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Abstract

We give a sufficient condition for a pair of Banach spaces (X, Y ) to have the following property:
whenever W1 ⊆ X and W2 ⊆ Y are sets such that {x⊗y : x ∈ W1, y ∈ W2} is weakly precompact in the
projective tensor product X⊗̂π Y , then either W1 or W2 is relatively norm compact. For instance, such
a property holds for the pair (ℓp, ℓq ) if 1 < p, q < ∞ satisfy 1/p +1/q ≥ 1. Other examples are given
that allow us to provide alternative proofs to some results on multiplication operators due to Saksman
and Tylli. We also revisit, with more direct proofs, some known results about the embeddability of ℓ1
into X⊗̂π Y for arbitrary Banach spaces X and Y , in connection with the compactness of all operators
from X to Y ∗.
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1. Introduction

Let L(X ) denote the Banach space of all (bounded linear) operators on a Banach space X .
Given R, S ∈ L(X ) one can consider the multiplication operator

ΦR,S : L(X ) → L(X )

defined by

ΦR,S(T ) := R ◦ T ◦ S for all T ∈ L(X ).

Operator ideal properties of such multiplication operators have been widely studied in the
literature. As to weak compactness, it is known that ΦR,S is weakly compact whenever R is
compact and S is weakly compact, or vice versa (see [23, Theorem 2.9]). In the other direction,
it is not difficult to check that both R and S are weakly compact whenever they are non-zero
and ΦR,S is weakly compact, but in some cases one can say more. Akemann and Wright (see
[1, Proposition 2.3]) proved that for X = ℓ2 the weak compactness of ΦR,S implies that either
R or S is compact. Later, Saksman and Tylli (see [23, Propositions 3.2 and 3.8]) showed that
this property holds when X is a subspace of ℓp for 1 < p < ∞ or X is the James space. In
general, this is not true for arbitrary Banach spaces. See [14,18,19,23–25] for more information
on this topic.

The previous circle of ideas is intimately related to weak compactness in projective tensor
products. Let X and Y be Banach spaces, let X⊗̂π Y be its projective tensor product and let
W1 ⊆ X and W2 ⊆ Y . Then the set

W1 ⊗ W2 := {x ⊗ y : x ∈ W1, y ∈ W2} ⊆ X⊗̂π Y

is relatively weakly compact whenever W1 is relatively norm compact and W2 is relatively
weakly compact, or vice versa. In general, relative weak compactness of both W1 and W2 is
not sufficient for W1 ⊗ W2 to be relatively weakly compact, neither weakly precompact. Recall
that a subset of a Banach space is said to be weakly precompact (or conditionally weakly
compact) if every sequence in it admits a weakly Cauchy subsequence or, equivalently (thanks
to Rosenthal’s ℓ1-theorem; see, e.g., [2, Theorem 10.2.1]), if the set is bounded and contains
no ℓ1-sequence (that is, a basic sequence which is equivalent to the usual basis of ℓ1). For
instance, if 1 < p, q < ∞ satisfy 1/p+1/q ≥ 1, then the sequence (en⊗e′

n)n∈N in ℓp⊗̂πℓq is an
ℓ1-sequence, where we denote by (en)n∈N and (e′

n)n∈N the usual bases of ℓp and ℓq , respectively
(see, e.g., the proof of [5, Proposition 3.6]). The following definition arises naturally:

Definition 1.1. Let X and Y be Banach spaces. We say that the pair (X, Y ) has property
AW) if whenever W1 ⊆ X and W2 ⊆ Y are sets such that W1 ⊗ W2 is weakly precompact in

X⊗̂π Y , then either W1 or W2 is relatively norm compact.

Clearly, if X and Y are infinite-dimensional Banach spaces such that X⊗̂π Y contains no
ubspace isomorphic to ℓ1, then the pair (X, Y ) fails property (AW) (the unit balls BX and BY

ail to be norm compact, while BX ⊗ BY is weakly precompact in X⊗̂π Y ). Such an example
s given by (ℓp, ℓq ) for 1 < p, q < ∞ with 1/p + 1/q < 1, because in this case ℓp⊗̂πℓq

s reflexive (see, e.g., [22, Corollary 4.24]). In [20, Proposition 3.17] it is shown that the pair
X, Y ) has property (AW) whenever X and Y are Banach spaces with unconditional finite-
imensional Schauder decompositions having a disjoint lower p-estimate and a disjoint lower
-estimate, respectively, where 1 < p, q < ∞ satisfy 1/p + 1/q ≥ 1. In particular, for

< p, q < ∞, the pair (ℓp, ℓq ) has property (AW) if and only if 1/p + 1/q ≥ 1.
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The aim of this paper is to go a bit further in the analysis of ℓ1-sequences in projective tensor
roducts of Banach spaces, property (AW) and its applications to multiplication operators. The
aper is organized as follows.

In Section 2 we discuss the relationship between multiplication operators and projective
ensor products, specially in connection with weak compactness. Some known results are
ncluded for the sake of completeness.

In Section 3 we focus on property (AW). The following property plays an important role in
ur discussion:

efinition 1.2. Let X be a Banach space and 1 < p < ∞. We say that X has property (Rp)
f for every relatively weakly compact set A ⊆ X which is not relatively norm compact there
s an operator u : X → ℓp such that u(A) is not relatively norm compact.

Obviously, ℓp has property (Rp) for every 1 < p < ∞. This property is closely related
o the class of coarse p-limited sets introduced in [12] and, in particular, it agrees with the
o-called coarse p-Gelfand-Phillips property when 2 ≤ p < ∞ (see Remark 3.3). We prove
hat the pair (X, Y ) has property (AW) whenever X and Y are Banach spaces having properties
Rp) and (Rq ), respectively, where 1 < p, q < ∞ satisfy 1/p + 1/q ≥ 1 (see Theorem 3.4).
ne of the possible approaches to the previous result sheds some more light on ℓ1-sequences in

his setting: under the same assumptions on X and Y , if (xn)n∈N and (yn)n∈N are weakly Cauchy
equences in X and Y , respectively, without norm convergent subsequences, then (xn ⊗ yn)n∈N
dmits an ℓ1-subsequence in X⊗̂π Y (see Theorem 3.8). As an application of Theorem 3.4 and
ome results of Knaust and Odell [17], we provide new proofs of the aforementioned results
n multiplication operators of Saksman and Tylli (see Corollaries 3.16 and 3.17).

In Section 4 we include some complements about ℓ1-sequences in projective tensor products
nd we provide more direct proofs of some known results about the embeddability of ℓ1 into

X⊗̂π Y for arbitrary Banach spaces X and Y , due to Emmanuele [10] and Xue, Li and Bu [26].
amely:

(i) If X and Y contain no subspace isomorphic to ℓ1 and all operators from X to Y ∗ are
compact, then X⊗̂π Y contains no subspace isomorphic to ℓ1, [10, Theorem 3] (see
Theorem 4.4).

(ii) If X⊗̂π Y contains no subspace isomorphic to ℓ1 and either X or Y has an unconditional
basis, then all operators from X to Y ∗ are compact, [10, Corollary 6] and [26, Theorem 4]
(see Theorem 4.6).

erminology

We work with real Banach spaces. Let X be a Banach space. The norm of X is denoted by
· ∥X or simply ∥ · ∥. The topological dual of X is denoted by X∗. The evaluation of x∗

∈ X∗

t x ∈ X is denoted by either x∗(x) or ⟨x∗, x⟩. By a subspace of X we mean a norm closed
inear subspace. Given a set C ⊆ X , its closed convex hull and its closed linear span (i.e., the
ubspace of X generated by C) are denoted by conv(C) and span(C), respectively. The closed
nit ball of X is BX = {x ∈ X : ∥x∥ ≤ 1}. Given two sets C1, C2 ⊆ X , its Minkowski sum is
1 + C2 := {x1 + x2 : x1 ∈ C1, x2 ∈ C2}. By an operator we mean a continuous linear map

between Banach spaces. Given another Banach space Y , we denote by L(X, Y ) the Banach
pace of all operators from X to Y , equipped with the operator norm (when X = Y we just

write L(X ) instead). As usual, we denote by T ∗
∈ L(Y ∗, X∗) the adjoint of T ∈ L(X, Y ).
3
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We denote by B(X, Y ) the Banach space of all continuous bilinear functionals on X × Y ,
ith the norm ∥S∥B(X,Y ) = sup{|S(x, y)| : x ∈ BX , y ∈ BY }. Observe that the spaces B(X, Y ),
(X, Y ∗) and L(Y, X∗) are isometric in the natural way. Each S ∈ B(X, Y ) induces a linear

unctional S̃ in the algebraic tensor product X ⊗ Y . The projective tensor product of X and Y ,
enoted by X⊗̂π Y , is the completion of X ⊗ Y when equipped with the norm

∥z∥ = sup{|S̃(z)| : S ∈ B(X, Y ), ∥S∥ ≤ 1}, z ∈ X ⊗ Y.

ence, each S ∈ B(X, Y ) induces an element of (X⊗̂π Y )∗ (namely, the continuous linear
xtension of S̃ to X⊗̂π Y ). In fact, this gives an onto isometry between B(X, Y ) and (X⊗̂π Y )∗

see, e.g., [22, Section 2.2]). In the sequel we will identify the spaces (X⊗̂π Y )∗, B(X, Y ),
(X, Y ∗) and L(Y, X∗) via that isometry.

. Multiplication operators and tensor products

In this preliminary section we discuss the relationship between multiplication operators and
ensor products of operators, in connection with weak compactness. While most of the results
re already known, we include their proofs, which can help readers to focus on the subject.

emma 2.1. Let X1 and X2 be Banach spaces and let C1 ⊆ X1 and C2 ⊆ X2. The following
tatements hold:

(i) If C1 ⊗ C2 is relatively weakly compact in X1⊗̂π X2, then both C1 and C2 are relatively
weakly compact provided that they are not equal to {0}. The same holds if relative weak
compactness is replaced by weak precompactness.

(ii) If C1 is relatively norm compact and C2 is relatively weakly compact (resp., weakly
precompact), then C1 ⊗ C2 is relatively weakly compact (resp., weakly precompact) in
X1⊗̂π X2.

roof. (i) Fix xi ∈ Ci \ {0} for i ∈ {1, 2} and consider the isomorphic embeddings

ι1 : X1 → X1⊗̂π X2 and ι2 : X2 → X1⊗̂π X2

iven by ι1(x) := x ⊗ x2 for all x ∈ X1 and ι2(y) := x1 ⊗ y for all y ∈ X2. Since both ι1(C1)
nd ι2(C2) are contained in C1 ⊗ C2, the conclusion follows at once.

(ii) Suppose that C2 is relatively weakly compact. We can assume without loss of generality
hat C1 ⊆ BX1 and C2 ⊆ BX2 . Let (xn)n∈N and (yn)n∈N be sequences in C1 and C2, respectively.
y passing to subsequences, we can assume that (xn)n∈N is norm convergent to some x ∈ X1
nd that (yn)n∈N is weakly convergent to some y ∈ X2. Given any T ∈ L(X, Y ∗), for each
∈ N we have⏐⏐⟨T, xn ⊗ yn⟩ − ⟨T, x ⊗ y⟩

⏐⏐ ≤
⏐⏐⟨T (xn) − T (x), yn⟩

⏐⏐+ ⏐⏐⟨T (x), yn − y⟩
⏐⏐

≤ ∥T ∥∥xn − x∥ +
⏐⏐⟨T (x), yn − y⟩

⏐⏐
nd so ⟨T, xn ⊗ yn⟩ → ⟨T, x ⊗ y⟩ as n → ∞. This shows that (xn ⊗ yn)n∈N is weakly
onvergent to x ⊗ y in X1⊗̂π X2. The proof that C1 ⊗ C2 is weakly precompact when C2
s weakly precompact is similar. □

emark 2.2. In the setting of Lemma 2.1, a similar argument shows that, if either X1 or X2 has
he Dunford–Pettis and both C1 and C2 are relatively weakly compact, then C1⊗C2 is relativelyˆ
eakly compact in X1⊗π X2 (which reproves a result of J. Diestel, see [8, Theorem 16]).

4
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Given two operators T1 : Y1 → X1 and T2 : Y2 → X2, where Y1, Y2, X1 and X2 are Banach
paces, the projective tensor product of T1 and T2 is the unique operator

T1 ⊗ T2 : Y1⊗̂π Y2 → X1⊗̂π X2

atisfying

(T1 ⊗ T2)(y1 ⊗ y2) = T1(y1) ⊗ T2(y2)

or every y1 ∈ Y1 and for every y2 ∈ Y2 (see [22, Proposition 2.3] for details).

emma 2.3. Let Y1, Y2, X1 and X2 be Banach spaces and let T1 : Y1 → X1 and T2 : Y2 → X2
e operators. Then T1 ⊗ T2 is weakly compact if and only if T1(BY1 ) ⊗ T2(BY2 ) is relatively
eakly compact in X1⊗̂π X2.

roof. We have BY1⊗̂π Y2 = conv(BY1 ⊗ BY2 ) (see, e.g., [22, Proposition 2.2]) and therefore the
set W := T1(BY1 ) ⊗ T2(BY2 ) = (T1 ⊗ T2)(BY1 ⊗ BY2 ) satisfies

conv(W ) = (T1 ⊗ T2)(BY1⊗̂π Y2 ).

he conclusion now follows from the Krein–Šmulyan theorem asserting that the convex hull of
relatively weakly compact subset of an arbitrary Banach space is relatively weakly compact

s well (see, e.g., [9, p. 51, Theorem 11]). □

roposition 2.4. Let X, X1, Y and Y1 be Banach spaces and let S : X1 → X and R : Y → Y1
be operators. Let us consider the operator

ΦR∗∗,S : L(X, Y ∗∗) → L(X1, Y ∗∗

1 )

defined by

ΦR∗∗,S(T ) := R∗∗
◦ T ◦ S for all T ∈ L(X, Y ∗∗).

Then:

(i) ΦR∗∗,S = (S ⊗ R∗)∗, where as usual we identify L(X, Y ∗∗) = (X⊗̂π Y ∗)∗ and
L(X1, Y ∗∗

1 ) = (X1⊗̂π Y ∗

1 )∗.
(ii) ΦR∗∗,S is weakly compact if and only if S ⊗ R∗ is weakly compact. In this case, the

operator

ΦR,S : L(X, Y ) → L(X1, Y1)

defined by

ΦR,S(T ) := R ◦ T ◦ S for all T ∈ L(X, Y )

is weakly compact and if, in addition, both S and R are non-zero, then they are weakly
compact as well.

roof. (i) Fix T ∈ L(X, Y ∗∗). Then (S ⊗ R∗)∗(T ) = T ◦ (S ⊗ R∗). Given arbitrary x ∈ X1 and
y∗

∈ Y ∗

1 , we have⟨
(S ⊗ R∗)∗(T ), x ⊗ y∗

⟩
=
(
T ◦ (S ⊗ R∗)

)
(x ⊗ y∗) = T

(
S(x) ⊗ R∗(y∗)

)
=
⟨
T (S(x)), R∗(y∗)

⟩
=
⟨
R∗∗(T (S(x))), y∗

⟩
= ⟨ΦR∗∗,S(T ), x ⊗ y∗

⟩.

∗ ∗
∗∗
ence, (S ⊗ R ) (T ) = ΦR ,S(T ).

5
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(ii) The first statement follows from Gantmacher’s theorem and (i). Note that the weak
ompactness of S ⊗ R∗ is equivalent to the relative weak compactness of the set S(BX1 ) ⊗

R∗(BY ∗
1

) in X1⊗̂π Y ∗

1 (see Lemma 2.3). Therefore, the second statement is a consequence of
emma 2.1(i) and the fact that ΦR,S is the restriction of ΦR∗∗,S to L(X, Y ) as a subspace of
(X, Y ∗∗). □

The following result (in slightly less generality) was first proved in [23, Theorem 2.9].
ee [18,19,24,25] for other proofs. Our approach is close to that of [19, Proposition 1] and
25, Proposition 2.3(ii)].

orollary 2.5. Let S and R be as in Proposition 2.4. Suppose that either (i) S is compact and
R is weakly compact or (ii) S is weakly compact and R is compact. Then ΦR∗∗,S is weakly
ompact.

roof. We just prove case (ii) as the other one is similar. Since R is compact, Schauder’s
heorem ensures that R∗ is compact too. Hence, S(BX1 ) is relatively weakly compact in X
nd R∗(BY ∗

1
) is relatively norm compact in Y ∗. Then S(BX1 ) ⊗ R∗(BY ∗

1
) is relatively weakly

ompact in X⊗̂π Y ∗ (see Lemma 2.1(ii)) and so Lemma 2.3 applies to deduce that S ⊗ R∗ is
weakly compact operator. The conclusion now follows from Proposition 2.4(ii). □

Observe that the previous arguments and Remark 2.2 also lead to the next result going back
o [19, Proposition 2]:

emark 2.6. Let S and R be as in Proposition 2.4. Suppose that X or Y ∗ has the
unford–Pettis property. If both S and R are weakly compact, then ΦR∗∗,S is weakly compact.

.1. An observation on the Davis-Figiel-Johnson-Pełczyński factorization

Let us recall the remarkable procedure that Davis, Figiel, Johnson and Pełczyński invented
n [7]. Let X be a Banach space and let W ⊆ X be an absolutely convex bounded set. For
ach n ∈ N, denote by | · |n the Minkowski functional of the absolutely convex bounded
et Wn := 2n W + 2−n BX ⊆ X , that is,

|x |n := inf{t > 0 : x ∈ tWn} for all x ∈ X .

hen XW := {x ∈ X :
∑

∞

n=1 |x |
2
n < ∞} is a linear subspace of X which becomes a Banach

pace when equipped with the norm

∥x∥XW :=

(
∞∑

n=1

|x |
2
n

)1/2

.

he identity map JW : XW → X is an operator and W ⊆ JW (BXW ). Moreover, the space
XW is reflexive if and only if W is relatively weakly compact. The operator JW will be called
he DFJP operator associated to W . The reader can find in [3, Section 5.2] the basics on this
opic.

The absolutely convex hull (resp., closed absolutely convex hull) of a subset C of a Banach
pace will be denoted by aconv(C) (resp., aconv(C)).

roposition 2.7. Let X1 and X2 be Banach spaces. For each i ∈ {1, 2}, let Ci ⊆ X i be a
ounded set and let Ti : Yi → X i be the DFJP operator associated to Wi := aconv(Ci ) ⊆ X i .

Then T ⊗T is weakly compact if and only if C ⊗C is relatively weakly compact in X ⊗̂ X .
1 2 1 2 1 π 2

6
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Proof. Since

(T1 ⊗ T2)(BY1 ⊗ BY2 ) = T1(BY1 ) ⊗ T2(BY2 ) ⊇ W1 ⊗ W2 ⊇ C1 ⊗ C2,

the set C1 ⊗C2 is relatively weakly compact in X1⊗̂π X2 whenever T1 ⊗T2 is weakly compact.
To prove the converse, let us assume that C1 ⊗C2 is relatively weakly compact in X1⊗̂π X2.

By the Krein–Šmulyan theorem (see, e.g., [9, p. 51, Theorem 11]), its absolutely convex hull
aconv(C1 ⊗ C2) is relatively weakly compact in X1⊗̂π X2 and, hence, the same holds for
W1 ⊗ W2 ⊆ aconv(C1 ⊗ C2). The statement is obvious if either W1 or W2 equals to {0},
so we assume that this is not the case. Then W1 and W2 are relatively weakly compact (see
Lemma 2.1(i)).

Fix ε > 0. Choose m ∈ N large enough such that 2−m
≤ ε and define n := 2m . Then

Ti (BYi ) ⊆ nWi + εBXi for i ∈ {1, 2}. (2.1)

Indeed, fix y ∈ BYi and take t > 1 ≥ ∥y∥Yi . By the very definition of the norm of Yi , we have

Ti (y) ∈ t(2m Wi + 2−m BXi ) ⊆ t(nWi + εBXi ) ⊆ t(nWi + εBX∗∗
i

) ⊆ X∗∗

i .

ince Wi is weakly compact in X i , the set nWi + εBX∗∗
i

is w∗-closed in X∗∗

i and so, since
t > 1 is arbitrary, we conclude that

Ti (y) ∈ (nWi + εBX∗∗
i

) ∩ X i = nWi + εBXi ,

s required. This finishes the proof of inclusion (2.1).
Writing ρi := ∥Ti∥

−1, we have

Hi := ρi Ti (BYi ) ⊆ ρi nWi + ρiεBXi for i ∈ {1, 2}.

Since Hi ⊆ BXi , we can apply [6, Lemma 3.10] to deduce that the set

Ui :=
ρi n

1 + ρiε
Wi ∩ BXi

atisfies

Hi ⊆ Ui +
2ρiε

1 + ρiε
BXi for i ∈ {1, 2}.

t follows that

T1(BY1 ) ⊗ T2(BY2 ) ⊆ V + f (ε)BX1⊗̂π X2 , (2.2)

here

V := ρ−1
1 U1 ⊗ ρ−1

2 U2 ⊆ X1⊗̂π X2

and

f (ε) := 2ε

(
1

1 + ρ1ε
+

1
1 + ρ2ε

+

(
1

1 + ρ1ε

)(
2ε

1 + ρ2ε

))
.

riting θi := n(1 + ρiε)−1 for i ∈ {1, 2}, we have

V ⊆ θ1W1 ⊗ θ2W2 = θ1θ2
(
W1 ⊗ W2

)
⊆ θ1θ2W1 ⊗ W2 ⊆ θ1θ2aconv(C1 ⊗ C2),

and so (2.2) yields

T (B ) ⊗ T (B ) ⊆ θ θ aconv(C ⊗ C ) + f (ε)B .
1 Y1 2 Y2 1 2 1 2 X1⊗̂π X2

7
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Notice that θ1θ2aconv(C1 ⊗ C2) is weakly compact in X1⊗̂π X2 and that f (ε) → 0 as
→ 0. It follows that T1(BY1 ) ⊗ T2(BY2 ) is relatively weakly compact in X1⊗̂π X2 (see, e.g.,

11, Lemma 13.32]). Finally, an appeal to Lemma 2.3 ensures that the operator T1 ⊗ T2 is
eakly compact. □

. Property (AW)

The following notion was introduced in [12]:

efinition 3.1. Let X be a Banach space and 1 < p < ∞. A set A ⊆ X is said to be coarse
p-limited if T (A) is relatively norm compact for every T ∈ L(X, ℓp).

emark 3.2. Let X be a Banach space and 1 < p < ∞. The following statements are
quivalent:

(i) X has property (Rp) (see Definition 1.2), i.e., every coarse p-limited relatively weakly
compact subset of X is relatively norm compact.

(ii) Every coarse p-limited weakly null sequence in X is norm null.
(iii) Every coarse p-limited weakly precompact subset of X is relatively norm compact.

roof. The implications (iii)⇒(i)⇒(ii) are obvious. For (ii)⇒(iii), let A ⊆ X be a coarse
p-limited weakly precompact subset of X . Let (xn)n∈N be a sequence in A. By passing to a
ubsequence, we can assume that (xn)n∈N is weakly Cauchy. We claim that (xn)n∈N is norm
auchy, which is enough to conclude (iii). Indeed, if this is not the case, then we can find
> 0 and two subsequences (xnk )k∈N and (xmk )k∈N such that ∥xnk − xmk ∥ > ε for all k ∈ N.
ote that for every T ∈ L(X, ℓp) the set T (A) is relatively norm compact in ℓp and so the

ame holds for

{T (xnk − xmk ) : k ∈ N} ⊆ T (A) − T (A).

ence, (xnk − xmk )k∈N is a coarse p-limited, weakly null but not norm null sequence, a
ontradiction. □

emark 3.3. Let X be a Banach space and 2 ≤ p < ∞. Then every coarse p-limited subset
f X is weakly precompact (see [12, Proposition 3]). Consequently, X has property (Rp) if
nd only if it has the coarse p-Gelfand-Phillips property of [12], i.e., every coarse p-limited
ubset of X is relatively norm compact.

The following result provides a sufficient condition on a pair of Banach spaces to have
roperty (AW) (see Definition 1.1):

heorem 3.4. Let X and Y be Banach spaces such that X has property (Rp) and Y has
roperty (Rq ) for some 1 < p, q < ∞ satisfying 1/p + 1/q ≥ 1. Then the pair (X, Y ) has
roperty (AW).

irst proof of Theorem 3.4. By contradiction, suppose that there exist non relatively norm
ompact sets W1 ⊆ X and W2 ⊆ Y such that W1 ⊗ W2 is weakly precompact in X⊗̂π Y .
hen W1 and W2 are weakly precompact (see Lemma 2.1(i)). The assumptions on X and Y

ogether with Remark 3.2 ensure the existence of operators u : X → ℓp and v : Y → ℓq
uch that u(W ) and v(W ) are not relatively norm compact. As we already mentioned in the
1 2

8
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introduction, the condition 1/p + 1/q ≥ 1 implies that the pair (ℓp, ℓq ) has property (AW)
nd so u(W1) ⊗ u(W2) is not weakly precompact in ℓp⊗̂πℓq . This is a contradiction, because
⊗ v : X⊗̂π Y → ℓp⊗̂πℓq is an operator, W1 ⊗ W2 is weakly precompact in X⊗̂π Y and

(W1) ⊗ u(W2) = (u ⊗ v)(W1 ⊗ W2). □

Theorem 3.8 will provide a different approach to Theorem 3.4. It is convenient to introduce
rst some terminology. Recall that a sequence (xn)n∈N in a Banach space is said to be
eminormalized if it is bounded and infn∈N ∥xn∥ > 0.

efinition 3.5. Let X be a Banach space and 1 < p < ∞. We say that X has property (Pp) if
very seminormalized weakly null sequence (xn)n∈N in X admits a basic subsequence (xnk )k∈N
hich is equivalent to the usual basis of ℓp and such that span({xnk : k ∈ N}) is complemented

n X.

The following fact is well-known (see, e.g., [2, Proposition 2.1.3]):

roposition 3.6. For every 1 < p < ∞ the space ℓp has property (Pp).

emark 3.7. Let X be a Banach space and 1 < p < ∞. If X has property (Pp), then it also
as property (Rp).

roof. It suffices to prove that any coarse p-limited weakly null sequence (xn)n∈N in X is norm
ull (see Remark 3.2). By contradiction, suppose this is not the case. Then (xn)n∈N admits a
eminormalized subsequence and so there is a further subsequence (xnk )k∈N which is a basic
equence equivalent to the usual basis (ek)k∈N of ℓp and such that X0 := span({xnk : k ∈ N})
s complemented in X . Let T0 : X0 → ℓp be the isomorphism satisfying T (xnk ) = ek for all
∈ N. Since X0 is complemented in X , we can extend T0 to some operator T : X → ℓp. But

T (xnk ) : k ∈ N} = {ek : k ∈ N} is not relatively norm compact in ℓp, which contradicts the
act that (xn)n∈N is coarse p-limited. □

heorem 3.8. Let X and Y be Banach spaces such that X has property (Rp) and Y has
roperty (Rq ) for some 1 < p, q < ∞ satisfying 1/p + 1/q ≥ 1. Let (xn)n∈N and (yn)n∈N be
eakly Cauchy sequences in X and Y , respectively, without norm convergent subsequences.
hen (xn ⊗ yn)n∈N admits an ℓ1-subsequence in X⊗̂π Y .

roof. The set {xn : n ∈ N} is weakly precompact but fails to be norm relatively compact.
ince X has property (Rp), there is an operator u : X → ℓp such that {u(xn) : n ∈ N} is not
elatively norm compact in ℓp. By passing to a subsequence, we can assume that (u(xn))n∈N
oes not admit norm convergent subsequences. Note that (u(xn))n∈N is weakly Cauchy and
o weakly convergent to some z ∈ ℓp (the space ℓp is weakly sequentially complete). Define

zn := u(xn) − z for all n ∈ N. Since the weakly null sequence (zn)n∈N does not admit norm
ull subsequences, by passing to a further subsequence we can assume that (zn)n∈N is a basic
equence equivalent to the usual basis of ℓp and that span({zn : n ∈ N}) is complemented in ℓp

see Proposition 3.6). In the same way, since the set {yn : n ∈ N} is weakly precompact but
ails to be norm relatively compact, property (Rq ) of Y ensures the existence of an operator
: Y → ℓq , a subsequence (ynk )k∈N and w ∈ ℓq such that the sequence (wk)k∈N defined by
k := v(ynk ) − w for all k ∈ N is a basic sequence equivalent to the usual basis of ℓq and that

W := span({w : k ∈ N}) is complemented in ℓ .
k q

9
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Define Z := span({znk : k ∈ N}). Then (znk ⊗ wk)k∈N is an ℓ1-sequence in Z⊗̂π W
see, e.g., the proof of [5, Proposition 3.6]). Let ιZ : Z → ℓp and ιW : W → ℓq be the
nclusion operators. Since Z and W are complemented in ℓp and ℓq , respectively, the operator
Z ⊗ ιW : Z⊗̂π W → ℓp⊗̂πℓq is an isomorphism onto a (complemented) subspace of ℓp⊗̂πℓq
see, e.g., [22, Proposition 2.4]). Hence, (znk ⊗wk)k∈N is also an ℓ1-sequence in ℓp⊗̂πℓq . Since

hk := (u ⊗ v)(xnk ⊗ ynk ) = u(xnk ) ⊗ v(ynk ) = znk ⊗ wk + z ⊗ wk + znk ⊗ w + z ⊗ w  
=:h′

k

or all k ∈ N and the sequence (h′

k)k∈N is weakly convergent (to z ⊗ w) in ℓp⊗̂πℓq (bear in
ind that both (znk )k∈N and (wk)k∈N are weakly null), we can apply Rosenthal’s ℓ1-theorem

see, e.g., [2, Theorem 10.2.1]) to infer that (hk)k∈N admits an ℓ1-subsequence, say (hk j ) j∈N.
ince u ⊗ v is an operator, it is not difficult to prove that (xnk j

⊗ ynk j
) j∈N is an ℓ1-sequence

n X⊗̂π Y . This finishes the proof. □

Theorem 3.8 provides an alternative proof of Theorem 3.4, as follows.

econd proof of Theorem 3.4. Let W1 ⊆ X and W2 ⊆ Y be sets such that W1 ⊗W2 is weakly
recompact in X⊗̂π Y . By contradiction, suppose that W1 and W2 are not relatively norm

compact. Since both W1 and W2 are weakly precompact (see Lemma 2.1(i)), there exist weakly
Cauchy sequences (xn)n∈N in W1 and (yn)n∈N in W2 without norm convergent subsequences.

y Theorem 3.8, (xn ⊗ yn)n∈N admits an ℓ1-subsequence in X⊗̂π Y , which contradicts the weak
recompactness of W1 ⊗ W2. □

Let us obtain another consequence of Theorem 3.8 in the context of weakly null sequences in
rojective tensor products. Observe that the usual basis of ℓ2 shows that, in general, if (xn)n∈N
nd (yn)n∈N are weakly null sequences in X and Y , respectively, the sequence (xn ⊗ yn)n∈N
ay fail to be weakly null in X⊗̂π Y . To the best of our knowledge, the following question is

pen in complete generality.

uestion 3.9. Let X and Y be Banach spaces. Let (xn)n∈N and (yn)n∈N be weakly null
equences in X and Y , respectively, such that (xn ⊗ yn)n∈N is weakly convergent in X⊗̂π Y . Is
xn ⊗ yn)n∈N weakly null in X⊗̂π Y ?

Theorem 3.8 allows us to provide the following partial affirmative answer.

orollary 3.10. Let X and Y be Banach spaces such that X has property (Rp) and Y has
roperty (Rq ) for some 1 < p, q < ∞ satisfying 1/p + 1/q ≥ 1. Let (xn)n∈N and (yn)n∈N be
eakly null sequences in X and Y , respectively. Then (xn ⊗ yn)n∈N is weakly null if (and only

f) it is weakly Cauchy in X⊗̂π Y .

roof. Suppose that (xn ⊗ yn)n∈N is weakly Cauchy. By Theorem 3.8, either (xn)n∈N or (yn)n∈N
dmits a norm null subsequence. Hence, (xn ⊗ yn)n∈N admits a weakly null subsequence (by
he proof of Lemma 2.1(ii)). It follows that (xn ⊗ yn)n∈N is weakly null. □

.1. Some applications

In this subsection we combine Theorem 3.4 with a deep result of Knaust and Odell [17] (see
heorem 3.13) to get some results on multiplication operators due to Saksman and Tylli [23]

see Corollaries 3.16 and 3.17). We need to introduce some additional terminology.
10
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Definition 3.11. Let X be a Banach space and 1 < p < ∞. A sequence (xn)n∈N in X is said
o have an upper p-estimate if there is a constant c > 0 such that(

m∑
n=1

|an|
p

)1/p

≥ c


m∑

n=1

an xn


or every m ∈ N and for all a1, . . . , am ∈ R.

efinition 3.12. Let X be a Banach space and 1 < p < ∞. We say that X has property (Sp)
f every seminormalized weakly null sequence in X admits a subsequence having an upper
p-estimate.

The following result can be found in [17, Corollary 2]:

heorem 3.13 (Knaust–Odell). Let X be a Banach space such that X has property (Sp) and
X∗ has property (Sp′ ), where 1 < p, p′ < ∞ satisfy 1/p +1/p′

= 1. The following statements
old:

(i) If X∗ contains no subspace isomorphic to ℓ1, then X has property (Pp).
(ii) If X contains no subspace isomorphic to ℓ1, then X∗ has property (Pp′ ).

orollary 3.14. Let X be a subspace of ℓp, where 1 < p < ∞. Then:

(i) X has property (Pp).
(ii) X∗ has property (Pp′ ), where 1 < p′ < ∞ satisfies 1/p + 1/p′

= 1.
(iii) The pair (X, X∗) has property (AW).

roof. Note that ℓp (resp., ℓp′ ) has property (Pp) (resp., (Pp′ )), see Proposition 3.6, which in
urn implies property (Sp) (resp., (Sp′ )). Clearly, property (Sp) is inherited by subspaces, so X
as property (Sp). Since quotients of reflexive Banach spaces having property (Sp′ ) also have
roperty (Sp′ ), it follows that X∗ has property (Sp′ ). Statements (i) and (ii) now follow at once
rom Theorem 3.13. Statement (iii) is a consequence of Theorem 3.4 and Remark 3.7. □

orollary 3.15. Let J be the James space. Then:

(i) J and J ∗ have property (P2).
(ii) The pair (J, J ∗) has property (AW).

roof. It is known that both J and J ∗ have property (S2), see [4] and [13, Proposition 3.3],
espectively. Now, we can argue as in the proof of Corollary 3.14. □

As an application we get the next result (see [23, Proposition 3.2]):

orollary 3.16 (Saksman–Tylli). Let X be a subspace of ℓp, where 1 < p < ∞, and let
R, S ∈ L(X ). If the operator ΦR,S : L(X ) → L(X ) is weakly compact, then either R or S is
ompact.

roof. The weak compactness of ΦR,S is equivalent to the weak compactness of S ⊗ R∗
∈

(X⊗̂π X∗) (see Proposition 2.4), which in turn is equivalent to the relative weak compactness
f S(B ) ⊗ R∗(B ∗ ) in X⊗̂ X∗ (see Lemma 2.3). Since the pair (X, X∗) has property (AW)
X X π

11
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(see Corollary 3.14(iii)), either S(BX ) or R∗(BX∗ ) is relatively norm compact, that is, either S
r R∗ is a compact operator. In the second case, Schauder’s theorem applies to conclude that

R is compact as well. □

Finally, the same argument applies to the following (see [23, Proposition 3.8]):

orollary 3.17 (Saksman–Tylli). Let J be the James space and let R, S ∈ L(J ). If the operator
R,S : L(J ) → L(J ) is weakly compact, then either R or S is compact.

. More on ℓ1-sequences in projective tensor products

.1. Basic tensors and unconditional bases

If a sequence in a Banach space fails to be weakly null, then it admits a subsequence which
s an ℓ+

1 -sequence, in the following sense:

efinition 4.1. Let X be a Banach space. A sequence (xn)n∈N in X is called an ℓ+

1 -sequence
f the following equivalent statements hold:

(i) 0 ̸∈ conv({xn : n ∈ N}).
(ii) There is x∗

∈ X∗ such that x∗(xn) ≥ 1 for every n ∈ N.
(iii) There is a constant C > 0 such that

N∑
n=1

an xn

 ≥ C
N∑

n=1

an

for all N ∈ N and for all non-negative real numbers a1, . . . , aN .

It is not difficult to check that a bounded unconditional basic sequence is an ℓ1-sequence if
nd only if it is an ℓ+

1 -sequence. In the same spirit, we have:

emma 4.2. Let X and Y be Banach spaces such that X has an unconditional basis.
et (xn)n∈N be a bounded unconditional basis of X and let (yn)n∈N be a bounded sequence

n Y . Then the sequence (xn ⊗ yn)n∈N in X⊗̂π Y is an ℓ1-sequence if and only if it is an
+

1 -sequence.

roof. Suppose that (xn ⊗ yn)n∈N is an ℓ+

1 -sequence and fix an operator T : X → Y ∗ such
hat T (xn)(yn) ≥ 1 for all n ∈ N (we identify (X⊗̂π Y )∗ and L(X, Y ∗) as usual). Fix N ∈ N
nd λ1, . . . , λN ∈ R. Define an operator G : X → Y ∗ by

G(x) :=

N∑
n=1

sign(λn)x∗

n (x)T (xn) for all x ∈ X ,

here (x∗
n )n∈N is the sequence in X∗ of biorthogonal functionals associated to the basis (xn)n∈N.

bserve that for every x ∈ X we have

∥G(x)∥ =


N∑

n=1

sign(λn)x∗

n (x)T (xn)

 =

T

(
N∑

n=1

sign(λn)x∗

n (x)xn

)
≤ ∥T ∥


N∑

n=1

sign(λn)x∗

n (x)xn



≤ ∥T ∥Ku∥x∥,

12
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where Ku stands for the unconditional basis constant of (xn)n∈N. Hence, we have ∥G∥ ≤ ∥T ∥Ku
nd therefore

N∑
n=1

λn xn ⊗ yn

 ≥
1

∥T ∥Ku

N∑
n=1

λnG(xn)(yn)

=
1

∥T ∥Ku

N∑
n=1

λnsign(λn)T (xn)(yn)

≥
1

∥T ∥Ku

∞∑
n=1

|λn|.

his shows that the (bounded) sequence (xn ⊗ yn)n∈N is an ℓ1-sequence. □

The following result provides another partial affirmative answer to Question 3.9. The addi-
ional assumption on one of the Banach spaces is weaker than property (Pp) (see Definition 3.5)
nd holds for c0, all ℓp spaces with 1 ≤ p < ∞ (see, e.g., [2, Proposition 2.1.3]) and all

L p[0, 1] spaces with 2 < p < ∞, by a classical result of Kadec and Pełczyński (see [15],
heorem 2 and Corollaries 1 and 4).

heorem 4.3. Let X and Y be Banach spaces. Suppose that every seminormalized weakly
ull sequence in X admits an unconditional basic subsequence whose closed linear span is
omplemented in X. Let (xn)n∈N be a weakly null sequence in X and let (yn)n∈N be a bounded
equence in Y . If the sequence (xn ⊗ yn)n∈N is not weakly null in X⊗̂π Y , then it admits an
1-subsequence.

roof. Since any non weakly null sequence in a Banach space admits a subsequence which
s an ℓ+

1 -sequence, we can assume that (xn ⊗ yn)n∈N is an ℓ+

1 -sequence. Observe that (xn)n∈N
annot be norm null and so it admits a seminormalized subsequence, say (xnk )k∈N. By the
ssumption on X , we can assume further that (xnk )k∈N is an unconditional basic sequence and
hat X0 := span({xnk : k ∈ N}) is complemented in X . Hence, the operator ιX0 ⊗ idY :

X0⊗̂π Y → X⊗̂π Y is an isomorphism onto a (complemented) subspace of X⊗̂π Y , where
X0 : X0 → X is the inclusion operator and idY is the identity operator on Y (see, e.g.,
22, Proposition 2.4]). Now, since (xnk ⊗ ynk )k∈N is also an ℓ+

1 -sequence in X0⊗̂π Y , we can
pply Lemma 4.2 to conclude that (xnk ⊗ ynk )k∈N is an ℓ1-sequence in X0⊗̂π Y , and so in

X⊗̂π Y . □

.2. Embedding ℓ1 into projective tensor products

Let X and Y be Banach spaces. The subspace of L(X, Y ∗) (resp., L(Y, X∗)) consisting of
ll compact operators from X to Y ∗ (resp., from Y to X∗) will be denoted by K(X, Y ∗) (resp.,
(Y, X∗)). It is well-known (and not difficult to check) that L(X, Y ∗) = K(X, Y ∗) if and only

f L(Y, X∗) = K(Y, X∗). The reflexivity of X⊗̂π Y is closely related to those equalities. Indeed,
f both X and Y are reflexive and L(X, Y ∗) = K(X, Y ∗), then X⊗̂π Y is reflexive; conversely,
f X⊗̂π Y is reflexive and, in addition, either X or Y has the approximation property, then
(X, Y ∗) = K(X, Y ∗) (see, e.g., [22, Section 4.2]). It is an open problem whether the last

tatement holds without the approximation property assumption.
As we already mentioned in the introduction, in [10,26] one can find similar results where

eflexivity is weakened to “not containing isomorphic copies of ℓ1”. The purpose of this
ubsection is to provide more direct proofs of those results.
13
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Theorem 4.4. Let X and Y be Banach spaces such that one of the following conditions holds:

(i) either X or Y has the Dunford–Pettis property;
(ii) L(X, Y ∗) = K(X, Y ∗).

Then:

(a) If (xn)n∈N and (yn)n∈N are weakly Cauchy sequences in X and Y , respectively, then
(xn ⊗ yn)n∈N is weakly Cauchy in X⊗̂π Y .

(b) If W1 ⊆ X and W2 ⊆ Y are weakly precompact sets, then W1⊗W2 is weakly precompact
in X⊗̂π Y .

(c) If X and Y contain no subspace isomorphic to ℓ1, then X⊗̂π Y contains no subspace
isomorphic to ℓ1.

roof (a). Fix T ∈ L(X, Y ∗). Note that for every n, m ∈ N we have⏐⏐⟨T, xn ⊗ yn⟩ − ⟨T, xm ⊗ ym⟩
⏐⏐ (4.1)

=
⏐⏐⟨T (xn), yn⟩ − ⟨T (xm), ym⟩

⏐⏐ ≤
⏐⏐⟨T (xn − xm), yn⟩

⏐⏐+ ⏐⏐⟨T (xm), ym − yn⟩
⏐⏐.

Suppose that T is compact. Then T is completely continuous, hence we have ∥T (xn −

xm)∥ → 0 and so |⟨T (xn − xm), yn⟩| → 0 as n, m → ∞. In addition, since the set
{T (xm) : m ∈ N} ⊆ Y ∗ is relatively norm compact and ym − yn → 0 weakly in Y as
n, m → ∞, we have |⟨T (xm), ym − yn⟩| → 0 as n, m → ∞. From (4.1) it follows that
|⟨T, xn ⊗ yn⟩ − ⟨T, xm ⊗ ym⟩| → 0 as n, m → ∞. This proves that (xn ⊗ yn)n∈N is weakly
Cauchy in X⊗̂π Y when L(X, Y ∗) = K(X, Y ∗).

If Y has the Dunford–Pettis property, then we have |⟨T (xn − xm), yn⟩| → 0 as n, m → ∞

(because T (xn − xm) → 0 weakly in Y ∗ as n, m → ∞ and (yn)n∈N is weakly Cauchy) and
|⟨T (xm), ym − yn⟩| → 0 as n, m → ∞ (because (T (xm))m∈N is weakly Cauchy and ym−yn → 0

eakly in Y as n, m → ∞). Therefore, from (4.1) we get |⟨T, xn ⊗ yn⟩ − ⟨T, xm ⊗ ym⟩| → 0
s n, m → ∞. This proves that (xn ⊗ yn)n∈N is weakly Cauchy in X⊗̂π Y when Y has the
unford–Pettis property. By symmetry, the same holds whenever X has the Dunford–Pettis
roperty.

(b) is immediate from (a).
(c) Note that BX⊗̂π Y = conv(BX ⊗ BY ) (see, e.g., [22, Proposition 2.2]) and that the closed

onvex hull of a weakly precompact set in a Banach space is weakly precompact as well,
ccording to a result of Stegall (see [21, Addendum]). The conclusion now follows from
b) and the fact that a Banach space contains no subspace isomorphic to ℓ1 if and only if
ts closed unit ball is weakly precompact. □

The following result is implicit in the proof of [16, Theorem 6]. Recall that an unconditional
expansion of the identity of a Banach space X is a sequence (Pn)n∈N in L(X ) such that for each
x ∈ X we have x =

∑
n∈N Pn(x), the series being unconditionally convergent in X .

Proposition 4.5. Let X and Y be Banach spaces and let (Pn)n∈N be an unconditional
expansion of the identity of X (resp., Y ∗). If X⊗̂π Y contains no complemented subspace
isomorphic to ℓ1, then for each T ∈ L(X, Y ∗) we have T =

∑
n∈N T ◦ Pn (resp., T =∑

n∈N Pn ◦ T ), the series being unconditionally convergent in L(X, Y ∗).

Proof. Bearing in mind the identification of (X⊗̂π Y )∗ and L(X, Y ∗), together with the fact

that a Banach space contains no complemented subspace isomorphic to ℓ1 if and only if its

14
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dual contains no subspace isomorphic to c0 (see, e.g., [3, Theorem 4.68]), the assumption turns
ut to be equivalent to the fact that L(X, Y ∗) contains no subspace isomorphic to c0.

Suppose that (Pn)n∈N is an unconditional expansion of the identity of X (the other case is
nalogous) and fix T ∈ L(X, Y ∗). Define TJ :=

∑
n∈J T ◦ Pn for every finite set J ⊆ N. For

ach x ∈ X we have sup{∥TJ (x)∥Y ∗ : J ⊆ N finite} < ∞, because the series
∑

n∈N T (Pn(x))
s unconditionally convergent in Y ∗ (with sum T (x)). By the uniform boundedness principle,

sup{∥TJ ∥L(X,Y ∗) : J ⊆ N finite} < ∞.

his implies that
∑

n∈N T ◦ Pn is a weakly unconditionally Cauchy series in L(X, Y ∗), that
s, for every ϕ ∈ L(X, Y ∗)∗ we have

∑
n∈N |⟨ϕ, T ◦ Pn⟩| < ∞. Since L(X, Y ∗) contains

o subspace isomorphic to c0, we conclude that the series
∑

n∈N T ◦ Pn is unconditionally
onvergent in L(X, Y ∗) (see, e.g., [3, Theorem 4.49]). Clearly, its sum equals T . □

Clearly, if a Banach space X admits an unconditional basis or just an unconditional FDD
i.e., unconditional finite-dimensional decomposition), then there is an unconditional finite-
imensional expansion of the identity of X , that is, an unconditional expansion of the identity
onsisting of finite rank operators. Of course, this implies that X has the approximation
roperty. As an immediate consequence of Proposition 4.5, we have:

heorem 4.6. Let X and Y be Banach spaces such that either X or Y ∗ admits an
nconditional finite-dimensional expansion of the identity. If X⊗̂π Y contains no complemented
ubspace isomorphic to ℓ1, then L(X, Y ∗) = K(X, Y ∗).

The same argument yields the following:

emark 4.7. Let X and Y be Banach spaces such that either X or Y ∗ admits an unconditional
xpansion of the identity consisting of elements of some norm closed operator ideal A. If

X⊗̂π Y contains no complemented subspace isomorphic to ℓ1, then all elements of L(X, Y ∗)
elong to A.

We finish the paper with a question which is open to the best of our knowledge.

uestion 4.8. Let X and Y be Banach spaces such that X⊗̂π Y contains no complemented
ubspace isomorphic to ℓ1. Does the equality L(X, Y ∗) = K(X, Y ∗) hold? What if, in addition,
ither X or Y ∗ has the approximation property?
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