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Abstract—The Internet of Things (IoT) connects physical
objects with intelligent decision-making support to exchange
information and enable various critical applications. The IoT
enables billions of devices to connect to the Internet, thereby
collecting and exchanging real-time data for intelligent services.
The complexity of IoT management makes it difficult to deploy
and manage services dynamically. Thus, in recent times, Software
Defined Network (SDN) has been widely adopted in IoT service
management to provide dynamic and adaptive capabilities to
the traditional IoT ecosystem. This has resulted in the evolution
of a new paradigm known as Software-defined IoT (SD-IoT).
Although there are several benefits of SD-IoT, it also opens
new frontiers for attackers to introduce attacks and intrusions.
Specifically, it becomes challenging working in a critical IoT
environment where any delay or disruption caused by an intruder
can be life-threatening or can cause significant destruction.
However, given the flexibility of SDN, it is easier to deploy
different intrusion detection systems that can detect attacks or
anomalies promptly. Thus, in this paper, we have deployed a
hybrid architecture that allows monitoring, analysis, and detec-
tion of attacks and anomalies in the SD-IoT ecosystem. In this
work, we have considered three scenarios, a) denial of services,
b) distributed denial of service, and c) packet fragmentation. The
work is validated using simulated experiments performed using
SNORT deployed on the Mininet platform for three scenarios.

Index Terms—Internet of Things, Intrusion Detection System,
Software-defined Networking, SNORT.

I. INTRODUCTION

The Internet of Things (IoT) refers to the ability of ob-
jects, or ‘things’, to exchange information without requiring
direct human interaction [1]. These may be sensors, actua-
tors, computers or intelligent objects capable of monitoring
and interacting with their internal and external environments.
Various technologies interconnect and enable new applications
in an IoT environment by connecting physical objects with
intelligent decision-making support. Unlike traditional IT net-
works with well-established architecture, research communi-
ties or industries (e.g., Cisco) suggest several IoT architectures.
However, a general IoT network architecture consists of three
layers: a sensor and object layer, a transmission network
layer, and an application layer. The IoT connects billions of
devices to the Internet, collecting and exchanging real-time
data to provide intelligent services. These connected devices
can control and access the IoT services remotely, utilising the
underlying network infrastructure. However, the requirements
of the IoT cannot be scaled and efficiently handled by ex-
isting traditional network technologies [2]. The complexity
of Internet management makes it difficult to deploy new
services dynamically. Adding new features and re-configuring
a network is exhaustive if done traditionally [3]. However,

some of the complex issues associated with IoT manage-
ment can be addressed through enabling technologies such as
Software Defined Networks (SDN). Having a programmable
network has been in development for some time. A serious
programmable network model began to emerge in 2007 [4].

Over the years, network operations and management have
become more complex with the increased number of connected
IoT devices. In the years that followed, many RFCs and IEEE
standards were developed, and network vendors - who had
to satisfy many clients with one product - continued to add
features to their routers, even when their customers did not use
all of them [5]. The SDN, by contrast, separates the control
plane from the data plane and enables the programmability of
the network. SDN controllers act as network operating systems
(NOS) and handle the logic and computation required for
network operations - hence they are referred to as network
brains. Data plane devices (routers/switches) perform simple
matching operations to determine how to forward packets
based on flow tables [6]. Figure 1 illustrates the difference
between traditional network architecture and SDN technology.

Fig. 1: Comparison between traditional networks and SDN

Figure 1 shows the multiple layers of SDN architecture. The
data layer consists of a forwarding plane and an operational
plane. The forwarding plane handles packets based on the
instructions (e.g., forwarding, dropping, and changing packets)
from the control plane. The operational plane determines a
network device’s state, such as whether it is active and which
ports are available. The control layer consists of a control
plane and a management plane. The control plane assigns
instructions to one or more network devices on how packets
should be forwarded. The management plane is responsible
for configuring, monitoring, and maintaining network devices,
such as making decisions about the state of the network



device. It focuses on the operational plane of the device and
less on the forwarding plane. An application or service that
defines network behaviour resides on the application layer.
The applications (including routing processes), which directly
support the forwarding plane (e.g., functions within the control
plane), are not considered a part of this layer.

The control layer can communicate with the application
and data layer via north and south interfaces. A southbound
interface connects the control layer with the data layer in
network devices, while a northbound interface connects the
control layer with the application layer. An SDN controller
(such as Opendaylight, Floodlight, etc.) consists of control-
plane applications and services that use OpenFlow in the
southbound direction and offer an interface for applications in
the northbound direction. The OpenFlow protocol defines how
a logically centralized controller controls OpenFlow switches.
OpenFlow switches maintain one or more flow tables used to
look up packets. Different actions need to be taken regarding
packet lookup and forwarding.

Fig. 2: Software-defined IoT

SDN can improve the distribution and control of traffic flow
in the network for load balancing and minimizing network
latency. The SDN global view of the network can be leveraged
to improve load balancing, fine-grained traffic forwarding, and
bandwidth utilization. By virtualization, hardware resources
can be optimized with low network load, and network in-
frastructure can be shared between different service providers
and services [3]. Owners of IoT devices desire the ability to
control and secure them from anywhere at any time. Since
the SDN has access to all network components, this can be
easily accomplished [2]. SDN controllers can send requests
from multiple users through the desired path based on their
flow rules. The SDN’s ability to efficiently map user requests
will improve resource utilization, an essential requirement for
the IoT [7]. The SDN’s centralized control makes network
monitoring and consistency verification easier. Consequently,
some types of attacks (e.g. Denial of Service (DoS)) can be
mitigated, which is an advantage for IoT security [3]. Thus,
motivated by the above benefits, Figure 2 depicts the reference
architecture for the SD-IoT.

A. Research Problem and Motivation

While the SDN offers many advantages in IoT environment,
some issues (such as detecting intrusions and anomalies in
data traffic) still remain unaddressed. In the IoT ecosystem,
the endpoints (sensors and actuators) generate big data for
various applications (sensing temperature, light, motion, etc.).
The timely delivery of data packets is vital since it impacts
the data-driven decision-making process within critical IoT
environments. In IoT systems, monitoring, analysing, and
controlling all the traffic generated is not easy. It is difficult to
detect and block traffic in the event of intrusions or anomalies
due to IoT devices’ distributed and diverse nature. However,
timely detection of intrusions (and/or anomalies) can help to
prevent a significant degradation in the performance or failure
of IoT services.

For IP packets to be transmitted across a network, they
must comply with specific standards. Packets that are received
several times (in a repeated manner), reach multiple hosts (at
the same or different times) or exceed the network’s maximum
transmission unit (MTU) may not be normal and thus require
different treatment. A DoS attack floods a server with traffic,
making a resource unavailable. The flooding attack, a kind of
DoS attack, can overload a host by sending the same packet
repeatedly, causing its resources to be depleted and making the
services unavailable. Flooding attacks overwhelm the target
host’s resources by sending many requests or messages to
prevent it from processing legitimate requests or providing
routine services. Consequently, the target host can become
unresponsive, slow, or even crash. A Distributed DoS (DDoS)
attack is a type of DoS attack that uses multiple computers or
machines to flood a targeted resource [9]. Moreover, specific
hosts can be unreachable when a DDoS attack targets multiple
hosts within the network, such as with a sweep scan. Defeating
DoS or DDoS attacks is critical to keep networked systems and
services available.

Both attacks overload a server or web application intending
to interrupt services. IP headers contain packet information,
including fragment IDs (the same as IP IDs), fragment offsets,
fragment lengths, and more fragment flags. Packets that exceed
a network’s MTU must be fragmented for transmission over
the network. The MTU of Ethernet, for example, is 1500
bytes. This means that packets transmitted over Ethernet
cannot exceed 1500 bytes in size. In order to send malicious
packets through the network, attackers may exploit weaknesses
in IP header structures by flooding packets, broadcasting
ping network broadcasts, or fragmenting packets. In order to
avoid detection by IDS, attackers may use various techniques,
including sending smaller packets to a single host or multiple
hosts, fragmenting data and reassembling it, or sending data
bigger than the network’s MTU. It can lead to system failures
and crashes, posing persistent challenges to network security.

B. Contributions

Given these points, our contributions are listed below.



• We deploy a hybrid architecture for IDS in an SD-IoT
system that monitors, analyzes, and detect intrusions in a
realistic virtual IoT network.

• We design three attack scenarios, namely, a) DoS, b)
DDoS, and c) packet fragmentation, for analyzing the
performance of hybrid architecture.

• We simulate the three attack scenarios on the SDN
network and evaluate the performance of IDS, thereby
validating its usage in the SD-IoT paradigm.

II. PROPOSED HYBRID ARCHITECTURE FOR INTRUSION
DETECTION IN SD-IOT ENVIRONMENT

This section proposes a hybrid architecture for intrusion
detection managed through a control plane in the SD-IoT
environment. Fig. 3 shows the proposed hybrid architecture
segregated into different components discussed in the subse-
quent sections.

Fig. 3: Proposed Architecture for Intrusion Detection

A. Flow Manager

The Flow Manager component manages the flow table in
the switches and routers within the network. This table is the
foundation of OpenFlow switches. The switch might have one
or more flow tables, and a packet must pass through at least
one. Each entry in the table contains five main components
- Match, Action, Counter, Priority, and Timeout. The flow
manager checks each incoming packet to ensure matching
flow entries are available in the flow table so the packets can
smoothly travel across the network. It forwards the packet
if there is a suitable match in the flow table based on the
corresponding entry in the action field. However, if no suitable
match is available, it requests the SDN controller to create
a new flow rule and install it in the switch’s flow table. In
this way, the flow manager ensures efficient traffic across the
network.

B. Monitoring and Visualization System

In this architecture, we use Sflow-RT1 as a monitoring and
visualization system managed by the SDN controller. Sflow-
RT captures metadata about network traffic and generates
reports and alerts based on this metadata. The southbound
API connects it to the flow manager and SDN controller.
It analyses traffic in real-time and displays traffic statistics

1https://sflow-rt.com/

and flow data from applications through its API. Sflow-RT
provides the following functionality in the hybrid architecture.

• It allows monitoring of switches, routers, servers, and
virtual machines. It analyzes packets from the network
to extract information about network flows by sampling
packets from the network.

• It provides real-time information on network traffic and
flow and a graphical representation of the network topol-
ogy.

• It helps to visualize information about flow statistics
(including packet and byte counts), flow duration, and
network protocols.

C. Intrusion Detection System using SNORT

Snort IDS is a powerful open-source real-time packet pro-
cessing and traffic analysis tool. It makes use of several
rules that allows the detection of any anomalous or malicious
incidents. It can be used in multiple roles, like, a) packet
sniffer, b) packet logger (for traffic debugging), and c) full-
fledged IDS. The underlying architecture of Snort comprises
several components. These components are shown in Figure 4
and described below.

Fig. 4: Snort3 components

• Sniffer: The packet sniffer mirrors the packets traversing
through a specific network interfacing these to the Snort
tool for detailed analysis.

• Decoder: This component decodes the mirrored packets
for further analysis to identify malicious aspects or for
network debugging.

• Preprocessors: A collection of engines matching specific
types of packets, such as those with larger MTU size or
certain applications.

• Detection Engine: This component matches packets
against the match conditions configured on the Snort tool.

• Rules: The rules represent the specific match conditions
with actions configured in the Snort tool that is passed
to the detection engine. The rules can be designed and
deployed as and when required based on the requirement
of the underlying network.

• Output: The outcome or action taken by the Snort tool
based on the rule is collected as output.

III. RESULTS AND VALIDATION

A. The Experimental Setup

The experiments were conducted on an Ubuntu virtual
machine running on VirtualBox. The network topology shown
in Figure 5 was deployed on Mininet, a network emula-
tor. The deployed scenario uses Open Virtual Switch (OVS)



and Floodlight controller, an SDN controller that uses the
OpenFlow protocol to orchestrate traffic flows. Sflow-RT, a
monitoring tool, provides real-time visibility to SDN. It offers
a comprehensive perspective of network active routes and
usage.

Fig. 5: The experiment network topology

B. Experimental Scenarios

In this work, we have considered three scenarios for exper-
imentation. These scenarios are explained below.

• DoS attack: The first scenario involved a DoS attack
launched from Host 1 to Host 2, as shown in the topology
in Figure 5. Snort3 was used to capture the traffic for
further examination.

• DDoS attack: This scenario involved the setup of an
SDN scenario comprising five hosts (Figure 5). Host 5
was designated as the sniffer where Snort was employed
to monitor the traffic from Host 4.

• Packet Fragmentation attack: As illustrated in figure
5), the attack was launched from Host 1 to Host 2 while
Snort3 was capturing network traffic for analysis.

C. Results and Discussion

This experiment simulated three scenarios to check the
Snort3 operations and performance.

1) DoS Scenario: The first scenario involved a DoS attack
launched from Host 1 to Host 2, as shown in the topology
in Figure 5. Snort3 was utilized to capture the traffic for
further examination. During the simulation, the Sflow Chart
(Figure 6) revealed a sudden surge in traffic between Host 1
(represented in blue, with IP: 10.0.0.1) and Host 2 (represented
in red, with IP: 10.0.0.2) during the attack. This resulted in
unusual data transfer behaviour. During the development of our
experiment, we employed customized rules to identify specific
alerts related to our testing scenarios. For instance, in this case,
one rule we utilized was designed to detect a typical DoS
attack, an Internet Control Message Protocol (ICMP) flood
attack, also known as a Ping flood attack. The rule would
trigger an alert with the message ”PROTOCOL-ICMP Attack
from Host-1 to Host-2.”. To demonstrate the effectiveness of
this rule, we carried out a test in which a large volume of
ICMP protocol data packets was initiated from Host 1 and
directed towards Host 2. Snort promptly responded with alerts
generated on its console, as shown in Figure 7.

Fig. 6: Sflow tool showing increased traffic on Host1 and
Host2 ports during attack

Fig. 7: Alert generated by snort3 after detecting a DoS attack

The attack lasted approximately 30 seconds, and its packet
statistics are displayed in Table I. The log file presents Snort
received 20,800 packets. Out of these, it analyzed 16,276
packets, dropped 4,524 packets, and marked 4,524 as outstand-
ing. These results indicate that Snort effectively handles and
analyses most packets during a DoS attack, demonstrating its
robust performance under this type of threat.

TABLE I: Packet Statistics

Scenarios DoS DDoS Packet Fragmentation
Received 20800 206888 78731
Analyzed 16276 140848 56051
Dropped 4524 66040 22680

Outstanding 4524 66040 22680
Allow 16276 140848 56051

2) DDoS scenario: This scenario involved the setup of an
SDN ecosystem comprising five hosts (Figure 5). Host 5 was
designated as the sniffer and employed Snort to monitor the
traffic originating from host four. The network consisted of
three malicious hosts (h1, h2, h3), a victim host (h4), and an
IDS represented by a Snort-equipped host (h5). The five hosts
were interconnected through a switch connected to the Flood-
light SDN Controller. A DDoS attack was launched against
the victim host (h4) by the three malicious hosts (h1, h2, and
h3), as evidenced by the Sflow monitoring tool, which can be
seen in Figure 8. The flow of ping packets flood sent from h1
(represented by a green line on port s1-eth1), h2 (represented
by an orange line on port s1-eth2), and h3 (represented by a
red line on port s1-eth3) to h4 (represented by a blue line on
port s1-eth4). However, the IDS machine (h5) could detect the
attack and trigger an alert per our customized rule to detect
an ICMP flood DDoS attack. The alert was generated and
displayed the ”unusual ping detected” message in the Snort
console, as depicted in Figure 9. After stopping Snort, the
log statistics in Table I reveals that the detection engine has
done a remarkable job identifying and managing incoming
packets. Out of the 206888 packets received, a significant
portion of 140848 packets was successfully analyzed. The rest
66040 packets were dropped based on the analysis performed
by the engine. This analysis shows that the attack was a
DDoS attack initiated by multiple sources or hosts. In this



case, three hosts initiated the attack. Such distributed attacks
are more challenging to detect and prevent than attacks from
a single source. However, the detection engine was able to
receive, analyze and manage the incoming packets efficiently,
demonstrating its capability to handle complex security threats
and maintain the integrity of the network.

Fig. 8: Sflow showing increased traffic due to DDoS attack

Fig. 9: Alert generated by snort3 after detecting DDoS

3) Packet Fragmentation scenario: In the third case sce-
nario, an attempt to compromise network security was made
through a packet fragmentation attack. The experiment on the
topology is illustrated in Figure 5, and the attack was launched
from Host 1 to Host 2 while Snort3 was capturing network
traffic for analysis. The sflow chart in Figure 10 displays the
sudden increase of data flow during the attack between (IP:
10.0.0.1, represented by a blue colour on the chart) and host
2 (IP: 10.0.0.2, represented by red colour on the chart) during
the attack. Snort was able to detect the attack and respond
promptly. This is evident from the alerts generated by the
system and displayed in the Snort console, as seen in Figure
11. The attack was carried out by sending many oversized
ICMP data packets from Host 1 to Host 2, which resulted in
the fragmentation of the packets and a corresponding increase
in the data flow between the two hosts. The ability of Snort to
detect and respond to the attack effectively highlights its effec-
tiveness in safeguarding the network against security threats
in the SD-IoT environment. The packet fragmentation attack
can cause significant damage to the network and its connected
devices by exploiting vulnerabilities in the IP protocol. This
attack aims to divide large packets into smaller ones to bypass
security measures and gain unauthorized access to the targeted
system. In this scenario, Snort detected the attack by analyzing
the network traffic and generating alerts, providing valuable
information to the network administrator for further investiga-
tion and mitigation efforts. The logs in Table I demonstrate the
difference in received packets (78731) compared to analyzed
packets (56051) by Snort. The fact that 22680 packets were not
analyzed suggests that Snort was overwhelmed by the traffic
or that the packets were deemed a risk and were dropped as
a precautionary measure. The analysis revealed many sessions
generated by the attacker (Host 1) towards the victim (Host
2) due to the fragmentation caused by the large MTU size of
the ICMP packets. The results show that 5210 sessions were

created during the fragmentation attack, resulting in 81794032
reassembled and 83921728 fragmented bytes. This generated
significant traffic, potentially causing the network and the
victim host to be unavailable. However, Snort detected the
fragmentation attack, but the enormous amount of traffic could
still threaten the network’s stability, which requires further
investigation.

Fig. 10: Sflow tool showing the increased traffic because of
packet fragmentation attack

Fig. 11: Alert generated by snort3 after detecting an attack

D. Resource Usage Analysis

We monitored Snort’s resource consumption during our
tests while performing intrusion detection tasks under different
attack scenarios. We utilized the Linux ”top” command to
observe CPU and memory usage before and during the three
attack scenarios: DoS attack, DDoS attack, and Packet Frag-
mentation attack. Table II summarises the CPU and memory
usage results during the three attacks.

TABLE II: Resource usage before and during attack

Scenario Description Before attack During attack
DoS CPU Usage 1.1% 13.01%

Memory Usage 2.2% 2.2%
DDoS CPU Usage 1.1% 9.7%

Memory Usage 2.2% 2.2%
Packet CPU Usage 1.1% 13.02%

Fragmentation Memory Usage 2.2% 8.7%

Before the attacks, Snort’s CPU usage was at 1.1%, and
memory usage was at 2.2%. During the attack scenarios,
Snort’s CPU and memory usage changed as follows:

• DoS Attack: Snort’s CPU usage increased to 13.2%
during the DoS attack, while memory usage remained
constant at 2.2%. This indicates that Snort effectively
handles DoS attacks with a moderate increase in CPU
usage but without a significant impact on memory con-
sumption.

• DDoS Attack: In the DDoS attack scenario, Snort’s
CPU usage reached 9.7%, and memory usage stayed at
2.2%. The results show that Snort can manage large-scale,
distributed attacks with a slight increase in CPU usage
while maintaining stable memory consumption.

• Packet Fragmentation Attack: During the Packet Frag-
mentation attack, Snort’s CPU usage rose to 13.2%,



and memory usage increased to 8.7%. This demonstrates
that Snort can process and analyze fragmented packets
effectively, albeit with a higher memory usage increase
than the other two attack scenarios.

Snort consumes resources efficiently when performing in-
trusion detection tasks under various attack scenarios. Snort
maintains relatively moderate resource consumption levels
during attacks, demonstrating its ability to handle a variety
of network threats without overburdening the system.

E. Scalability Analysis
Our study tested Snort’s ability to analyze different numbers

of packets. We sent varying packet volumes, as illustrated
in Fig. 12. The graph includes five data points, representing
packet counts of 5k, 10k, 25k, 50k, and 100k, with corre-
sponding analysis percentages of 97.86%, 95.03%, 98.68%,
97.91%, and 98.55%. The x-axis denotes the number of pack-
ets received by Snort, while the y-axis displays the percentage
of packets analyzed. As can be seen from the graph, Snort
consistently maintains high performance during the analysis
of different packet volumes. Despite the significant increase
in packets received, the analysis percentages remain relatively
stable. This finding suggests that Snort can efficiently handle
various packet volumes with minimal impact on its analysis
capabilities.
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Fig. 12: Performance for Different Packet Volumes.

In another test conducted during our experiment, we eval-
uated Snort’s ability to analyze packets under varying flood
duration. We sent floods of packets over different time inter-
vals and measured the percentage of packets Snort successfully
analyzed compared to the number of packets received. The
results, illustrated in a graph 13, demonstrate that Snort was
highly effective in analyzing packets under all tested flood
duration.

IV. CONCLUSION

In this paper, we deployed a hybrid architecture to detect
malicious incidents in SD-IoT traffic based on three attack
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Fig. 13: Performance Under Varying Flood Duration’s.

scenarios, DoS, DDoS, and packet fragmentation for different
sizes of packet fragments. During this work, the primary
objective was to assess the ability of the deployed hybrid
architecture to detect these attacks and their effectiveness as
an IDS solution in an SD-IoT environment. While the system
effectively detects these attacks, attackers can still bypass its
detection through various methods. It is necessary to perform
additional testing on different networks and real-world scenar-
ios to improve IDS systems’ efficiency. The development of
accurate attack detection rules begins this ongoing process.
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