps in the existing research can be identified.
Firstly, while some studies have used the critical path analysis
approach to identify and optimize performance issues, many of
these approaches are limited in their ability to provide end-to-
end performance insights and detect anomalies in real-time.
Additionally, while some studies focus on the performance
analysis of MapReduce applications, they often only examine
specific situations and fail to provide a complete picture
of performance issues in large data systems. Furthermore,
while some studies propose techniques for detecting anomalies
or improving performance in MapReduce applications, these
approaches may not be able to detect or address issues caused
by other problems. Therefore, there is a need for a holistic
approach that can provide end-to-end performance insights,
detect anomalies in real-time, and address performance issues
caused by various factors in large data systems.

A. Contributions

Considering the benefits of the critical path analysis and
the lack of end-to-end performance analysis for distributed



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. ??, NO. ??, ??? 3

systems, we propose MrPath, a novel performance analysis
framework for big data systems. The contributions of this
paper are as follows.
• We have designed an approach that pinpoints the system’s

bottlenecks, such as the reasons for the slowest node
and task that prolongs the total execution time, using the
time-series monitoring data, including big data tasks and
resource utilization information via SmartMonit.

• We proposed a novel performance prediction technique,
MrPath, which implements federated ANN (FANN) to
predict the performance reduction based on the critical
paths analysis method for MapReduce workflow.

• We have proposed an unsupervised machine-learning
technique, Self-Organizing Map (SOM), to design a rec-
ommendation mechanism for healthy nodes.

• Lastly, we visualize system status in real-time on a user-
friendly interface and evaluate the performance of the
proposed MrPath framework.

MrPath, has several superiorities over other performance
analysis frameworks for big data systems. Firstly, MrPath
can provide end-to-end performance analysis by pinpointing
the system’s bottlenecks, which previous approaches such as
AutoDiagn and Mantri only offer partial analysis. Secondly,
MrPath employs a novel performance prediction technique
using a federated ANN based on the critical path analysis
method for MapReduce workflows. This approach enables
MrPath to accurately predict performance reductions, allowing
for proactive measures to be taken before any issues arise.
Thirdly, implementing an unsupervised machine learning tech-
nique, Self-Organizing Map (SOM), for designing a recom-
mendation mechanism for healthy nodes further enhances the
effectiveness of the MrPath framework. Lastly, the real-time
visualization of the system status on a user-friendly interface
and the evaluation of the proposed framework demonstrate
the practicality and effectiveness of the MrPath framework.
Overall, MrPath significantly improves existing approaches,
offering a more comprehensive and proactive approach to
performance analysis and optimization in big data systems.

B. Outline of the article

The architecture of the proposed system is presented in §II
while the system is evaluated, and the experimental results are
presented in §III. Finally, §IV concludes the paper.

II. PROPOSED SYSTEM: MRPATH

In this section, we introduce MrPath, a novel big data per-
formance analysis system, depicted in Fig. 2. After illustrating
the high-level system architecture, we describe the key design
idea of MrPath in Fig. 3. MrPath has four main components;
monitoring, critical path analysis, root cause analysis, and
health recommendation system. The monitoring component,
SmartMonit [19], responsible for collecting, storing, and pre-
processing the raw logs, is implemented in the big data system
(i.e., Hadoop) deployed in a cloud environment. It collects
the details of each task and infrastructure information of the
cluster in real-time. The collected logs are stored in a time
series database through the message broker system. After

executing the preprocessing steps, the prepared data is sent
to the Critical Path detection/prediction component. Here,
FANN is applied to detect and predict the critical path in the
MapReduce workflow. After that, each critical path element,
such as task, node CPU/memory, is analyzed by user-defined
functions to find the reason for causing this critical path in the
Root cause analysis component.
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Fig. 2. The high-level architecture of MrPath

A. MrPath Monitoring

Monitoring is the core component that provides data collec-
tion to pinpoint emergent failures or the underlying reasons
for performance reduction in big data systems [20]. We
implemented SmartMonit [19], a real-time big data monitoring
system, to keep track of the status of big data tasks and
resource utilization. SmartMonit has an adaptive and dynamic
pipeline which enables data transmission from the source
(the big data cluster) to the time-series NoSQL database,
InfluxDB2, embedded into MrPath. Fig. 3 presents a high-level
implementation of MrPath monitoring.
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Fig. 3. The high-level implementation of monitoring component

1) Pre-processing: To make the collected data workable
for ANN, it is checked whether the values of the split, map,
reduce, and data combine that make up a single MapReduce
operation are complete. This MapReduce workflow that is

2https://www.influxdata.com/

https://www.influxdata.com/
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missing any value is extracted from the dataset. All data,
including infrastructure information, is then standardized so
that the ANN model can handle it and assign the correct
weightage. After this process, two new features are created to
the data set as critical path and non-critical path by calculating
the total execution time for each MapReduce operation using
data split, map, reduce, and data combine times in the Feature
extraction module. This prepared data set is sent to the Critical
path detection/prediction component to create and test an ANN
model. At this stage, as stated in the Pareto Principle, the
dataset is randomly divided into two parts, training (80%) and
testing (20%). Next, the training dataset is split into two parts,
20% of which is used for cross-validation.

2) Visualization: MrPath has a visualization component
that shows the details of the big data cluster, such as the
status of system health and tasks. Moreover, it has an alert
system called Critical path that shows the critical path of
a MapReduce workflow along with the underlying reasons,
which are the results of root cause analysis, with a user-
friendly interface in real-time. Utilizing various technologies,
we built the execution graph using different coding languages
to enhance the graph’s functionality and effectiveness. The
Visualization component consists of two main modules: query
engine and user interface. The query engine is responsible for
querying the database within a time interval using the pre-
defined functions to get the latest information for each big
data task. The user interface is built using HTML, CSS, and
PHP technologies to display on a web browser. The interface’s
APIs and flexible structure allow scalability for big data tasks.

B. MrPath Critical Path Analysis using FANN

In artificial intelligence, machine learning, deep learning,
and neural networks enable computer programs to identify pat-
terns and resolve common issues by mimicking the behaviour
of the human brain [21]. ANN is a deep learning algorithm
that has recently gained popularity and has proven to be a
helpful model for classification, clustering, pattern recognition,
and prediction in various fields. The high-speed processing
offered by ANNs in a massively parallel implementation
is their most significant potential, which has increased its
demand. Today, the excellent properties of ANNs, such as
self-learning, adaptability, fault tolerance, non-linearity, and
progress in entering an output map, are primarily deployed
in numerical paradigms for approximating universal functions
[22]. ANNs consist of node layers, including an input layer,
many hidden layers, and an output layer, where each of which
is connected to others and has a weight and threshold that
go along with it. Any node or artificial neuron whose output
exceeds the defined threshold value is activated and provides
data to the network’s uppermost layer. Otherwise, no data is
sent to the network’s next tier. Training data is essential for
neural networks to develop and enhance their accuracy over
time. Federated learning is a distributed approach to machine
learning that allows multiple parties to collaborate on the
training of a model without sharing their data with each other.
Federated learning has many applications in industries such
as healthcare, finance, and telecommunications, where data

privacy is critical. FANNs are a specific federated learning
approach that utilizes ANNs. They are the type of neural
network trained decentralised using data from multiple sources
in parallel. In a traditional neural network, all the data is
centralized and trained on a single device or server. However,
the data is distributed across multiple devices or servers in a
federated neural network, and the training is decentralised.
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Fig. 4 depicts an example of a FANN architecture. This
architecture has a central controller that manages the federated
learning process and creates a joint model. The consumer ap-
plications (App 1, App 2,...., App n) each have their own local
data and local ANN models. During the federated learning
process, the applications send their local ANN models to the
central controller, which combines them into a joint model.
The joint model is then sent back to the applications, which
update their local models through local updates based on the
joint model and their local data. This process repeats iteratively
until the joint model converges. By using FANN, the central
controller can train a model on data from multiple consumer
applications without requiring the applications to share their
data with each other or with the central controller.

Federated learning can be combined with MapReduce work-
flows to efficiently train ANNs on large-scale datasets dis-
tributed across multiple machines. In MrPath, we use FANN
to predict if the way will be the critical path among all MapRe-
duce workflows. All the features are assigned as input to build
a multi-layer neural network. Then some hidden layers are
added to the model, and the final variable is determined. Fig.
5(a) demonstrates an overview of a MapReduce application
that consists of four basic steps [23]: (1) splitting the data
blocks over the worker nodes; (2) processing the data blocks
through the mapper tasks line by line to create several small
chunks of data; (3) grouping and sorting the data coming from
mappers by the keys and splitting them among the reducer;
(4) producing a new set of output and storing in HDFS. Fig.
5(b) shows end-to-end critical path analysis. It finds the path
between Start and End through the algorithm of MrPath. Then,
it adds up the task duration on each path and identifies the
longest path. There are eight MapReduce workflows in this
figure. Fig. 6 shows the execution timeline of the MapReduce
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The developed model checks the system every three seconds
and updates the status of each MapReduce workflow between
Start and End. Using the information from already passed
steps, the model predicts if the way will be the longest
(critical) path among all the MapReduce workflows.

In this work, the Algorithm 1 is proposed to train the FANN
model to perform critical path analysis. In the Map function,
the dataset is divided into N subsets, where each subset is
assigned to a different machine (see line 3). Afterwards, each
machine trains a local model on its subset of the data using a
federated learning algorithm in line 19. The activation rate of
the hidden nodes in the neural network is calculated in line
9. The activation rate is determined by applying an activation
function f to the product of the input vector x and the weights
Wih between the input layer and the hidden layer. The same
process is executed to calculate the activation rates of the
output node in line 11. The line 13 calculates the error rate
of the output nodes by dividing the difference between the
predicted output y and the target output t by the product of the
hidden layer activation rates h and the weights Who. Likewise,
the error rate of the hidden nodes is calculated in line 15. After
updating the weights, the final activation rate of output nodes,
y, is calculated locally in line 22 and sent back to a central

server in line 24. As a final step, the reduce function combines
all the local models in Reduce function to produce the final
global model (see line 29).

Algorithm 1: Federated-ANN learning algorithm
Input: x ∈ Rnin : input data,

t ∈ Rnout : target output data,
N ∈ C: machines in the cluster,
L: local model,
C: central computer,
Wih ∈ Rnin×nhidden : weights from input to hidden layer,
Who ∈ Rnhidden×nout : weights from hidden to output layer,
α ∈ R: learning rate,
f(): activation function.

Output: y: local prediction,
y ∈ Rnout : final output prediction.

1 // Divide the dataset into N subsets using MapReduce algorithm
2 Function Map(inputKey, inputValue)
3 subs = ← Mapper (x, N )
4 // Start a loop that iterates through each example in the training set
5 for each N ∈ C do
6 // Train local models on each machine using federated learning
7 for each subs do
8 //Calculate the hidden node activation rates
9 h = f(xWih)

10 // Calculate the output node activation rates
11 y = f(hWho)
12 // Calculate the output error rate
13 δo = (y − t)⊙ f ′(hWho)
14 // Calculate the hidden error rate
15 δh = δoWT

ho ⊙ f ′(xWih)
16 // Update weights from input to hidden
17 Wih← Update Wih − αxT δh
18 // Update weights from hidden to output
19 Who← Update Who − αhT δo
20 end
21 // Calculate the final activation rate of output nodes
22 y = f(xWihWho)
23 // Send local models to central computer
24 C ← Update y
25 end
26 End Map Function
27 // Combine the local models to obtain a final global model
28 Function Reduce (outputKey, intermediateValues)
29 y ∈ Rnout = ← Reducer y
30 End Reduce Function

The trained global model is then sent back to the machines,
which use it to predict their local datasets. The predictions
from each machine are combined again using the reduce
function to obtain a final prediction result. The map-reduce
framework enables the parallel processing of data across
multiple machines, which can significantly reduce the training
time for ANNs on large datasets. Combining this framework
with federated learning allows us to train models efficiently
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while preserving data privacy and security.

C. Root Cause Analysis

Root cause analysis (RCA) is triggered once a critical path
is detected in the MapReduce workflow to find the underlying
reasons for taking a long time to complete the execution using
a set of plugins called detectors. The Root cause analysis
module creates multiple Detector plugins to find the straggler
tasks, which take 1.5 times longer to complete than the median
task. With this step, we aim to find stragglers, as these tasks are
a common symptom of performance degradation in big data
systems. We define stragglers using the way indicated in [17].
After detecting stragglers, Descriptor plugins start querying
the DB to find the RCA for such stragglers. In this context,
MrPath performs RCA based on three issues; data locality,
resource heterogeneity, and network failures. Based on such
issues, the Descriptors define why the tasks are stragglers.
These RCA results are reported to the user with the critical
path they have led.

Algorithm 2: Root cause analysis for stragglers
Input: θp - job progress in percentage,

α - factor,
χ - name of the running task,
χl - list of χ,
ω - progress of the task,
ωl - list of ω,
τ - execution time of the task,
τl - list of τ .

Output: Σl - list of stragglers Σ.
1 // Create a list Σl to store the Σ
2 Σl ← Σl[0]
3 // Initialize the µed
4 µed ← µed[0]
5 while θp < 100.0 do
6 //Clear the Σl and Πl
7 Σl ← Clear (Σnew

l , Σl)
8 Πl ← Clear (Πnew

l , Πl)
9 for each χ in χl do

10 //Compute ω′

11 ω′ = ω
τ

12 //Insert the ω′ into the Πl

13 Πl.add(ω′)
14 end
15 //Get the µed from the Πl
16 µed ← Median value of Πl

17 for each value of Πl do
18 if (ω′ * α) < µed then
19 end
20 //Insert the χ into the Σl
21 Σl.add(χ)
22 end
23 //Update the Σl
24 Σl ← Update (Σnew

l , Σl)
25 // Execute RCA functions within the given time interval
26 Nl ← QueryNonLocal(r, r+1)
27 ΣNl ← Merge (Nl, Σl)
28 Ll ← QueryLessResource(r, r+1)
29 ΣRl ← Merge (Ll, Σl)
30 Hl ← QueryNodeHealth(r, r+1)
31 ΣHl ← Merge (Hl, Σl)
32 end

Algorithm 2 demonstrates the proposed RCA algorithm in
MrPath. The RCA algorithm starts with the execution of the
application and is terminated with the completion of the job.
The performance of each task (i.e. mapper or reducer) ω′ is
calculated in line 11 and added to the related list in line 13.
The median value µ ed in the list of Π l is calculated in

the line 16. The tasks whose performance is less than the
median value are detected and identified as a straggler in
21. All the stragglers are stored in a list in line 24. As a
final step, the pre-defined RCA functions are executed to find
the underlying causes of stragglers in terms of data locality
problem (QueryNonLocal), insufficient resource (QueryLess-
Resource), and disconnected nodes caused by network issues
(QueryNodeHealth) in the lines 26, 28, and 30 respectively.

D. Health Recommendation System

The health recommendation system implements SOM on the
results of the root cause analysis system to classify the worker
node of the big data cluster as healthy or unhealthy. The
system has a streaming block-wise query execution engine that
analyzes the results to locate the problem causing performance
degradation in the whole cluster. Fig. 7 depicts the implemen-
tation of SOM on the results of RCAs for healthy worker node
recommendation, where the network structure is represented
by the weight matrix arranged in a two-dimensional grid
or lattice. Each neuron has a weight vector with the same
dimension degree as the input vectors. The nodes classified
as unhealthy are promptly reported to the system manager
for taking appropriate measures, such as initiating repairs or
reallocating resources, to ensure the optimal functioning and
performance of the big data system.
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Healthy?

No

Recommend

Yes

Report

Fig. 7. Health recommendation system using SOM

Algorithm 3 shows how the SOM classifies the nodes in
the big data cluster as healthy or unhealthy. The line 4 finds
the neuron in the SOM with the most comparable weight
vector to the input data point given to the network. Then,
the line 18 describes a function to update the weights defined
in find bmu function. The distance between the neuron and
BMU is calculated in line 21. The line 23 determines the
degree to which the weight vectors of neighbouring neurons
in the SOM. The line 31 and 32 decrease the learning rate
and neighbourhood radius over time. Afterwards, a data point
is selected randomly in line 33 and 34. Line 35 finds the best
matching unit while line 36 updates the weights of the map.
Finally, the nodes are classified as healthy or unhealthy by
utilizing the function in the line 38.

III. EVALUATION AND RESULT ANALYSIS

In this section, we comprehensively present the efficiency
of MrPath regarding evaluating the performance of big data
systems.
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Algorithm 3: Self Organizing Maps algorithm
Input: [n,m]: dimensions of the map,

α: initial learning rate,
σ: initial neighborhood radius,
D ← [(x1, y1), ...(xN , yN )]: data points (x) and labels (y),
num iterations: number of iterations.

Output: Labels {bmu index}: labels associated with nodes,
1 // Initialize the map
2 Weights: [[w {ij}]]
3 // Define a function to find the best matching unit (BMU)
4 Function find bmu(x, Weights)
5 bmu index = (0, 0)
6 bmu dist =∞
7 for i = 1 to n do
8 for i = 1 to m do
9 dist = d(x,w {ij})

10 if (dist < bmu dist) then
11 bmu dist = dist
12 bmu index = (i, j)
13 end
14 end
15 end
16 End find bmu Function
17 // Define a function to update the weights
18 Function update weights(bmu index, x, Weights, α, σ)
19 for i = 1 to n do
20 for i = 1 to m do
21 dist = ||(i, j)− bmu index||
22 if (dist < σ) then
23 h {ij} = h(dist, σ)
24 Weights {ij} =

Weights {ij}+ α ∗ h {ij} ∗ (x−Weights {ij})
25 end
26 end
27 end
28 End update weights Function
29 // Train the SOM
30 for i = 1 to num iterations do
31 α =α0 * exp(-iteration / num iterations)
32 σ =σ0 * exp(-iteration / num iterations)
33 i = random integer between 1 and n
34 x = Datai

35 bmu index = find bmu(x, Weights)
36 update weights(bmu index, x, Weights, α, σ)
37 end
38 // Define a function to classify new input data
39 Function classify(x, Weights)
40 bmu index = find bmu(x, Weights)
41 return Labels bmu index
42 End classify Function

A. Experimental setup

a) Environments: We deploy a Hadoop cluster with
version 3.2.1, consisting of 30 AWS machines with SSD-based
storage, each with 4 CPUs and 16 GB of memory. We chose
Ubuntu Server 20.04 LTS as an operating system.

b) Benchmarks and workload: We run a well-known
benchmark, WordCount3, to validate the MrPath using the
MapReduce model with a 10 GB dataset, an unformatted,
binary-free text file including plain text characters.

B. ANN Model for Critical Path Prediction

Here we discuss some of the causes and effects of the
critical path in big data systems. Fig. 8 shows the distribution
of the MapReduce performance parameters across healthy and
unhealthy (critical path). We evaluated each parameter in itself.
For example, Fig. 8(b) demonstrates the map execution time
of all mapper tasks that when the execution time increases,
the task tends to be a part of the critical path. Similarly,
Fig. 8(d) shows the reducer execution time distribution over

3http://wiki.apache.org/hadoop/WordCount

all the reducer tasks that the density concentrates around 6
seconds which causes a long execution time. Importantly, Fig.
8(f) represents the makespan which starts from 70 seconds
for the critical path. Fig. 9(a) shows the correlation between
MapReduce workflow steps, which indicate the application’s
performance. For example, as map execution time increases,
the critical path (makespan) also increases. Another important
parameter to evaluate the model is shown in Fig. 9(b). It
demonstrates the model loss vs. epoch for our model. The
loss function is computed over all data items throughout an
epoch and is ensured to provide the quantitative loss measure
at the specified epoch. Fig. 10(a) reveals evaluation metrics
regarding the model, such as F1 score, precision, recall, and
accuracy. All the results are above 90%. Importantly, the model
can predict the critical path with a high accuracy of around
99.2%.

1) Comparative Experiments: As seen from Fig. 10, along
with ANN, we implement two other algorithms, Decision tree
and Naı̈ve Bayes, to provide objective evidence and facilitate
fair comparisons between such algorithms. As MrPath is the
first work implementing the critical path method over the
MapReduce workflow, we apply these two algorithms to our
dataset. The comparative experimental results demonstrate
that while ANN exhibits superior performance, the other
two algorithms, Decision Tree (see Fig. 10(b)) and Naı̈ve
Bayes (see Fig. 10(c)), also show commendable results, albeit
somewhat. It is noteworthy that Decision Tree and Naı̈ve
Bayes indicate competitive performance in various evaluation
metrics; however when compared against ANN, they manifest
a comparatively inferior performance. These findings empha-
size the efficacy and potential of ANN as a preferred choice
for predicting the critical path at hand while also providing
insights into the relative strengths and weaknesses of Decision
Tree and Naı̈ve Bayes.

C. Health Node Recommendation using SOM
The healthy node recommendation system results using

SOM are depicted in Fig. 11. Fig 11(a) represents the back-
ground of the SOM distance map, which simulates the big data
cluster. This visualization provides an overview of the spatial
distribution and organization of the nodes within the cluster,
offering insights into the proximity and relationships between
them. The health status of the worker nodes in the cluster is
shown in Fig 11(b). The boxes on the map that host only red
circles represent unhealthy nodes that have already failed or
are unavailable, while the boxes with green squares represent
healthy nodes that can host more tasks, which means these
nodes can be recommended for the pending jobs. Importantly,
the boxes which host both markers depict nodes identified as
having a high risk of failing, and the boxes which host both
markers depict nodes the algorithm identified as having a high
risk of failing, which is used to distinguish healthy nodes. This
also shows the system’s accuracy in recommending healthy
nodes in the big data cluster.

IV. CONCLUSION

The critical path analysis method helps to detect perfor-
mance degradations of big data systems for CE applications.

http://wiki.apache.org/hadoop/WordCount
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Fig. 10. Comparative experiments results

Identifying the problematic threads of a MapReduce appli-
cation’s execution length using the critical path is essential
in improving application performance. In this article, we
proposed a novel framework that combines the critical path
analysis method with a federated ANN to predict performance
degradation in MapReduce parallel computing environment
and provide a health node recommendation in a big data cluster
using SOM unsupervised machine learning. This framework
also enables root cause analysis with user-defined functions

after predicting the critical path in a MapReduce application
during the execution. The results show that MrPath can define
the critical path in such systems with a high accuracy of
99.2%. Combining this method with advanced AI techniques,
MrPath plays a significant role in prediction and recommen-
dation regarding the health status of a big data cluster for CE
applications.



IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. ??, NO. ??, ??? 9

0 2 4 6 8 10
0

2

4

6

8

10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) The background of SOM distance map

0 2 4 6 8 10
0

2

4

6

8

10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Classifying and recommending healthy nodes

Fig. 11. Prediction and recommendation of health nodes using SOM
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[11] D. Böhme, M. Geimer, L. Arnold, F. Voigtlaender, and F. Wolf, “Identi-
fying the root causes of wait states in large-scale parallel applications,”
ACM Transactions on Parallel Computing (TOPC), vol. 3, no. 2, pp.
1–24, 2016.

[12] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer,
“{FIRM}: An intelligent fine-grained resource management framework
for {SLO-Oriented} microservices,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp.
805–825.

[13] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[14] P. Barford and M. Crovella, “Critical path analysis of tcp transactions,”
ACM SIGCOMM Computer Communication Review, vol. 30, no. 4, pp.
127–138, 2000.

[15] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in {Map-Reduce}
clusters using mantri,” in 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10), 2010.

[16] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of mapreduce:
An in-depth study,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 472–483, 2010.

[17] U. Demirbaga, Z. Wen, A. Noor, K. Mitra, K. Alwasel, S. Garg, A. Y.
Zomaya, and R. Ranjan, “Autodiagn: An automated real-time diagnosis
framework for big data systems,” IEEE Transactions on Computers,
vol. 71, no. 5, pp. 1035–1048, 2021.

[18] P. Garraghan, X. Ouyang, P. Townend, and J. Xu, “Timely long tail
identification through agent based monitoring and analytics,” in 2015
IEEE 18th International Symposium on Real-Time Distributed Comput-
ing. IEEE, 2015, pp. 19–26.

[19] U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra, and R. Ranjan,
“Smartmonit: Real-time big data monitoring system,” in The 38th
International Symposium on Reliable Distributed Systems (SRDS 2019)
Lyon, France, OCT 1-4, 2019, 2019.

[20] W. Wen, U. Demirbaga, A. Singh, A. Jindal, R. S. Batth, P. Zhang, and
G. S. Aujla, “Health monitoring and diagnosis for geo-distributed edge
ecosystem in smart city,” IEEE Internet of Things Journal, 2023.

[21] T. Butler and L. O’Brien, “Artificial intelligence for regulatory compli-
ance: Are we there yet?” Journal of Financial Compliance, vol. 3, no. 1,
pp. 44–59, 2019.

[22] D. Wang, H. He, and D. Liu, “Intelligent optimal control with critic
learning for a nonlinear overhead crane system,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 7, pp. 2932–2940, 2017.

[23] U. Demirbaga, “Htwitt: a hadoop-based platform for analysis and visu-
alization of streaming twitter data,” Neural Computing and Applications,
pp. 1–16, 2021.


	Introduction
	Contributions
	Outline of the article

	Proposed System: MrPath
	MrPath Monitoring
	Pre-processing
	Visualization

	MrPath Critical Path Analysis using FANN 
	Root Cause Analysis
	Health Recommendation System

	Evaluation and Result Analysis
	Experimental setup
	ANN Model for Critical Path Prediction
	Comparative Experiments

	Health Node Recommendation using SOM

	Conclusion
	References

