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Tumour mutations in long noncoding RNAs
enhance cell fitness
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Marianna Kruithof-de Julio 2,9, Yitzhak Zimmer2,10, Michaela Medová2,10,
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Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes
in their expression levels. Yet, it remains unclear whether lncRNAs can also
impact tumour cell fitness via function-altering somatic “driver”mutations. To
search for such driver-lncRNAs, we here perform a genome-wide analysis of
fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 pri-
mary and 3527 metastatic tumours. The resulting 54 mutated and positively-
selected lncRNAs are significantly enriched for previously-reported cancer
genes and a range of clinical and genomic features. A number of these lncRNAs
promote tumour cell proliferationwhen overexpressed in in vitromodels. Our
results also highlight a dense SNV hotspot in the widely-studied NEAT1 onco-
gene. To directly evaluate the functional significance of NEAT1 SNVs, we use in
cellulo mutagenesis to introduce tumour-like mutations in the gene and
observe a significant and reproducible increase in cell fitness, both in vitro and
in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1
ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work
demonstrates the utility of driver analysis for mapping cancer-promoting
lncRNAs, and provides experimental evidence that somatic mutations can act
through lncRNAs to enhance pathological cancer cell fitness.

Tumours arise and develop via somatic mutations that confer a fitness
advantage on cells1. Such driver mutations exert their phenotypic
effect by altering the function of genes or genomic elements, and are
characterised by signatures of positive evolutionary selection2.
Tumour genomes also carry numerous passengermutations, which do
not impact cell phenotype and are evolutionarily neutral, yet typically
outnumber drivers3. Identification of driver mutations, and the “driver

genes” throughwhich they act, is a critical step towards understanding
and treating cancer1,4. Computational driver gene discovery tools
continue to be refined, yielding catalogues of increasing accuracy that
form the foundation of precision therapeutic development4,5. Driver
genes represent a subset of more broadly defined “cancer genes”, the
latter defined as those that functionally promote or oppose oncogenic
cell states, regardless of mutational status6.
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Most tumour types are characterised by a limited and recurrent
sequence of driver mutations, which promote disease hallmarks via
functional changes to encoded oncogene or tumour suppressor
proteins6,7. However, the vast majority of somatic single-nucleotide
variants (SNVs) fall outside protein-coding genes8. Combined with
increasing awareness of the disease roles of noncoding genomic
elements9, this raises the question of whether non-protein-coding
mutations also shape cancer cell fitness10. Growing numbers of both
theoretical11–16 and experimental studies2,17–20 have linked noncoding
SNVs to cell fitness through alterations in the function of elements
such as enhancers, promoters, insulator elements and small RNAs10,21.

One particularly important class of cancer-promoting non-
protein-coding elements are the long noncoding RNAs (lncRNAs)22.
LncRNA transcripts are modular assemblages of functional elements
that can interact with other nucleic acids and proteins via defined
sequences or structural elements23,24. Of the >50,000 loci mapped in
the human genome25, hundreds of “cancer-lncRNAs” have been
demonstrated to act as oncogenes or tumour suppressors26 via up- or
downregulated expression in tumours. Their clinical importance is
further supported by prognosis27, copy number variants (CNVs)28–30,
tumour-initiating transposon screens in mouse31 and function-altering
germline cancer variants32.

LncRNA genes also tend to be highlymutated in tumourDNA2,33,34.
For example, the NEAT1 lncRNA, which is a structural component of
subnuclear paraspeckle bodies, has been noted for its high mutation
rate across a variety of cancers2,33,35. This raises the possibility that a
subset of cancer lncRNAsmayalso act as “driver-lncRNAs”, whereSNVs
promote cell fitness by altering lncRNA activity. However, recent stu-
dies have argued that mutations in NEAT1 and other lncRNAs arise
from phenotypically neutral passenger effects2,33. To date, the fitness
effects of lncRNA SNVs have not been investigated experimentally,
leaving the existence of driver lncRNAs unresolved.

In this study, we investigate the existence of driver lncRNAs. We
develop an enhanced lncRNA driver discovery pipeline, and use it to
comprehensively map candidate driver lncRNAs using somatic SNVs
from thousands of primary and metastatic tumours. We evaluate the
clinical and genomic properties of these candidates. Finally, we employ
a range of functional and mechanistic assays to gather experimental
evidence for fitness-altering driver mutations acting through lncRNAs.

Results
Integrative driver lncRNA discovery with ExInAtor2
Driver genes can be identified by signals of positive selection acting on
their somatic mutations. The two principal signals are mutational
burden (MB), an elevatedmutation rate, and functional impact (FI), the
degree to which mutations are predicted to alter encoded function.
Both signals must be compared to an appropriate background,
representing mutations under neutral selection.

To search for lncRNAs with evidence of driver activity, we devel-
oped ExInAtor2, a driver discovery pipeline with enhanced sensitivity
due to two key innovations: integration of both MB and FI signals, and
empirical background estimation (see “Methods”) (Fig. 1a and Sup-
plementary Fig. S1a, b). For MB, local background rates are estimated,
controlling for covariates of mutational signatures and large-scale
effects such as replication timing, which otherwise can confound dri-
ver gene discovery36. For FI, we adopted functionality scores from the
Combined Annotation Dependent Depletion (CADD) system, due to its
widespread use and compatibility with a range of gene biotypes37.
Importantly, ExInAtor2 remains agnostic to the biotype of genes/
functional elements, allowing independent benchmarking with estab-
lished protein-coding gene data.

Discovery of lncRNA and protein-coding driver genes
We began by benchmarking ExInAtor2 using the maps of somatic
single-nucleotide variants (SNVs) from tumour genomes sequenced by

the recent PanCancer Analysis of Whole Genomes (PCAWG) project1,
comprising altogether 45,704,055 SNVs from 2583 donors (Fig. 1b and
“Methods”). As it was generated from whole-genome sequencing
(WGS), this dataset makes it possible to search for driver genes
amongst both non-protein-coding genes (including lncRNAs) and
better-characterised protein-coding genes.

To maximise sensitivity and specificity, we prepared a carefully
filtered annotation of lncRNAs. Beginning with high-quality curations
from GENCODE38, we isolated intergenic lncRNAs lacking evidence for
protein-coding capacity. To the resulting set of 6981 genes (Fig. 1c), we
added the set of 294 confident, literature-curated lncRNAs from
the Cancer LncRNA Census 2 resource26, for a total set of 7275 genes.

We compared the performance of ExlnAtor2 to ten leading driver
discovery methods and PCAWG’s consensus measure (PCAWGc),
which integrates and outperforms all individual methods (Fig. 2a)2.
Performance was benchmarked on curated sets of protein-coding and
lncRNA cancer genes (Fig. 2b). Judged by correct identification of
cancer lncRNAs at a false discovery rate (FDR) cutoff of <0.1, ExInAtor2
displayed the best overall accuracy in terms of F1 measure (Fig. 2c, d).
Quantile–quantile (QQ) analysis of resulting P values (P) displayed no
obvious inflation or deflation and has amongst the lowest mean log-
fold change (MLFC) values (Fig. 2e), together supporting ExInAtor2’s
low and controlled FDR.

ExInAtor2 is biotype-agnostic, and protein-coding driver datasets
are highly refined (Fig. 2b). To further examine its performance, we
evaluated sensitivity for known protein-coding drivers from the
benchmark Cancer Gene Census39. Again, ExInAtor2 displayed com-
petitive performance, characterised by low false-positive predictions
(Supplementary Fig. S2a–c).

To test ExInAtor2’s FDR estimation, we repeated the lncRNA
analysis on a set of carefully randomised pan-cancer SNVs (see
“Methods”). Reassuringly, no hits were discovered, and QQ plots dis-
played neutral behaviour (MLFC 0.08) (Supplementary Fig. S2d).
Analysing at the level of individual cohorts, ExInAtor2 predicted 3/40
lncRNA-cohort associations in the simulated/real datasets, respec-
tively. This corresponds to an empirical FDR rate of 0.075, consistent
with the nominal FDR cutoff of 0.1.

We conclude that ExInAtor2 identifies known driver genes with a
low and controlled false discovery rate.

The landscape of driver lncRNA in primary human tumours
We next set out to create a genome-wide panorama of mutated
lncRNAs across human primary cancers. Tumours from PCAWG were
grouped into a total of 37 cohorts, ranging in size from two tumours
(Cervix-AdenoCa, Lymph-NOS andMyeloid-MDS tumour types) to 314
(Liver-HCC tumour type), in addition to the entire pan-cancer
set (Fig. 3a).

After removing likely false-positive associations using the same
stringent criteria as PCAWG1, ExInAtor2 revealed altogether 21 unique
cancer-lncRNA associations, involving 17 lncRNAs (Fig. 3b)—hence-
forth considered putative driver lncRNAs. Of these, nine are annotated
lncRNAs that have not previously been linked to cancer, denoted
“novel”. The remaining “known” candidates are identified in the
literature-curated Cancer LncRNA Census 2 dataset26. Known lncRNAs
tend to be hits in more individual cohorts than novel lncRNAs, with
cases like NEAT1 being detected in four cohorts (Fig. 3b). While most
driver lncRNAs display exonic mutation rates ~50-fold greater than
background (coloured cells, Fig. 3b), the number of mutations in such
genes is diverse between cohorts, being Pancancer, Lymph-CLL and
Skin-Melanoma the biggest contributors of mutations.

Supporting the accuracy of these predictions, the set of driver
lncRNAs is highly enriched for known cancer lncRNAs26 (8/17 or 48%,
Fisher test P = 2e-6) (Fig. 3c). Driver lncRNAs are also significantly
enriched in three other independent literature-curated databases
(Supplementary Fig. S3a).
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We also searched for evidence of epistatic interactions between
SNVs in lncRNA drivers and other lncRNA or known protein-coding
drivers. Although we could retrieve many known PCG–PCG inter-
actions, both positive and negative, we found no example of an
lncRNA SNV participating in such an interaction (Supplementary
Data 7 and 8).

Driver lncRNAs carry features of functionality and clinical
relevance
To further evaluate the quality of driver lncRNA predictions, we tested
their association with genomic and clinical features expected of bona
fide cancer genes, defined as those validated by functional assays in
vitro and in vivo from the scientific literature26. LncRNA catalogues are
likely to contain a mixture of both functional and non-functional
genes. The former group is characterised by purifying evolutionary
selection and high expression in healthy and diseased tissues31. We
found that driver lncRNAs display higher evolutionary sequence con-
servation and higher steady-state levels in healthy organs (Fig. 3d).

Their sequencealso containsmoremicroRNAbinding sites, suggesting
integration with post-transcriptional regulatory networks.

In contrast, we could find no evidence that driver lncRNAs are
enriched for genomic covariates and features arising from artefactual
results. They have earlier replication timing (whereas later replication
is associated with greater passenger mutation rates)40, less exonic
repetitive sequence (ruling out mappability biases), and similar exonic
GC content (ruling out sequencing bias) compared to tested non-
candidates (Fig. 3d). However, driver lncRNAs tend to have longer
spliced length, likely reflecting greater statistical power for longer
genes that affects all driver methods33.

Driver lncRNAs also have clinical features of cancer genes (Fig. 3e).
They are on average 158-fold higher expressed in tumours compared to
normal tissues (133 vs 0.84 FPKM) (Fig. 3e, PCAWG RPKM), 2.15-fold
enriched for germline cancer-associated small nucleotide polymorph-
ism (SNP) in their gene body (4.7% vs 2.5%) (Fig. 3e, SNPs per MB), and
enriched in orthologues of driver lncRNAs carrying common insertion
sites (CIS), discovered by transposon insertional mutagenesis (TIM)
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lated local background distributions to evaluate statistical significance. The two

significance estimates are combined using Fisher’s method. b Summary of the
primary tumour datasets used here, obtained from Pancancer Analysis of Whole
Genomes (PCAWG) project. c A filtered lncRNA gene annotation was prepared, and
combined with a set of curated cancer lncRNAs from the Cancer LncRNA Census26.

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 3



screens in mouse (17.6% vs 1.6%) (Supplementary Fig. S3a, Transposon
insertion mutagenesis)26. Finally, driver lncRNAs significantly overlap
growth-promoting hits discovered by CRISPR functional screens (11.8
vs 1.3%) (Supplementary Fig. S3a, Growth-promoting). In conclusion,
driver lncRNA display evidence for functionality across a wide range of
functional and clinical features, strongly suggesting that they are
enriched for bona fide cancer-driver genes.

The landscape of driver lncRNAs in metastatic tumours
We further extended the driver-lncRNA landscape to metastatic
tumours, using 3527 genomes from 31 cohorts sequenced by the
HartwigMedical Foundation (SupplementaryFig. S3b–d)41. Performing
a similar analysis as above, we identified 43 driver lncRNAs in a total of
53 lncRNA-tumour combinations (Supplementary Fig. S3c). Eight pre-
dicted drivers are known cancer lncRNAs, significantly higher than
random expectation (P =0.004, Fisher exact test) (Fig. 3c). Further
adding confidence to these findings is the significant overlap of driver
lncRNAs from metastatic and primary tumour cohorts (Fig. 3c).

Driver mutations identify oncogenic lncRNAs
We wished to evaluate the functional disease relevance of driver
lncRNAs, and particularly those that had not previously been impli-
cated in cancer. Thus, we overexpressed a panel of nine candidates in
HeLa cells and found that three promote cell growth (Fig. 4a and
Supplementary Fig. S4a).

It was interesting to note that, amongst the six that did not display
a significant effect was a lncRNA, AC087463.1, herein named LOHAN1
(LncRNA Oncogene in Head and Neck cancer—ENST00000568541 at
the PWRN1 locus), which appeared as apotential driver in theHead and
Neck (HN) tumour cohort (Fig. 3b). LOHAN1 is transcribed from the
same locus as the lncRNA PWRN1, previously reported as a tumour
suppressor in gastric cancer42. The overexpression of LOHAN1, as well
as of another driver lncRNA, LOHAN2 (LncRNA Oncogene in Head and
Neck cancer—ENSG00000258779.2; RP11-140I24), increased tumor-
igenicity in head and neck (HN) cells, as measured by colony-forming
potential (Fig. 4b, c), supporting the notion that some lncRNAs have a
cell-type-specific activity.
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ENSG00000241219 (RP11-572M11.1), herein named LOLI1 (LncRNA
Oncogene in Liver cancer 1) displayed elevated mutation rates in
Hepatocellular Carcinoma (HCC) tumours (Figs. 3b and 4d) and was
detected as driver in both the PCAWG and HFM datasets (Fig. 3c). We
could not find any studies on this lncRNA in prior scientific literature.
According to the latest GENCODE version 38, its single-annotated
isoform comprises three exons, and displays low expression in normal

tissues (Supplementary Fig. S4b). We could detect LOLI1 in two HCC
cell lines, HuH7 and SNU-475 (Fig. 4f and Supplementary Fig. S4d). To
perturb LOLI1 expression, we designed two different antisense oligo-
nucleotides (ASOs) that reduced steady-state levels by >50% in both
cell lines (Fig. 4e, f and Supplementary Fig. S4d).We evaluated the role
of LOLI1 in HCC cell proliferation, by measuring changes in growth
rates following ASO transfection. The significant decrease in growth
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resulting from both ASOs in both cell backgrounds points to the
importance of LOLI1 in HCC cell fitness (Fig. 4g and Supplementary
Fig. S4e).

These results prompted us to ask whether LOLI1 can also promote
cell growth in other cancer types. Thus, we turned to CRISPR activa-
tion, to upregulate the lncRNA from its endogenous locus in HeLa
cervical carcinoma cells. Three independent sgRNAs increased gene
expression by 4 to ~20-fold (Fig. 4h and Supplementary Fig. S4c), of
which two significantly and specifically increased cell prolifera-
tion (Fig. 4i).

Having established that LOLI1 promotes cell growth in a number
of backgrounds, we next asked whether tumour mutations can
enhance this activity, aswouldbeexpected for drivermutations. Todo
so, we designed and validated overexpression plasmids for the wild-
type or mutated forms of the transcript (Fig. 4j). We first tested
mutations from two individual patients separately. We selected
mutations that were recurrently observed in independent tumours
fromboth PCAWGandHFMdatasets (Fig. 4d) (i.e.,Mut1, including two
mutations identifiedwithin the samepatient andMut2, including three
mutations from the same patient, grey boxes, depicted in Supple-
mentary Fig. S4g). Importantly, transfection of wild-type LOLI1 boos-
ted cell growth, consistent with ASO results above (Supplementary
Fig. S4f, WT). However, neither of the individual patients’ mutations
alone yielded statistically significant changes in cell growth (Supple-
mentary Fig. S4f). We hypothesised that our experimental model may
be too insensitive to detect subtle changes from individually weak
mutations. Therefore, we combined the four SNVs from both patients
and observed a significant additional increase in cell proliferation
compared to wild-type LOLI1 (Fig. 4k). These results were further
corroborated in a non-transformed immortalised human hepatocyte
(IHH) background, where mutant LOLI1 similarly boosts cell viability
(Fig. 4l, m). Finally, we obtained primary hepatocytes from a human
healthy donor and observed that plasmid-mediated expression of
mutated LOLI1 promoted the upregulation of proliferation-associated
cytokines compared to untreated and control-transduced hepatocytes
(Fig. 4n). In summary, individual recurrent tumour SNVs in LOLI1 have
a relatively weak effect, consistent with the Weak Driver hypothesis43,
yet in combination are sufficient to produce significant increases in cell
viability in both transformed and non-transformed backgrounds.

Mutations in NEAT1 promote cell fitness and correlate with
survival
To gain mechanistic insights into how fitness-enhancing driver muta-
tions may act through lncRNAs, we turned to NEAT1 a relatively well-
understood lncRNA for which confident mechanistic and functional
data is available44,45. Based on ExInAtor2 analysis, NEAT1 mutations,
spanning the entiregene length, displayevidence for positive selection
in altogether 4 and 3 cancer cohorts in PCAWG and HMF datasets,
respectively. PCAWG and others also noted this highly elevated
mutation rate in the NEAT1 gene, although it has been argued that
these result from neutral passenger processes, possibly linked to the
high expression of the gene2,35,46.

NEAT1 produces short and long isoforms (called NEAT1_1 /
NEAT1_2) of 3.7 and 22.7 kb, respectively47, which are completely
overlapping at the 5′ of the gene (Fig. 5b). NEAT1_1 is a ubiquitous,
abundant, polyadenylated and highly conserved transcript48. In con-
trast, NEAT1_2, responsible for the formation of membraneless nuclear
paraspeckle structures, is not polyadenylated and expressed under
specific conditions or in response to various forms of stress49,50.

We sought to test whether SNVs in NEAT1 can act as drivers. We
hypothesised that tumour SNVs could be simulated by wild-type Cas9
protein, which is known to cause similar mutations when double-
strand breaks are resolved by error-prone DNA repair18,51. We selected
six regions of NEAT1, based on high mutation density, evolutionary
conservation and known functions52, hereafter called Reg1, Reg2, etc.,
and targeted themwith altogether 15 sgRNAs (Fig. 5a, b). To control for
the non-specific fitness effects of double-strand breaks (DSBs)53,54, we
also created two neutral control sgRNAs targeting AAVS1 locus, and an
efficient positive-control-paired sgRNA (pgRNA) to delete the entire
NEAT1_1 region (“KO-sgRNA” in Fig. 5b and Supplementary Fig. S5a).
Sequencing of treated cells’ gDNA revealed narrowly focussed sub-
stitutions and indels at target regions, similar to that observed in real
tumours (Fig. 5c and Supplementary Fig. S5b).

To quantify mutations’ effects on cell fitness, we established a
competition assay between mutated mCherry-labelled cells and con-
trol GFP-labelled cells (Supplementary Fig. 4h, Fig. 5d and Supple-
mentary Fig. S5c)18. As expected, deletion of entire NEAT1_1 (knockout,
KO) in HeLa cells led to reduced growth, while control sgRNAs did not
(Fig. 5d). Notably, HeLa cells carrying NEAT1 mutations in defined
regions displayed increased fitness: two at the 5′ of the gene (Reg2 and
Reg3), one internally near the alternative polyadenylation site (Reg4)
and one at the 3′ end (Reg5) (blue line, Fig. 5d and Supplementary
Fig. S5c). These findings were supported in 3/4 cases in HCT116 col-
orectal carcinoma cells (green line, Fig. 5d and Supplementary
Fig. S5c). The effect of NEAT1-targeting sgRNAs was lost in a NEAT1 KO
background, indicating that changes in cell fitness arise as a result of
on-target NEAT1 mutations (Supplementary Fig. S5d).

To corroborate these findings, we repeated fitness assays in a
more complex pooled competition assay. Here, the evolution of
definedmixtures of mutant cells is quantified by amplicon sequencing
of sgRNA barcodes. Consistent with previous results, cells carrying
NEAT1 mutations outcompeted control cells over time (Fig. 5e).

These resultswere obtained frommonolayer cells, whose relevance
to real tumours is disputed. Thus, we performed additional experiments
in 3-dimensional spheroids grown from mutated HCT116 cells, and
observed again that Reg2 mutations led to increased growth (Fig. 5f).

The experiments thus far were performed in transformed cancer
cells. To investigate whetherNEAT1mutations also enhancefitness in a
non-transformed background, we performed similar experiments in
MRC5 immortalised foetal lung fibroblasts. Again, NEAT1 mutations
were observed to increase fitness, in terms of cell growth (Fig. 5g) and,
at least for Reg2, in terms of anchorage-independent growth (Fig. 5h).

To further test NEAT1 mutations’ driver potential in a realistic
in vivo setting, we turned to a widely used nude mouse model. We

Fig. 3 | The landscape of driver lncRNAs in primary tumours. a “Oncoplot”
overview of driver lncRNA analysis in PCAWGprimary tumours. Rows: 17 candidate
driver lncRNAs at cutoff of FDR ≤0.1. Columns: 2580 tumours. b LncRNA candi-
dates across all cohorts. Rows: Cohorts where hits were identified. Columns: 17
candidate driver lncRNAs. “Known” lncRNAs are part of the literature-curated
Cancer LncRNA Census (CLC2) dataset26. Functional labels (oncogene/tumour
suppressor/both) were also obtained from the same source. c Intersection of
candidate driver lncRNAs identified in PCAWG primary tumours, Hartwig Medical
Foundation (HMF) metastatic tumours and the CLC2 published cancer-lncRNA set.
Statistical significance was estimated by Fisher’s exact test. d Genomic features of
driver lncRNAs. Each plot displays the values of indicated features for 17 candidate
driver lncRNAs (blue) and all remaining tested lncRNAs (non-candidates, grey).

Significance was calculated using two-sided Wilcoxon test, (uncorrected for mul-
tiple hypothesis testing). For each comparison, the ratio ofmeanswas calculated as
(meanof candidate values/meanof non-candidate values). Centre =medians (Line),
bottomand topboundaries of the box = 25 and75th percentiles of the data,minima
and maxima = lowest and highest data points. See “Methods” for more details.
e Clinical features of driver lncRNAs. Each point represents the indicated feature. y
axis: log2-transformed ratio of the mean candidate value and mean non-candidate
value. x axis: The statistical significance of candidate vs non-candidate values, as
estimated by a two-sided Wilcoxon test and corrected for multiple testing with
Benjamini–Hochberg method. See “Methods” for more details. Source data are
provided as a Source Data file.
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implanted HCT116 cells carrying Reg2 and Reg3 mutations sub-
cutaneously, and assayed the growth of resulting mutations (Fig. 5i).
After 21 days, Reg2-mutant tumours were significantly larger than
controls, providing the strongest support yet that mutations in NEAT1
at the Reg2 position have fitness-altering driver activity.

Finally, to test their relevance in human cancer patients, we asked
whether the presence of a NEAT1 mutation correlates with survival.

Indeed, in lymphoid cancer patients from the PCAWG cohort, NEAT1
mutations correlate with significantly worse prognosis (Fig. 5j). This
effect remains even after accounting for differences in total mutation
rates using the Cox proportional hazards model (P = 0.02).

In summary, NEAT1 tumour mutations consistently increase cell
fitness in vitro and in vivo, in a range of genetic backgrounds, and are
associated with poor prognosis in lymphoid cancer patients.
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Mutations alter the NEAT1 protein interactome and increase
paraspeckle formation
NEAT1 is a necessary component of subnuclear paraspeckles, which
assemblewhen specific architectural proteins bind to nascent NEAT1_2
transcripts55. Paraspeckles are nuclear condensates containing diverse
gene-regulatory proteins49. They are often observed in cancer cells56,
and are associated with poor prognosis57. Thus, we hypothesised that
NEAT1mutationsmight affect cell fitness via alterations in paraspeckle
number or structure.

We first checked for possible changes in NEAT1 expression and
isoform usage in response to experimentally-delivered mutations.
Mutations caused no statistically significant change in NEAT1_1
expression, while deletion ofNEAT1_1 (KO) reduced steady-state levels,
as expected (Supplementary Fig. S5f). Reassuringly, the only mutation
to significantly increase NEAT1_2 levels was in Region 4 (Supplemen-
tary Fig. S5g), which is consistent with the fact that it contains the
alternative polyadenylation site that mediates switching between the
short- and long isoforms58.

Using fluorescence in situ hybridisation (FISH) with NEAT1_2
probes, we next asked whether mutations impact on paraspeckle
number or size (Fig. 6a–c). Despite changes in isoform expression
noted above, mutations in Region 4 resulted in no change in the
number or size of paraspeckles, in linewith previous findings52 (Fig. 6a,
b). However, mutations in Region 2 yielded a significant increase in the
number and size of paraspeckles (Fig. 6a–c). Thus, SNVs in NEAT1 can
impact paraspeckles.

NEAT1 is known to function via a diverse cast of protein partners.
Region 2 mutations overlap several known protein binding sites, and
fall in or near to areas of deep evolutionary conservation of sequence
and structure (Supplementary Fig. S5h).

To better understand how Region 2 mutations alter NEAT1 func-
tion, and evaluate if mutation could affect the binding of proteins to
NEAT1, we compared the protein interactome of wild-type andmutant
RNA by in vitro pulldown coupled to mass spectrometry (Fig. 6d). We
created a 288 nt fragment of NEAT1–Region 2 for wild-type (WT) and
mutated (MUT) sequence, the latter containing two SNVs observed in
patient tumours (Fig. 6d). We performed RNA pulldown with nuclear
lysates from HeLa cells, followed by mass spectrometry. Altogether,
154 interacting nuclear proteins were identified for wild-type
sequence. Supporting the usefulness of this approach, interacting
proteins highly enriched for both known NEAT1-binders and para-
speckle proteins (see “Methods”) and include well known examples
like NONO52,59 (Fig. 6e). Comparing mutant to wild-type interactomes,
we observed widespread changes in NEAT1 complexes: altogether 8
(4.6%) proteins are lost bymutant RNA, and 18 (10.3%) gained (Fig. 6f).
STRING analysis revealed that the proteins lost upon mutation are
highly enriched for members of the core RNA Polymerase II complex

(strength = 2.51, P = 0.016; basic list enrichment by STRING,
Benjamini–Hochberg corrected) and physically interacting with other
proteins of this complex (Fig. 6g). The accuracy of reported changes in
protein binding was supported by independent RNA immunoprecipi-
tation experiments using antibodies for two differentially bound pro-
teins, PQBP1 and SREK1 (Fig. 6h and Supplementary Fig. S5i, j)60.

NEAT1-interacting proteins are expected to play roles in para-
speckle formation. To test this, we knocked down NEAT1 interactors
identified here and tested the effect on paraspeckle formation and cell
viability. Intriguingly, we observed a striking phenotype from U2SURP
knockdown, with the formation of elongated paraspeckle structures
(Fig. 6i, j), indicating U2SURP to be a key paraspeckle protein60. In
addition, a decrease in cell proliferation was observed, in line with
previous observations61. For SREK1, whose interaction is lost inmutant
NEAT1, we found that loss of function led to increased paraspeckle
counts (Fig. 6j, k) and cell proliferation (Fig. 6l). We investigated
whether mutations create or destroy known binding motifs of chan-
ging proteins, but could find no evidence for this. Altogether, these
findings suggest a model where tumour SNVs alter the protein inter-
actome of NEAT1, leading to both gains and losses of protein partners.
For example, SREK1 appears to bind wild-type NEAT1 to repress for-
mation of paraspeckles, and this interaction in abrogated by Region 2
mutations to boost paraspeckles and consequently accelerate cell
proliferation (Fig. 6m). It is likely that the gain and loss of other protein
partners also contribute to mutation-associated changes in para-
speckle numbers and form.

Discussion
Understanding which tumour mutations are drivers that promote
pathogenic cell fitness, and how they do so, are fundamental goals of
cancer genomics. Here we have focussed on a particularly intriguing
class of potential driver genes, the lncRNAs,which are known tobeboth
potent cancer genes and highly mutated in tumours, and yet for which
no driver mutation has been experimentally validated to date2,33,35,62.

To address this gap, we here developed an improved method,
ExInAtor2, to search for driver lncRNAs based on integrated signatures
of positive selection. ExInAtor2 is straightforward to run by bioinfor-
maticians or Unix-literate biologists, is competitive with present-day
tools, and is freely available in Github. In total, we identified 54 can-
didate driver lncRNAs across an extensive tumour cohort, including
both primary andmetastatic tumours. The value of these predictions is
supported by consistency between independent cohorts, overlap with
various cancer-lncRNA databases, and from functional screens in
mouse. Nevertheless, in silico driver analyses suffer from a variety of
constraints, from false positives due to localised, non-selected muta-
tional processes, to false negatives due to the limited sample size. Such
factors have limited the confidence with which previous studies33,34

Fig. 4 | Functional effects of driver lncRNAs in cell viability. a Plasmid-
transfected cellsweremeasured at indicated timepoints. Statistical significancewas
estimated by two-sided Student’s t test based on n = 3 independent replicates.
Mean value +/− SD is plotted. Replicates were performed at different times
(experimental replicates). b Overexpression of LOHAN1&2 in HN5 cells. RNA levels
were measured by qRT-PCR; n = 3 (experimental replicates performed at different
times). cResults of colony formation assay inHN5 cells. Data are presented asmean
values −/+ SD of the percent of well area covered from 18 culture wells. Statistical
significance was estimated using one-way ANOVA. Replicates were performed at
the same time (technical replicates).dThe genomic locus of the lncRNA LOLI1. Also
shown are SNVs from PCAWG and HMF cohorts. The SNVs included in themutated
plasmid are indicated in the grey boxes. e ASOs were transfected to knock down
LOLI1 expression and f RNA levels measured in HuH7 cells. Statistical significance
was estimated using one-sided Student’s t test; n = 3 (experimental replicates).
g ASO-transfected cells were measured at indicated timepoints; n = 3. Statistical
significance was estimated by linear regression model on log2 value (experimental
replicates). h CRISPRa targeting LOLI1. On the right, qRT-PCR measurements of

LOLI1 with indicated sgRNAs; n = 3 (experimental replicates). i The effect of CRIS-
PRa on HeLa cells’ viability; n = 6 (experimental replicates). Statistical significance
was estimatedbyone-sided paired t test at 48 h. j Plasmids expressing spliced LOLI1
sequence, in wild-type (WT) or mutated form (Mut) were transfected into HuH7
cells. RNA levels were measured by qRT-PCR; n = 3 (experimental replicates).
k Populations of plasmid-transfected cells were measured at indicated timepoints.
Statistical significance was estimated by one-sided Student’s t test based; n = 3
(experimental replicates). l LOLI1 overexpression in immortalised human hepato-
cytes (IHH). RNA levels weremeasured by qRT-PCR; n = 3 (experimental replicates).
mThe viability of IHHwasmeasured at indicated timepoints. Statistical significance
was calculated by one-sided Student’s t test; n = 3 (experimental replicates).
n Primary human hepatocytes were transduced to overexpress LOLI1 mutant
transcript (left panel). Transduction was monitored by EGFP marker gene (left
panel). The change in proliferation-associated cytokine was measured by qRT-PCR
(right panel); n = 6 experimental replicates. n indicates the number of independent
experiments. Data show the mean value +/− SD in (a–c, f–n). Source data are
provided as a Source Data file.
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could interpret the functional relevance of highly mutated lncRNAs,
underlining the importance of experimental results presented here.

The ability of ExInAtor2 to identify cancer lncRNAs was demon-
strated by extensive functional studies, including for two lncRNAs,
LOHAN1 (head and neck cancer) and LOLI1 (hepatocellular carcinoma).
Not only are both capable of promoting cancer cell growth in their
wild-type form, but interestingly in the case of LOLI1, this activity is

enhanced by tumour mutations. These findings underline the useful-
ness of driver analysis in identifying cancer lncRNAs.

Among the candidate driver lncRNAs, we identifiedwas thewidely
studied NEAT1. Previous tumour sequencing studies have noted the
elevated density of SNVs at this locus, but generally attributed them to
passenger mutational processes, possibly a consequence of unusually
high transcription rate2,33,35,62. Here, we have provided experimental
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evidence, via naturalistic in cellulomutagenesiswithCRISPR-Cas9, that
NEAT1 SNVs reproducibly give rise to increased cell proliferation, in a
range of backgrounds including non-transformed cells and in living
mice. Other observations are worthy of mention. Firstly, amongst
fitness-altering NEAT1 SNVs, we only observed those that increase
growth, and none that decreased it. Secondly, not all tested regions of
NEAT1 could host fitness-altering mutations, and these were clustered
at previously-mapped functional elements in mature RNA50,52. Alto-
gether, these findings suggest that tumour SNVs at particular regions
ofNEAT1 are phenotypically non-neutral and capable of increasing cell
fitness by altering the function of encoded RNA. The notion that the
NEAT1 gene represents a vulnerability to tumorigenesis is further
supported by our demonstration that patients carrying mutations in
the gene have worse prognosis, as well as published transposon
insertional mutagenesis screens in mouse31.

The relatively well-understood role of NEAT1 in assembling ribo-
nucleoprotein phase-separated paraspeckle organelles afforded
important insights into SNVs’ molecular mechanisms. Introduction of
tumour mutations at the gene’s 5′ end impacted protein binding,
including a significant loss of interaction with the RNA Polymerase II
complex mediated by known NEAT1 interactor TAF15. Other known
protein interactions are potentiated in mutated RNA, suggesting that
changes in paraspeckles may be mediated by both gains and losses of
protein interactions. The biological relevance of protein partners dis-
covered here, including U2SURP and SREK1, is strongly supported by
the impact on paraspeckles and cell viability resulting from their
knockdown. The fact that NEAT1 mutations gave rise to increased
numbers and sizes of paraspeckle structures, suggests a model where
SNVs alter the assembly of NEAT1 ribonucleoprotein complexes,
thereby promoting paraspeckle formation and hence cell growth. It
will be interesting in future to understand how broadly this NEAT1
model of altered protein interaction applies to other driver lncRNAs,
and to what extent mutations act via alternative pathways such as
alterations in RNA structure and folding, or interactions with other
nucleic acids or biomolecules.

Future studies will have to address a number of gaps and ques-
tions raised here. Firstly, the availability of larger tumour cohorts will
afford greater statistical power for driver-lncRNA detection. Larger
cohorts will also enable us to identify driver lncRNAs inmore focussed
and meaningful sub-cohorts, for example tumours stratified by grade,
therapy response, sporadic vs hereditary. Further gains may be made
by incorporating more relevant estimates of functional impact into
ExInAtor. We experimented with implementing FI estimates from
changes to RNA structure, yet observed no significantly enriched
lncRNAs, perhaps due to the low accuracy of available secondary
structure prediction methods63,64. Future FI schemes incorporating
improved structure prediction and protein/nucleic acid binding are

likely to yield improved driver predictions. On the other hand, driver
prediction methods like ExInAtor2 may be susceptible to a variety of
false-positive phenomena, including small open reading frames
(sORFs) encoding micropeptides. However, this is unlikely to impact
the driver lncRNAs presented hereonaccount of aggressive filtering of
input annotations and manually checking of all driver predictions
using PhyloCSF predictions65.

While we have provided functional experimental evidence for
effects on cell phenotype arising from SNVs, it will be important to
replicate this in better models, notably by introducing precise tumour
mutations into cellular genomes (e.g., by recent Prime Editing
method)66,67, and testing their effects in faithful tumour models, such
as mice or tumour organoids68,69. Finally, key mechanistic questions
remain to be answered, such as the precise protein partners whose
interaction is altered to result in paraspeckle changes33,70,71.

In summary, we have presented experimental evidence that
fitness-boosting somatic tumour mutations can act via changes in
lncRNA function. We have sketched a mechanistic outline of how this
process occurs via altered protein interaction and changes to mem-
braneless organelles, in this case, paraspeckles. Our catalogue of
candidate driver lncRNAs across thousands of primary and metastatic
tumours provides a foundation for future elucidation of the extent and
mechanism of driver lncRNAs.

Methods
ExInAtor2 algorithm
ExInAtor2 is composed of two separate modules for detection of
positive selection: one for recurrence (RE), comparing the exonic
mutation rate to that of the local background; another for functional
impact (FI), comparing the estimated functional impact of mutations
to background, both estimated in exons.

As an improvement to the first version of ExInAtor33, the RE
module compares the number of observed exonicmutations against a
distribution of simulated exonic counts (Supplementary Fig. S1a),
obtained by random repositioning of the variants the between the
exonic and background regions while maintaining the same trinu-
cleotide spectrum. Background region is defined for each gene as
introns plus 10 kb up and downstream, after removing nucleotides
overlapping exons from any other gene. Exonic and background
regions can be further filtered to remove any additional “masked”
regions defined by the user. In this manuscript, this functionality was
used to mask low mappability regions and gap regions obtained from
the UCSC Genome Browser (Supplementary Data 1).

The use of local background and controlling for trinucleotide
content is intended to avoid known sources of false positives arising
from covariates in mutational processes and mutational signatures,
such as replication timing, gene expression, chromatin state, etc.36.

Fig. 5 | Mutations in NEAT1 promote cell fitness and correlate with survival.
a Experimental strategy to simulate tumour-like mutations in the NEAT1 gene by
Cas9 protein. bDetailedmap of the sixNEAT1 target regions and 15 sgRNAs. Paired
gRNAs used for the deletion of NEAT1_1 are indicated as KO- sgRNA1 and KO-
sgRNA2. Previously described NEAT1 functional regions are indicated below52.
c Analysis of mutations created by Cas9 recruitment. The frequency, size and
nature of resulting DNA mutations are plotted. d Competition assay to evaluate
fitness effects ofmutations. Above: Rationale for the assay. Below: Red/green ratios
for indicatedmutations. “Control1/2” indicate sgRNAs targetingAAVS1 region. “KO”
indicates paired sgRNAs designed to delete NEAT1_1. N = 4 experiments were per-
formed, and statistical significance was estimated by linear regression model on
log2 values. The mean value −/+ SD is plotted. Replicates were performed at dif-
ferent times (experimental replicates). eUpper panel: Set-up ofmini CRISPR fitness
screen. HeLa cells are infected with lentivirus-carrying mixtures of sgRNAs. The
sgRNA sequences are amplified and sequenced at defined timepoints. Lower panel:
Abundances of displayed sgRNAs, normalised to the Control2 negative control.
Statistical significance was estimated by linear regression model; n = 4

(experimental replicates). The mean value with SD is represented. f HCT116 cells
were cultured as spheroids and their population measured. Data show the mean
value −/+ SD of n = 4 (experimental replicates). Statistical significance was esti-
mated using Student’s one-sided t test. g As for (d), but with non-transformed
MRC5 lung fibroblast cells at timepoint Day 14. Statistical significance was esti-
mated by one-sided Student’s t test. Data show the mean value -/+ SD of n = 3
(experimental replicates). h MRC5 cells were seeded in soft agar, and the area of
colonies was calculated. The mean and SD of n = 3 experiments is shown (experi-
mental replicates). i NEAT1 mutations in Reg2 enhances cell growth in NSG mice.
HeLa cells were mutated and then implanted subcutaneously. Resulting tumour
weight is shown at 4 weeks post-transplantation. Statistical significance was esti-
mated by one-sided Student’s t test based on n = 9 animals. Experiments were
pooled from two groups of animals studied at different times. Data show themean
value -/+ SD. j The survival time of 184 lymphoid cancer patients from PCAWG is
displayed. Patients were stratified according to whether they have ≥1 SNVs in the
NEAT1 gene. Two-sided Gehan Breslow rank test with confidence interval style set
to dotted lines (95% CI). Source data are provided as a Source Data file.
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A P value is assigned to each gene, being the fraction of simula-
tions with higher or equal number of mutations compared to the
observed number (Formula 1).

REp�value =
#of simulated exonic counts ≥observed exonic count

total#of simulations
ð1Þ

Formula 1: P value calculation for the recurrence (RE) module.
The second FI module compares themean functional score of the

observed exonic mutations to a distribution of simulated values.
Simulations are performed by random repositioning of mutations in
exonic regions, while maintaining identical trinucleotide content
(Supplementary Fig. S1b). Similar to the REmodel, a P value is obtained
by comparing the number of simulations with an exonic mean

m Mechanistic model for NEAT1 driver mutations
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functional score higher or equal to the observed value (Formula 2).
This module work with any base-level scoring method. Given its pre-
vious successful use and integrative nature, we selected the Combined
Annotation Dependent Depletion (CADD) scoring system70.

FIp�value =
#of simulated exonicmeans ≥ observed exonicmean

total#of simulations
ð2Þ

Formula 2: P value calculation for the Functional Impact (FI)
module.

In a final step, RE and FI P values are combined using the Fisher
method (Formula 3).

T = � 2 � ln REp�value

� �
+ ln FIp�value

� �h i
ð3Þ

The Combined P value can be computed from the test statistic T
which follows a chi-square distribution with degrees of freedom equal
to 2n, where n is the number of tests being combined. Here in this
case n = 2.

Formula 3: Fisher method for P value integration.

Tumour somatic mutations
Theprincipal sourceofmutationswere primary tumours from the Pan-
Cancer Analysis ofWholeGenomes (PCAWG)project1. Thisdatasetwas
created according to a uniform and strict methodology, including
collection of samples, DNA sequencing and somatic variant calling,
aggressive filtering to remove potential artefacts and false-positive
mutations1. For practical reasons, we only considered Single Nucleo-
tide Variants (SNVs) arising from substitutions, insertions and dele-
tions of length 1 bp (indels) (Fig. 1b). After this filtering, the PCAWG
dataset comprises 37 cancer cohorts, 2583 samples and 45,703,485
SNVs (Fig. 1b). Analyses were performed either on individual cohorts,
or on the “Pancancer” union of all cohorts.

Gene annotation and filtering
We employed a filtered lncRNA gene annotation based upon GEN-
CODE annotation. Beginning with GENCODE v19 annotation, we dis-
carded lncRNA genes overlapping protein-coding genes, or containing
at least one transcript predicted to be protein-coding by CPAT71, with
default settings of coding potential >=0.364. To the remaining list of
6981 genes, we added 294 genes from Cancer LncRNA Census (CLC)26,
not annotated inGENCODEv19. The resulting set of 7275 lncRNAgenes
were used here unless otherwise specified (Fig. 1c and Supplemen-
tary Data 2).

ExInAtor2 benchmarking against other driver discovery
methods
We collected driver predictions from ten methods, in addition to the
combined predictions generated by the PCAWGdriver group (PCAWG
combined, PCAWGc) that displayed best overall performance2. We
only selected PCAWG methods that were run in both protein-coding
and lncRNAs, and for which predictions were available for individual
cohorts (Fig. 2a).

The original PCAWG publication used carefully filtered annota-
tions for protein-coding and lncRNA genes2. Only coding sequences
(CDS) of protein-coding genes were considered, while lncRNAs were
strictly filtered by distance to protein-coding genes, transcript bio-
type, gene length, evolutionary conservation andRNAexpression. For
benchmarking, we ran ExInAtor2 using the same PCAWGannotations.

Evaluation of P value distributions
Under the assumption that most genes are not cancer drivers and
follow the null distribution, the collection of P values should mimic a
uniform distribution with deviation of a small number of genes at very
low P values72. Quantile–quantile plots (QQ-plot) (Fig. 2b and Supple-
mentary Fig. S3a) display the observed and expected P values in
−log10 scale. In order to generate the theoretical distribution for each
driver method across all 37 cohorts and the Pancancer set, we ranked
the total list of n observed P values from lowest to highest, then for
each iobserved P valuewe calculated an expected P value according to
the uniform distribution (Formula 4).

expectedi =
i
n

ð4Þ

Formula 4: Expected P value calculation. i represents the rank of
the corresponding observed p value in the total distribution of n
observed P values, therefore i values range from 1 to n.

For each driver method, only genes with a reported P value were
included in this analysis, i.e., NA cases were discarded. By visual
inspection of the QQ plots, a correct observed distribution of P values
should follow a line with 0 as intercept and 1 as slope, where extreme
values beyond approximately 2 in the x axis should deviate above
the diagonal line. We used the MLFC (Formula 5) to numerically esti-
mate such deviation and evaluate the performance of driver gene
predictions72. The closer to zero the MLFC, the better the statistical
modelling of passenger genes following the null distribution72.

MLFC =
1
n
�
Xn

i

∣
observedi

expectedi

� �
∣ ð5Þ

Formula 5:MLFC.n represents the total number of P values an i the
lowest P value.

Fig. 6 | Mutations at the 5′ end of NEAT1 increase paraspeckle formation and
alter its protein interactome. a Counts of paraspeckles and b paraspeckle size in
HeLa cells treated with indicated sgRNAs. Values were obtained from 80 to 100 cells
per replicate, with n= 5 (experimental replicates performed at different times). Sta-
tistical significance was estimated using one-tailed paired t test. Data show the mean
value +/− SD. c Representative images from fluorescence in situ hybridisation (FISH)
visualisation ofNEAT1 inHeLa cells expressing sgRNAs forControl2 andNEAT1Region
2. n> 3 biological replicates. Scale bar = 10 µM. d Sequences of biotinylated probes
used for the mass-spectrometry analysis of NEAT1-interacting proteins. e Proteins
detected bywild-type (WT)NEAT1probe, filtered for nuclear proteins only, are ranked
by intensity and labelled when intersecting previously detected NEAT1-interacting
proteins (green) and paraspeckle proteins (orange). Statistical significance was cal-
culated by one-tailed hypergeometric test (to background of nuclear proteins
n=6758). f Histogram shows differential detection of proteins comparing mutated
(Mut) and wild-type (WT) probes. Dotted lines indicate log2 fold-change cutoffs of
−1/+ 1. g STRING interaction network based on a subset of the proteins lost upon

mutation (grey borders) interacting with the RNA polymerase II core complex.
h Validations by RNA immunoprecipitation using antibodies for PQBP1 and SREK1.
i FISH using NEAT1 probes (green) in HeLa cells treated with indicated siRNAs. Cell
nuclei in blue (DAPI). Values were obtained from 80 to 100 cells per replicate, with
n= 3 replicates (experimental replicates). Scale bar = 10 µM. j qRT-PCR measurement
of RNA levels in HeLa cells after transfection of siRNAs targeting U2SURP and SREK1
genes. Data show the mean value +/− SD of n= 3 independent experiments.
k Paraspeckles area in HeLa cells treated with two independent siRNAs targeting
SREK1. Measurements from 80 to 100 cells per replicate. Statistical significance was
estimated using one-sided paired t test. Data shows the mean value +/− SD of n= 3
replicates (experimental replicates). l Cell viability in siRNA-transfected cells was
measured at indicated timepoints. Data shows the mean value +/− SD of n= 3 repli-
cates (experimental replicates). Statistical significance was estimated by using tow-
tailed t test.m Proposed model by which somatic mutations in NEAT1 gene can alter
protein interactome, increase paraspeckle numbers and boost cell proliferation.
Source data are provided as a Source Data file.
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Gene benchmark sets
We downloaded known driver genes from the Cancer Gene Census39

(CGC) (www.cancer.sanger.ac.uk/census) on 06/02/2019 as a TSV file.
We extracted all GENCODE ENSG identifiers, resulting in a list of 703
genes. For lncRNAs, we used the second version of the Cancer LncRNA
Census26, which contains 513 GENCODE lncRNAs.

Precision, sensitivity and F1 comparison
CGC and CLC genes were used as ground truth for driver predic-
tions of protein-coding and lncRNAs, respectively. Three metrics
were used to compare driver predictions: Precision, the proportion
of predictions that are ground truth genes (Formula 6); Sensitivity,
the fraction of ground truth genes that are correctly predicted
(Formula 7); F1-score, the harmonic mean of precision and sensi-
tivity (Formula 8).

Precision=
TP

TP + FP
� 100 ð6Þ

Formula 6: Precision.

Sensitivity=
TP

TP + FN
� 100 ð7Þ

Formula 7: Sensitivity.

F1� score=2 � Precision � Sensitivity
Precision+ Sensitivity

ð8Þ

Formula 8: F1-score.

Simulated mutation datasets
To generate realistic simulated data, each mutation was randomly
repositioned to another position with an identical trinucleotide sig-
nature (ATA>ATA, being the central nucleotide the one mutated)
within a window of 50 kb on the same chromosome.

Generation and comparison of genomic features
Evolutionary conservation: We downloaded base-level PhastCons
scores for all 46-way and 100-way alignments73 fromtheUCSCGenome
Browser74. We calculated the average value across all exons of
each gene.

Expression in normal samples: We obtained RNA-seq expression
estimates in transcripts per million (TPM) units for 53 tissues from
GTEx (https://gtexportal.org/home/datasets). For tissue specificity, we
calculated tau values as previously described75 (https://github.com/
severinEvo/gene_expression/blob/master/tau.R).

Replication timing: We collected replication time data of 16 dif-
ferent cell lines from theUCSCbrowser74 (http://genome.ucsc.edu/cgi-
bin/hgFileUi?db=hg19&g=wgEncodeUwRepliSeq).

miRNAbinding:Wedownloadedboth bioinformatically predicted
(miTG scores) and experimentally validated miRNA binding to
lncRNAs from LncBase76 (http://carolina.imis.athena-innovation.gr/
diana_tools/web/index.php?r=lncbasev2%2Findex).

Tumour expression: Expression values in units of FPKM-uq were
obtained from PCAWG1.

Drug-expression association: We extracted expression-drug
association P values from LncMAP77 (http://bio-bigdata.hrbmu.edu.
cn/LncMAP).

Germline cancer small nucleotide polymorphisms (SNPs): We
downloaded SNPs from the GWAS Catalogue78 (https://www.ebi.ac.uk/
gwas/).

CIS evidence in mice: We downloaded CIS coordinates from
CCGD79 (http://ccgd-starrlab.oit.umn.edu/download.php) and map-
ped them to human hg19 with LiftOver (https://genome.ucsc.edu/cgi-

bin/hgLiftOver) from the UCSC browser74. Then, we calculated the
number of CIS intersecting each lncRNA divided by the gene length
with a custom script using BEDtools80. CIS per Mb values are available
in Supplementary Data 3.

Additional information on driver lncRNAs is provided in Supple-
mentary Data 6.

Survival analysis
Survival plots were constructed using donor-centric whole-genome
mutations dataset, overall survival data and tumour histology data
from UCSC Xena Hub: https://xenabrowser.net/datapages/?cohort=
PCAWG%20(donor%20centric)&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443. The whole-genome mutations file was
intersected with comprehensive gene annotation v38liftv37 (https://
www.gencodegenes.org/human/release_38lift37.html) using BEDtools
intersect to isolate donors with mutations in lncRNA of interest. Sur-
vival of donors with mutations in lncRNA of interest was then com-
pared against the group of donors without mutations in lncRNA of
interest using R packages “survival” (https://cran.r-project.org/web/
packages/survival/index.html) and “survminer” (https://cran.r-project.
org/web/packages/survminer/index.html)81. Log-rank test was used to
compare the survival times of the two groups. For lymphoid tumours,
patients with 40000 mutations or more were stripped from the
analysis.

NEAT1 structure and element analysis
Elements. The window spanning 300bp around Mut1a and Mut1b
(hg19 chr11:65190589-65190888; hg38 chr11:65423118-65423417) was
annotatedwith theprogrammeezTracks82 using the followingdatasets
as input: (i) structural features: RNA structures conserved in verte-
brates (CRS)83, DNA:RNA triplex structures84, R-Loops lifted over to
hg3885; (ii) conservation: phastCons conserved elements in 7, 20, 30
and 100-way multiple alignments73 retrieved from UCSC genome
browser86; (iii) high confidence narrow peaks from eCLIP experiments
from ENCODE87 (Complete list of accessions is located at Supple-
mentary Data 9.

RBP motif mapping. The 20 bp-padded sequence around Mut1a and
Mut1b (hg19 chr11:65190719-65190775)was extracted and then used to
generate the sequence of the three distinct alleles WT, only Mut1a and
only Mut1b. The three sequences were used as input for de novo RBP
motifmatching in theweb serversRBPmap88 using theoptionGenome:
other and all Human/Mouse motifs) and RBPDB89 (using the default
score threshold, 0.8). Outputs were manually parsed and further
processed using an in-house Python script.

SNP structural impact analysis. Sequences for the window spanning
300bp around each mutation target were extracted. Then, only sub-
stitutions were kept and encoded according to their relative position
and submitted to theMutaRNAweb server90, which also reports scores
from RNAsnp63.

Mutual exclusivity and co-occurrence
We used DISCOVER91 to analyse mutations in long noncoding RNA
and coding regions from publicly available PCAWG data. Coding
mutations were obtained from the following source (consensus
coding mutation calls): https://xenabrowser.net/datapages/?
dataset=October_2016_whitelist_2583.snv_mnv_indel.maf.coding.
xena&host=https%3A%2F%2Fpcawg.xenahubs.net&removeHub=
https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443.

Noncoding mutations was obtained from the following source
(whole-genome somatic mutation calls): https://xenabrowser.net/
datapages/?dataset=October_2016_whitelist_2583.snv_mnv_indel.maf.
xena.nonUS&host=https%3A%2F%2Fpcawg.xenahubs.net&removeHub=
https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443.
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Noncoding mutations were intersected with exonic regions of
lncRNA genes (GENCODE v42lift37) and further filtered to include only
SNVs (mutations of length 1).

Genes were recorded as mutated (1) or wild-type (0) across
donors in PCAWG that had data available for both (n = 1750) noncod-
ing (n = 1782) and coding mutations (n = 2550) (to avoid confounding
the analysis by including donors with data unreleased to the public).

Mutual exclusivity and co-occurrence analysis was performed for
17 cancer-driver lncRNAs discovered fromPCAWGdata and 572 known
protein-coding cancer-driver genes from COSMIC database (Tier-1)92.

Cell culture
HeLa, HEK293T and HCT116 were a kind gift from Roderic Guigo’s lab
(CRG, Barcelona). The MRC5-SV cells were provided by the group of
Ronald Dijkmanthe (Institute of Virology and Immunology, University
of Bern) and the HN5 tongue squamous cell carcinoma cells by Jeffrey
E. Myers (MD Anderson) to Y. Zimmer. SNU-475 were purchased from
ATCC (#crl-2236). HuH7 were purchased from Cell Line Service
(#300156). All the cell lines were authenticated using Short Tandem
Repeat (STR) profiling (Microsynth Cell Line Typing) and tested
negative for mycoplasma contamination.

HeLa, HN5 and HEK 293T cell lines were cultured at 37 °C in 5%
CO2 in Dulbecco’s Modified Eagle’s Medium high-glucose (Sigma)
supplemented with 10% FBS (Gibco), 1% L-glutamine (Thermo Fisher),
100 IU/mL of Penicillin/Streptomycin (Thermo Fisher).

HCT-116 andMRC5-SVwere cultured inMcCoy (Sigma) and EMEM
(Sigma), respectively, both supplemented with 10% FBS (Gibco), 1% L-
glutamine (Thermo Fisher), 100 IU/mL of Penicillin/Streptomycin
(Thermo Fisher). SNU-475 (ATCC) and HuH7 (Cell Line Service) hepa-
tocellular carcinomacell lineswerecultured at 37 °C in 5%CO2 in RPMI-
1640, Glut Amax™ (Gibco) supplemented with 10% FBS (Gibco) and
100 IU/mL of penicillin/streptomycin (Thermo Fisher).

IHHwas kindly generated and provided by Professor Didier Trono
and Dr Tuan Nguyen93 and were cultured in DMEM-F12 (Sigma) med-
ium supplemented with 20mU/ml insulin (Novo Nordisk), 50nM
Dexamethasone (Sigma) 100 IU/mL of penicillin/streptomycin
(Thermo Fisher) and 10% FBS (Gibco).

Primary human hepatocytes
Perfusable wedges of normal human liver tissue were obtained from
the periphery of liver specimens from patients undergoing surgical
resection. Human liver tissue was obtained from patients undergoing
surgical resection for colorectal metastasis. Signed informed consent
was obtained from all patients in accordance with institutional
guidelines and according to study approval of the Ethics Commission
of the Canton of Bern. Cells were isolated using a two-step enzymatic
perfusion protocol as previously described94. The hepatocytes were
seeded at a density of 90,000/cm2 onto six-well tissue culture plates
coated with rat tail collagen in Dulbecco’s modified Eagle medium
containing 10% foetal bovine serum (Life Technologies, Switzerland),
left to attach for 2 h, thenwashed twicewith phosphate-buffered saline
(PBS, Life Technologies, Switzerland) to remove unattached cells. The
hepatocytes were cultured in Williams-E, supplemented with insulin
(0.015 IU/mL, NovaRapid, Novo Nordisk), hydrocortisone (5μmol/L,
Sigma-Aldrich, Buchs, Switzerland), penicillin, streptomycin, gluta-
mine (100 IU/mL, 100μg/mL, 2mmol/L, GPS, Life Technologies,
Switzerland) for 24 h before use.

Cultured hepatocytes were washed with PBS and transduced for
16 h with 5μl of concentrated lentiviral vector in 2ml complete
Williams-E medium with a supplement of 50μM vitamin E succinate
(Sigma). 4 days after inoculation, transfection was confirmed with
imaging of the GFP tag with Leica Stellaris 8 (Leica). RNAwas extracted
with NucleoZOL according to the manufacturer’s instruction
(Macherey–Nagel) and quantified by Nanodrop analysis. After reverse
transcription with Omniscript reverse transcriptase (Qiagen), the

mRNA was quantified using TaqMan gene expression assay reagents
(Sigma-Aldrich) and primers from Thermo Fisher. Human probes
include CCNA2(Hs00996788_m1), CCNB1(Hs01030099_m1),
CCNE1(Hs01026536_m1) and BIRC5(Hs04194392_s1). Eukaryotic 18 S
(4352930E) was used as a normaliser. Amplifications were performed
with QuantStudio 7 according to standard protocol (Thermo Fisher),
and the relative changes inmRNAexpressionwerecalculated using the
ΔΔCT method.

Gene overexpression and knockdown experiments
Both the wild-type and mutated lncRNA spliced sequences were syn-
thesised by Gene Universal Inc, into pcDNA3.1 vector backbone. Con-
trol pcDNA3.1 plasmids contained the sequence of enhanced green
fluorescent protein (EGFP).

Transfection in HN5 cells: For each transfection, 1.6μg of plasmid
DNA has been incubated for 20min with 4 µl of Lipofectamine 2000
transfection reagent (Invitrogen) in 0.2ml of OptiMEM media (Gibco)
and added to the cells cultured in a six-well plate. As all plasmids
contain G418 resistance gene, cells were cultured in 2.5mg/ml of G418
(Gibco) 48 h after transfection. After ~10 days, when the antibiotic
selectionwas over, we collected cell pellets to extract the RNA and test
the overexpression efficiency.

Transfection in HuH7 cells: For each transfection, 100 ng of plas-
mid DNA were incubated for 20min with 0.15μl Lipofectamine 3000
and 0.2μl P3000 transfection reagent (Invitrogen) in 10μl RPMI-1640,
GlutaMAX™ (Gibco) and addedon topof 2000HuH7 cells cultured in a
96-well plate.

For both cell lines, after ~10 days, when the antibiotic selection
was complete (as judged by 100% death of untransfected cells), we
collected cell pellets to extract the RNA and test the overexpression
efficiency.

Knockdown in SNU-475 and HuH7 cells: For the transfections,
10 nM of each ASO were incubated with 0.15μl Lipofectamine 3000
(Invitrogen) for 20min in 10μl RPMI-1640, GlutaMAX™ (Gibco) and
added on top of 2000 SNU-475 or HuH7 cells cultured in a 96-well
plate. Transfection efficiency was measured with qPCR after 144 h.

ASO sequences are available in Supplementary Data 4.

Crystal violet staining
Cells were dissociated with 0.05% trypsin-EDTA (Gibco), resuspended
in complete media and counted in Neubauer chamber. Subsequently,
1000 cells per well were plated in a six-well plate, cultured for 1 week
and stained in a 2%Crystal violet (Sigma) solution. The area percentage
covered with cells was analysed using ImageJ (%Area). Data analysis
was conducted in GraphPad Prism version 8.0.1. One-way ANOVA was
used to determine statistical significance, alpha =0.05.

Proliferation assay—SNU-475 and HuH7
After transfection and neomycin selection, the proliferative capacity of
SNU-475 and HuH7 was measured every 24 h by resazurin assay.
Briefly, Resazurin sodium salt (Sigma) was added to each well to reach
a final concentration of 3μM and was incubated at 37 °C for 2 h.
Absorbance was measured with Tecan Spark Plate Reader at 545 nm
and 590nm.

CRISPR sgRNA design and cloning
CRISPR activation in HeLa cells was performed as described by Sanson
and colleagues95. sgRNAs were designed using the GPP sgRNA
Designer CRISPRa from the Broad Institute (https://portals.
broadinstitute.org/gpp/public/) (Supplementary Data 4). For each
sgRNA, forward and reverse DNA oligos were synthesised, introducing
the BsmB1 overhangs. The two oligos were phosphorylated with the
Anza™ T4 PNK Kit (Thermo Fisher) according to the manufacturer’s
instructions in a 10 µl final volume. The phosphorylation/annealing
reaction was set up in a thermocycler at 20 °C for 15min, followed by
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95 °C for 5min and then ramp down to 25 °C at 5 °C/min rate. For
ligation of annealed oligos into the pXPR_502 backbone (Addgene
#96923), the plasmid was first digested and dephosphorylated with
FastDigest BsmBI and FastAP (Thermo Fisher) at 37 °C for 2 h. Ligation
reaction was carried out with the Rapid DNA Ligation Kit (Thermo)
according to the manufacturer’s instructions.

sgRNAs targeting NEAT1 were designed using the GPP sgRNA
Designer CRISPRKo from the Broad Institute (https://portals.
broadinstitute.org/gpp/public/) (Supplementary Data 4), and cloned
into the pDECKO backbone (Addgene #78534) as described above.

Lentivirus production
For lentivirus production, HEK293T cells (2.5 × 106) were seeded in
poly-L-lysine coated 100-mm culture dishes 24 h prior to transfection.
Cells were then co-transfected in serum-free medium with 12.5 µg of
the plasmid of interest (Lenti dCAS-VP64_Blast plasmid or sgRNA-
containing pXPR_502 or pDECKO), 4 µg of the envelope-encoding
plasmid pVSVg (Addgene 12260) and 7.5 µg of the packaging plasmid
psPAX2 (Addgene 8454) with Lipofectamine 2000 (Thermo Fisher)
according to the manufacturer instructions. After 4–6 h the medium
was replaced with complete DMEM. Virus-containing supernatant was
collected after 24, 48 and 72 h post-transfection. The three harvests
were pooled and centrifuged at 3000 rpm for 15min to remove cells
and debris. The supernatantwas collected, and for every four volumes,
one volume of cold PEG-it Virus Precipitation Solution was added. The
mix was refrigerated overnight at 4 °C and centrifuged at 1500×g for
30min at 4 °C.The supernatant was discarded, and the sample was
centrifuged at 1500×g for 5min. The lentiviral pellet was suspended in
cold, sterile PBS, aliquoted into cryogenic vials and stored at −70 °C.

Lentiviral transduction
CRISPRKo. For the generation and transduction of Cas9-expressing
cell lines, HeLa, HCT116 and MRC5-SV Cas9 were incubated for 24 h
with culture medium containing concentrated viral preparation car-
rying pLentiCas9-T2A-BFP and 8μg/ml Polybrene. Twenty-four hours
post-infection, antibiotic selection was induced by supplementing the
culturing medium with 4μg/ml blasticidin (Thermo Fisher) for 5 days.
Blasticidin-selected cells were subjected to three rounds of
fluorescence-activated cell sorting (FACS) to isolate high BFP-
expressing cells.

CRISPRa. For the generation and transduction of dCas9-expressing
cell lines, HeLa cells were incubated for 24h with culture medium
containing concentrated viral preparation carrying pLenti dCas9-T2A-
BFP-VP64 and 8μg/ml Polybrene. Cells underwent FACS sorting to
enrich for high BFP-expressing cells.

sgRNAs. pLentiCas9-T2A-BFP or dCas9-T2A-BFP-VP64 stable cell lines
were seeded into six-well plates at 106 cells per well and supplemented
with sgRNAs pDECKO or pXPR_502 lentiviral preps, respectively, and
spinfected in the presence of polybrene (2μg/ml) for 95min at 2000
rpm at 37 °C, followed by medium replacement. Twenty-four hours
post-infection, antibiotic selection was induced by supplementing the
culturing medium with 2μg/ml puromycin (Thermo Fisher) for at
least 3 days.

RT-qPCR gene expression analysis
HeLa cells were lysed, and total RNAwas extracted by using the Quick-
RNA™Miniprep Kit (Zymo Research). For each sample, RNA was retro-
transcribed into cDNA by using the GoScript™ Reverse Transcription
System (Promega) and the expression of the target gene was assessed
through Real-Time PCR with the GoTaq® qPCR Master Mix. To this
purpose, target-specific mostly intron-spanning primers (listed in
SupplementaryData 4)weredesignedbyusing theonline tool Primer 3
version 4.1.0.

Cell viability assay
After puromycin selection, cells expressing controls and candidates’
guides were collected and seeded in 96-well plates in at least three
technical replicates for each timepoint (3000 cells per well). Pro-
liferation assay was performed using the Cell-Titer Glo 2.0 (Promega)
reagent according to the manufacturer’s instructions. Luminescence
was measured with the INFINITE 200 PRO series TECAN reader
instrument. Timepoint 0 (T0) reading was performed 4–5 h after cell
seeding.

1:1 competition assay
HeLa, HCT116 and MRC5-SV cells were infected with pDECKO lenti-
viruses expressing fluorescent proteins. Control plasmids containing
sgRNAs targeting AAVS1 expressed GFP protein (pgRNAs-AASV1-
GFP + ), while the sgRNAs targeting the different regions of NEAT1
expressed mCherry. After infection, and seven days of puromycin
(2μg/ml) selection, GFP and mCherry cells were mixed 1:1 in a six-well
plate (150,000 cells). Cell counts were analysed by LSR II SORP
instrument (BD Biosciences) and analysed by FlowCore software.

Pooled competition assay
Screen: HeLa cells stably expressing sgRNAs targeting NEAT1 Reg2,
Reg3, Reg4, Reg5 and KO, and HeLa cells stably expressing sgRNAs
Control1 and Control2 were counted and mixed in the following ratio
10:10:10:10:25:25. At day 0, 2M cells were collected, while 2M were
plated and passaged every 2–3 days. Cells were harvested at 7, 14, 21
and 28 days for gDNAextraction. The experimentwas conducted in six
biological replicates.

Genomic DNA preparation and sequencing: Genomic DNA
(gDNA) was isolated using the Blood & Cell Culture DNA Mini (< 5e6
cells) Kits (Qiagen, cat. no. 13323) as per the manufacturer’s instruc-
tions. The gDNA concentrations were quantified by Nanodrop. For
PCR amplification, 1 μg of gDNA was amplified in a 200 μl reaction
usingQ5®High-Fidelity 2XMasterMix (NEB#M0491). PCRmastermix
(100μl Q5, and 10μl of Forward universal primer, and 10μl of a
uniquely barcoded P7 primer (both stock at 10μM concentration).
PCR cycling conditions: an initial 30 s at 98 °C; followed by 10 s at
98 °C, 30 s at 68 °C, 20 s at 72 °C, for 22 cycles; and a final 2min
extension at 72 °C. NGS primers are listed in Supplementary Data 4.
PCR products were purified with Agencourt AMPure XP SPRI beads
according to the manufacturer’s instructions (Beckman Coulter, cat.
no. A63880). Purified PCR products were quantified using the Qubit™
dsDNA HS Assay Kit (Thermo Fisher, cat. no. Q32854). Samples were
sequenced on a HiSeq2000 (Illumina) with paired-end 150 bp reads.
The raw sequencing reads from individual samples were analysed by
using a custom shell script to count the number of reads containing
each sgRNA. The sgRNA countswere then normalised over the T0 and
Control2.

Deep sequencing to determine indel spectrum
Genomic DNA was extracted using the Blood & Cell Culture DNA Mini
(<5M cells) Kits (Qiagen, cat. no. 13323) as per the manufacturer’s
instructions. To prepare samples for Illumina sequencing, a two-step
PCRwasperformed to amplify the different regions ofNEAT1. For each
sample, we performed two separate 100μl reactions (25 cycles each)
with 250 ng of input gDNA using Q5 MASTER MIX (NEB #M0491) and
the resulting products were pooled (PCR reaction: 30 s at 98 °C; fol-
lowed by 10 s at 98 °C, 30 s at 68 °C, 20 s at 72 °C, for 22 cycles; and a
final 2-minextension at 72 °C). PCR ampliconswere purifiedusing solid
phase reversible immobilisation (SPRI) beads, run ona 1.5% agarose gel
to verify size and purity, and quantified by Qubit Fluorometric Quan-
titation (Thermo Fisher Scientific). The resulting DNA was used for
reamplificationwith primers containing Illumina adaptors using theQ5
master Mix. Illumina adaptors and index sequences were added to
100ng of purified PCR amplicon (PCR reaction: 30 s at 98 °C; followed
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by 10 s at 98 °C, 30 s at 68 °C, 20 s at 72 °C, for 8 cycles; and a final
2min extension at 72 °C).

RNA-FISH and immunofluorescence
The FISH protocol was carried as previously described96,97. Briefly,
HeLa cells grown on coverslips were fixed using 4% paraformaldehyde
and permeabilised by 70% ethanol overnight. For RNA-FISH, Stellaris®
FISH Probes, targeting Human NEAT1 Middle Segment, labelled with
FAMdye (1:100, BiosearchTechnologies)wereused and the procedure
was carried out according to the manufacturer’s instructions. Cells
nuclei were counterstained with 1:15,000 DAPI (4′,6-diamidino-2-phe-
nylindole) at room temperature and then mounted onto slides by
using the VectaShield (Vector Laboratories) mounting media. Fluor-
escence signals were imaged at 100× (UPLS Apo 100×/1.40) using the
DeltaVision Elite Imaging System and Softworx software (GE Health-
care). Images were acquired as Z-stacks, subjected to deconvolution,
and projectedwithmaximum intensity. Imageswere processed using a
custom CellProfiler pipeline to determine paraspeckle number
and size.

Soft agar assay
The soft agar colony formation assay was performed as previously
described98. Briefly, the assay was carried out in 6-well plates coated
with a bottom layer of 1% noble agar in 2X DMEM (Thermo Fisher)
supplemented with: sodium bicarbonate, 10% FBS (Gibco), 1% L-gluta-
mine (Thermo Fisher), 100 IU/ml of Penicillin/Streptomycin (Thermo
Fisher). Then, 7000 cells were suspended in 2× DMEM and 0.6% noble
agar. The suspension mixture was subsequently applied as the top
agarose layer. A layer of growth medium was added over the upper
layer of agar to prevent desiccation. The plateswere incubated at 37 °C
in 5%CO2 for 3weeks until colonies formed. After 20 days, the colonies
were stained with 200ml of MTT [(3-(4,5-dimethylthiazol-2-yl)−2,5-
diphenyltetrazolium bromide), (5mg/ml), Sigma] and incubated for
3 h at 37 °C. The numbers of colonies were counted using the analysis
software ImageJ.

3D spheroid assay
HCT116 stably expressing Cas9-BFP and sgRNA-mCherry targeting
NEAT1 locus were FACS sorted to enrich the population BFP + /
mCherry + . The cells were allowed to grow for 7 days, then detached,
counted and seeded onto Corning® 96-well Flat Clear Bottom White
(Corning, cat. no. 3610) in 20μl domes of Matrigel® Matrix GFR, LDEV-
free (Corning, cat. no. 356231) and McCoy (Sigma, cat. No. M9309)
growth medium (1:1) with a density of 10,000 cells per dome in four
technical replicates. Matrigel containing the cells was allowed to soli-
dify for an hour in the incubator at 37 °Cbefore adding 80μl ofMcCoy
growthmedia on top of the wells. The spheroids were allowed to grow
in the incubator at 37 °C in a humid atmosphere with 5% CO2. After 4 h
the number of viable cells in the 3D cell culture was recorded as
timepoint 0 (T0), CellTiter-Glo® 3D Cell Viability Assay (Promega, cat.
no. G9682) was added to the wells, following the manufacturer’s
instructions for the reading with the Tecan Infinite® 200 Pro. After
1 week, the measurement was repeated.

RNA pulldown and mass spectrometry
RNA pull-down analysis was performed as previously described99.
Briefly, wild-type and mutant NEAT1 RNA fragments were transcribed
in vitro using HiScribe™ T7 High Yield RNA Synthesis Kit (NEB,
#E2040S) and labelled with Biotin using Biotin RNA Labelling Mix
(Roche, #11685597910) according to the manufacturer’s instructions.
Biotinylated RNA (10 pmol) was denatured for 10min at 65 °C in RNA
Structure Buffer (10mM tris-HCl, 10mM MgCl2, and 100mM NH4C1)
and slowly cool down to 4 °C. Nuclear fractions were collected as
described previously (Carlevaro-Fita J. et al., 2018)100 and precleared
for 30min at 4 °C using Streptavidin Mag Sepharose® (Sigma, #GE28-

9857-99) and NT2 Buffer [50mM tris-HCl (pH 7.4), 150mMNaCl, 1mM
MgCl2, 0.05% NP-40,1mM DTT, 20mM EDTA, 400mM vanadyl-ribo-
nucleoside, RNase inhibitor (0.1 U/µl; Promega), and l× protease inhi-
bitor cocktail (Sigma)]. The precleared nuclear lysates (2mg) were
incubated with purified biotinylated RNA in NT2 buffer along with
Yeast tRNA (20 µg/ml; Thermo Fisher Scientific #AM7119) with gentle
rotation for 1.5 h at 4 °C. Washed Streptavidin Magnetic Beads were
added to each binding reaction and further incubated at 4 °C for 1 h to
precipitate the RNA-protein complexes. Beadswerewashed briefly five
times with NT2 Buffer, and the retrieved proteins were then subjected
to mass-spectrometry analysis, performed by the Proteomics & Mass
Spectrometry Core Facility (PMSCF) of the University of Bern, Swit-
zerland, using MaxQuant software for protein identification and
quantification.

Mass-spectrometry data processing
Intensity Based Absolute Quantification (iBAQ) and label-free quanti-
tation (LFQ) intensities from the MaxQuant output were used for
quantitative within-sample comparisons and fold-enrichment
between-sample comparisons, respectively. A protein was con-
sidered enriched/depleted in a sample condition if its intensity was at
least twofold greater/lesser than in the reference condition (proteins
not detected in one of the conditions are imputed with the lowest
value for that sample by MaxQuant). In addition, the resulting lists of
proteins were filtered for nuclear localisation101 to exclude potential
false positives. To calculate the significance of the overlap with known
NEAT1 binding proteins102–104 and known paraspeckle proteins49 a
hypergeometric test was applied to the background of all nuclear
proteins (n = 6758). STRING was used for interaction analysis (physical
subnetwork, minimum interaction score = 0.4, max number of direct
interactors = 10) and GO term enrichment analysis105. Visualisationwas
performed with R version 4.1.1 and BioRender.com. Full mass-
spectrometry data may be found in Supplementary Data 5.

RNA immunoprecipitation (RIP)
Cloning. Unique hybridisation area (5′-CCGAGCGTAGTCCGAGCGTA-
3′) was added to the 3′ end of wild-type NEAT1 fragment in pcDNA3.1
expression construct, and unique hybridisation area (5′-CGAC-
GAACGGTCCGATACGT-3′) was added to the 3′ end of mutant NEAT1
fragment in pcDNA3.1 expression construct by quick change muta-
genesis (primers used for cloning are listed in Supplementary Data 4).

Overexpression in HeLa cells. For each transfection, 1 µg of plasmid
DNA (500ng of pcDNA3.1 wild-type NEAT1 fragment with unique
hybridisation area and 500ng of pcDNA3.1 mutant NEAT1 fragment
with unique hybridisation area) was incubated for 20min with 7 µl of
Lipofectamine 2000 transfection reagent (Invitrogen) in 0.3ml of
OptiMEM media (Gibco) and added to the cells cultured in a six-well
plate. As all plasmids contain the Hygromycin resistance gene, cells
were cultured in0.5mg/ml of HygromycinB (ThermoScientific™) 48 h
after transfection.

RIPwasperformedwithRNAChIP-IT®kit (ActiveMotif, #53024)
according to the manufacturer’s instructions. Optimal conditions
for RNA/chromatin shearingwere 8pulses of 20 s at 40%powerwith
30 s of rest on ice in between, for cells from one 15-cm plate. Immu-
noprecipitation was performed overnight using 10 µg of sheared
RNA/chromatin and 2 µg of antibody. Antibodies used for immuno-
precipitation were anti-SREK1 (Sigma, HPA037674), anti-PQBP1
(Bethyl Laboratories, A302-802A) and Recombinant Rabbit IgG,
monoclonal [EPR25A]—Isotype Control (Abcam, ab172730). RNA
was purified with Nucleozol (Macherey–Nagel) according to the
manufacturer’s instructions.GlycoBlue (ThermoFisher)wasusedas
coprecipitant at the isopropanol precipitation step to help visualise
the pallet. The amount of RNAwasmeasuredbyNanoDrop (Thermo
Fisher).
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RT-qPCR analysis. RT-qPCR was performed with same amount of
input and immunoprecipitated RNA sample in each replicate (i.e.,
32 ng, 50 ng, 70 ng and 100 ng in different replicates). Immunopreci-
pitated RNA transcripts and input samples were reverse transcribed to
cDNA and amplified using Promega GoTaq® 1-Step RT-qPCR System
(Promega) according to the manufacturer’s instructions. Data were
presented as % of input (recovery) = AE^(Ct input—Ct sample) × 100%.
Where AE is the amplification efficiency of each primer pair. AE was
calculated from the standard curves of each primer pair as =10^(−1/
slope). Standard curves were generated from 21 measurements for
each primer pair and increasing (known) amount of input sample
covering the range from 1.25 to 386.52 ng. List of primers used is listed
in Supplementary Data 4 For the MUT and WT NEAT1, the same for-
ward primer was used, and reverse primerswere reverse complements
to unique hybridisation areas of each construct. Data analysis was
conducted in GraphPad Prism version 8.0.1. t test was used to deter-
mine statistical significance, alpha =0.05.

siRNA experiments
Pre-designed siRNAs were purchased from Sigma (Cat.
#SASI_Hs02_00364192 SREK1, siRNA1; #SASI_Hs01_00057195 SREK1,
siRNA2; #SASI_Hs02_00314626 U2SURP siRNA; #SIC001-1NMOL uni-
versal negative control; #SASI_Hs02_00343477 NONO siRNA.

One day before transfection, 5 × 104 HeLa cells were plated in a 12-
well plate in 1mL of growth medium (DMEM) without antibiotics such
that they will be 30–50% confluent at the time of transfection. In total,
40 pmol of siRNA oligomer were diluted in 100μl OptiMEM I Reduced
Serum Medium without serum, and the transfection was carried on
with Lipofectamine 2000 (Thermo Fisher #11668019), according to
the manufacturer’s instructions. Cells were incubated the at 37 °C in a
CO2 incubator for 24 h before starting the phenotypic assays and 72 h
before testing the gene knockdown.

Mouse experiments
All animal experiments were carried out in accordance with and under
the approval of the local experimental animal committeeof theCanton
of Bern and performed according to Swiss laws for animal protection.
Animal care was provided in accordance with the procedures outlined
in the Guide for the Care and Use of Laboratory Animals. The max-
imum tumour size of 1 cm3 was permitted by IACUC. This limit was not
exceeded.

NSGmice were purchased from Charles River Laboratories; 6- to
8-week-old male and female mice were housed under specific
pathogen-free conditions in individually ventilated cages with food
and water provided ad libitum and were regularly monitored for
pathogens. All animals used in the experiments were age- and sex-
matched. In total, 2.5 × 106 HCT116 cells that had previously been
mutated as described above using sgRNAs targeting NEAT1 Region 2,
NEAT1 Region 3 and negative control region, were resuspended in
HBSS and mixed at ratio of 1:1 with Matrigel (Cat. # 356231; Corning,
NY, USA) followed by subcutaneous injection into the flanks of the
mice. Animals were monitored every day after tumour implantation
and animal health was scored using an animal health score sheet
assessing parameters such as appearance, behaviour, body condition
score index (BCS) bodyweight loss, mouse grimace scale, tumour
size and tumour appearance. Tumour size was calculated as follows:
(length ×width × height) ×π/6. If these parameters were associated
with a cumulative score ≥5, mice were euthanized. In the experiment
presented in this manuscript, all mice were euthanized at day 21,
because individual mice in the control groups were scored ≥5. Mice
were euthanized in their home cages with CO2 using a standard
operating procedure implemented at the Central Animal Facilities of
the University of Bern. Sex was not considered in this study
because it was not relevant for our driver mutation study, since
NEAT1 is not located on Chromosome X. Experiments were approved

by the local experimental animal committee of the Canton of Bern
and performed according to Swiss laws for animal protection. The
tumour weight was measured at day 21, when the animals were
sacrificed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Somatic mutation data: (1) The publicly available mutation WGS
somatic and germline variant calls, mutational signatures, subclonal
reconstructions, transcript abundance, splice calls and other core data
generated by the ICGC/TCGA Pan-cancer Analysis of Whole Genomes
Consortium are available for download at https://dcc.icgc.org/
releases/PCAWG. Additional information on accessing the data,
including raw read files, can be found at https://docs.icgc.org/pcawg/
data/. In accordance with the data access policies of the ICGC and
TCGA projects, most molecular, clinical and specimen data are in an
open tier which does not require access approval. To access potential
identification information, such as germline alleles and underlying
sequencing data, researchers will need to apply to the TCGA Data
Access Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/
aa/wga.cgi?page=login) for access to the TCGA portion of the dataset,
and to the ICGC Data Access Compliance Office (DACO; http://icgc.
org/daco) for the ICGC portion. In addition, to access somatic single-
nucleotide variants derived from TCGA donors, researchers will also
need to obtain dbGaP authorisation. (2) The publicly available HMF
data can be requested at https://www.hartwigmedicalfoundation.nl/
en/data/data-acces-request/Somatic mutation data and clinical data:
(3) The Pan-cancer Analysis ofWhole Genomes Consortium (PCAWG)
publicly available data used in this study for survival analysis, mutual
exclusivity and co-occurrence are available in the UCSC-Xenahub
database accessible at: [https://xenabrowser.net/datapages/?
cohort=PCAWG%20(donor%20centric)&removeHub=https%3A%2F%
2Fxena.treehouse.gi.ucsc.edu%3A443]106. (4) The Mass Spectrometry
data generated in this study are available via ProteomeXchange with
identifier PXD034007. (5) The next-generation amplicon sequencing
data generated in this study are available through the National
Center for Biotechnology Information (NCBI) Short Read Archive
(SRA) under Project Accession Number PRJNA966897. These data
relate to two experiments: Deep sequencing to determine indel
spectrum in NEAT1 CRISPR mutagenesis (Fig. 5c) and pooled com-
petition assay (Fig. 5e). The remaining data are available within the
Article, as Supplementary Information, or Data file. Source data are
provided with this paper.

Code availability
The code is accessible at https://github.com/gold-lab/ExInAtor2.git. In
addition, the code has been deposited to Zenodo107 and is publicly
available.

References
1. Campbell, P. J. et al. Pan-cancer analysis of whole genomes.

Nature 578, 82–93 (2020).
2. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658

cancer whole genomes. Nature 578, 102–111 (2020).
3. Vogelstein, B. et al. Cancer genome landscapes. Science 340,

1546–1558 (2013).
4. Rubio-Perez, C. et al. In silico prescription of anticancer drugs to

cohorts of 28 tumor types reveals targeting opportunities.Cancer
Cell 27, 382–396 (2015).

5. Boström, M. & Larsson, E. Somatic mutation distribution across
tumour cohorts provides a signal for positive selection in cancer.
Nat. Commun. 13, 1–9 (2022).

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 17

https://dcc.icgc.org/releases/PCAWG
https://dcc.icgc.org/releases/PCAWG
https://docs.icgc.org/pcawg/data/
https://docs.icgc.org/pcawg/data/
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
http://icgc.org/daco
http://icgc.org/daco
https://www.hartwigmedicalfoundation.nl/en/data/data-acces-request/Somatic
https://www.hartwigmedicalfoundation.nl/en/data/data-acces-request/Somatic
https://xenabrowser.net/datapages/?cohort=PCAWG%20(donor%20centric)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=PCAWG%20(donor%20centric)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?cohort=PCAWG%20(donor%20centric)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041829
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA966897/
https://github.com/gold-lab/ExInAtor2.git


6. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome.Nat.
Rev. Genet. 13, 795–806 (2012).

7. Martínez-Jiménez, F. et al. A compendium of mutational cancer
driver genes. Nat. Rev. Cancer 20, 555–572 (2020).

8. Khurana, E. et al. Role of non-coding sequence variants in cancer.
Nat. Rev. Genet. 17, 93–108 (2016).

9. Gloss, B. S. & Dinger, M. E. Realizing the significance of noncoding
functionality in clinical genomics. Exp. Mol. Med. 50, 1–8 (2018).

10. Elliott, K. & Larsson, E. Non-coding driver mutations in human
cancer. Nat. Rev. Cancer 21, 500–509 (2021).

11. Puente, X. et al. Non-coding recurrent mutations in chronic lym-
phocytic leukaemia. Nature 526, 519–524 (2015).

12. Kim, K. et al. Chromatin structure-basedpredictionof recurrent
noncoding mutations in cancer. Nat. Genet. 48, 1321–1326
(2016).

13. Corona, R. I. et al. Non-coding somatic mutations converge on
the PAX8 pathway in ovarian cancer. Nat. Commun. 11, 2020
(2020).

14. Umer HM, Smolinska K, Komorowski J, Wadelius C. Functional
annotation of noncoding mutations in cancer. Life Sci Alliance. 4,
e201900523 (2021).

15. Hornshøj, H. et al. Pan-cancer screen for mutations in non-coding
elements with conservation and cancer specificity reveals
correlations with expression and survival. NPJ Genom. Med. 3, 1
(2018).

16. Melton, C., Reuter, J. A., Spacek, D. V & Snyder, M. Recurrent
somatic mutations in regulatory regions of human cancer gen-
omes. Nat. Genet. 47, 710–716 (2015).

17. Zhu, H. et al. Candidate cancer driver mutations in distal reg-
ulatory elements and long-range chromatin interaction networks.
Molecular Cell. 77, 1307–1321.e10 (2020).

18. Cho, S. W. et al. Promoter of lncRNA gene PVT1 is a tumor-
suppressor DNA boundary element.Cell 173, 1398–1412.e22 (2018).

19. Zhou, S. et al. Noncoding mutations target cis-regulatory ele-
ments of the FOXA1 plexus in prostate cancer. Nat. Commun. 11,
441 (2020).

20. Li, K. et al. Noncoding variants connect enhancer dysregulation
with nuclear receptor signaling in hematopoietic malignancies.
Cancer Discov. 10, 724–745 (2020).

21. Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in
multiple cancers. Nature 574, 712–716 (2019).

22. Statello, L. et al. Gene regulation by long non-coding RNAs
and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118
(2021).

23. Gandhi, M., Caudron-Herger, M. & Diederichs, S. RNA motifs
and combinatorial prediction of interactions, stability and locali-
zation of noncoding RNAs. Nat. Struct. Mol. Biol. 25, 1070–1076
(2018).

24. Guttman, M. & Rinn, J. L. Modular regulatory principles of large
non-coding RNAs. Nature 482, 339–346 (2012).

25. Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R. &
Johnson, R. Towards a complete map of the human long non-
coding RNA transcriptome. Nat. Rev. Genet. 19, 535–548 (2018).

26. Vancura, A. et al. Cancer LncRNA Census 2 (CLC2): an enhanced
resource reveals clinical features of cancer lncRNAs. NAR Cancer
3, zcab013 (2021).

27. Isaev, K. et al. Pan-cancer analysis of non-coding transcripts
reveals the prognostic onco-lncRNA HOXA10-AS in gliomas. Cell
Rep. 37, 109873 (2021).

28. Leucci, E. et al. Melanoma addiction to the long non-coding RNA
SAMMSON. Nature 531, 518–522 (2016).

29. Hu, X. et al. A functional genomic approach identifies FAL1 as an
oncogenic long noncoding RNA that associates with BMI1 and
represses p21 expression in cancer. Cancer Cell 26, 344–357
(2014).

30. Akrami, R. et al. Comprehensive analysis of long non-coding RNAs
in ovarian cancer reveals global patterns and targeted DNA
amplification. PLoS ONE 8, e80306 (2013).

31. Carlevaro-Fita, J. et al. Cancer LncRNA Census reveals evidence
for deep functional conservation of long noncoding RNAs in
tumorigenesis. Commun. Biol. 3, 56 (2020).

32. Redis, R. S. et al. Allele-specific reprogramming of cancer meta-
bolism by the long non-coding RNA CCAT2. https://doi.org/10.
1016/j.molcel.2016.01.015 (2016).

33. Lanzós, A. et al. Discovery of cancer driver long noncoding RNAs
across 1112 tumour genomes: new candidates and distinguishing
features. Sci. Rep. 7, 41544 (2017).

34. Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. &
López-Bigas, N. OncodriveFML: a general framework to identify
coding and non-coding regions with cancer driver mutations.
Genome Biol. 17, 128 (2016).

35. Fujimoto, A. et al. Whole-genome mutational landscape and
characterization of noncoding and structural mutations in liver
cancer. Nat. Genet. 48, 500–509 (2016).

36. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature 499,
214–218 (2013).

37. Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-
Splice-improving genome-wide variant effect prediction using
deep learning-derived splice scores.GenomeMed. 13, 1–12 (2021).

38. Frankish, A. et al. GENCODE reference annotation for the human
and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

39. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing
genetic dysfunction across all human cancers. Nat. Rev. Cancer
18, 696 (2018).

40. Stamatoyannopoulos, J. A. et al. Human mutation rate associated
with DNA replication timing. Nat. Genet. 41, 393–395 (2009).

41. Priestley, P. et al. Pan-cancer whole-genome analyses of meta-
static solid tumours. Nature 575, 210–216 (2019).

42. Chen, Z. et al. Prader-Willi region non-protein coding RNA 1 sup-
pressed gastric cancer growth as a competing endogenous RNA
of miR-425-5p. Clin. Sci. 132, 1003–1019 (2018).

43. Kumar, S. et al. Passenger mutations in more than 2,500 cancer
genomes: overall molecular functional impact and con-
sequences. Cell 180, 915–927.e16 (2020).

44. AH, F. et al. Paraspeckles: a novel nuclear domain. Curr. Biol. 12,
13–25 (2002).

45. Hutchinson, J. N. et al. A screen for nuclear transcripts identifies
two linked noncoding RNAs associated with SC35 splicing
domains. BMC Genomics 8, 39 (2007).

46. Wedge, D. C. et al. Sequencing of prostate cancers identifies new
cancer genes, routes of progression and drug targets.Nat. Genet.
50, 682–692 (2018).

47. Sasaki, Y. T. F., Ideue, T., Sano, M., Mituyama, T. & Hirose, T. MEN/
noncoding RNAs are essential for structural integrity of nuclear
paraspeckles. Proc. Natl Acad. Sci. USA 106, 2525–2530 (2009).

48. Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles
are subpopulation-specific nuclear bodies that are not essential in
mice. J. Cell Biol. 193, 31–39 (2011).

49. McCluggage, F. & Fox, A. Paraspeckle nuclear condensates: glo-
bal sensors of cell stress? Bioessays 43, 2000245 (2021).

50. Adriaens, C. et al. The long noncoding RNA NEAT1_1 is seemingly
dispensable for normal tissue homeostasis and cancer cell
growth. Rna 25, 1681–1695 (2019).

51. Liu, E.M. et al. Identification of cancer drivers at CTCF insulators in
1,962 whole genomes. https://doi.org/10.1016/j.cels.2019.04.
001 (2019).

52. Yamazaki, T. et al. Functional domains of NEAT1 architectural
lncRNA induce paraspeckle assembly through phase separation.
Mol. Cell 70, 1038–1053.e7 (2018).

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 18

https://doi.org/10.1016/j.molcel.2016.01.015
https://doi.org/10.1016/j.molcel.2016.01.015
https://doi.org/10.1016/j.cels.2019.04.001
https://doi.org/10.1016/j.cels.2019.04.001


53. Aguirre, A. J. et al. Genomic copy number dictates a gene-
independent cell response to CRISPR/Cas9 targeting. Cancer
Discov. 6, 914–929 (2016).

54. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J.
CRISPR-Cas9 genome editing induces a p53-mediated DNA
damage response. Nat. Med. 24, 927–930 (2018).

55. Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visuali-
zation of the co-transcriptional assembly of a nuclear body by
noncoding RNAs. Nat. Cell. Biol. 13, 95–101 (2011).

56. Adriaens, C. et al. P53 induces formation of NEAT1 lncRNA-
containing paraspeckles that modulate replication stress
response and chemosensitivity. Nat. Med. 22, 861–868 (2016).

57. Li, X. et al. Oncogenic properties of NEAT1 in prostate cancer cells
depend on the CDC5L–AGRN transcriptional regulation circuit.
Cancer Res. 78, 4138–4149 (2018).

58. Naveed, A. et al. NEAT1 polyA-modulating antisense oligonu-
cleotides reveal opposing functions for both long non-coding
RNA isoforms in neuroblastoma. Cell. Mol. Life Sci. 78,
2213–2230 (2021).

59. Simko, E. A. J. et al. G-quadruplexes offer a conserved structural
motif for NONO recruitment to NEAT1 architectural lncRNA.
Nucleic Acids Res. 48, 7421–7438 (2020).

60. Wang, Y. et al. Genome-wide screening of NEAT1 regulators
reveals cross-regulationbetweenparaspeckles andmitochondria.
Nat. Cell Biol. 20, 1145–1158 (2018).

61. Martín, E., Vivori, C., Rogalska, M., Herrero-Vicente, J. & Valcárcel,
J. Alternative splicing regulation of cell-cycle genes by SPF45/
SR140/CHERP complex controls cell proliferation. RNA 27,
1557–1576 (2021).

62. Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast
cancer whole-genome sequences. Nature 534, 47–54 (2016).

63. Sabarinathan, R. et al. RNAsnp: efficient detection of local RNA
secondary structure changes induced by SNPs. Hum. Mutat. 34,
546–556 (2013).

64. Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk)
about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119
(2022).

65. Mudge, J. M. et al. Discovery of high-confidence human protein-
coding genes and exons by whole-genome PhyloCSF helps elu-
cidate 118 GWAS loci. Genome Res. 29, 2073–2087 (2019).

66. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with
CRISPR–Cas nucleases, base editors, transposases and prime
editors. Nat. Biotechnol. 38, 824–844 (2020).

67. Anzalone, A. V. et al. Search-and-replace genome editing without
double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

68. Artegiani, B. et al. Fast and efficient generation of knock-in human
organoids using homology-independent CRISPR–Cas9 precision
genome editing. Nat. Cell Biol. 22, 321–331 (2020).

69. Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-
CRISPR for creating knock-in and conditional knockout mouse
models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2017).

70. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M.
CADD: predicting the deleteriousness of variants throughout the
human genome. Nucleic Acids Res. 47, D886–D894 (2019).

71. Wang, L. et al. CPAT: coding-potential assessment tool using an
alignment-free logistic regression model. Nucleic Acids Res. 41,
e74 (2013).

72. Tokheim, C. J., Papadopoulis, N., Kinzler, K. W., Vogelstein, B. &
Karchin, R. Evaluating the evaluation of cancer driver genes.
https://doi.org/10.1101/060426 (2016).

73. Siepel, A. et al. Evolutionarily conserved elements in vertebrate,
insect, worm, and yeast genomes. Genome Res. 15,
1034–1050 (2005).

74. Haeussler, M. et al. The UCSC Genome Browser database: 2019
update. Nucleic Acids Res. 47, D853–D858 (2019).

75. Yanai, I. et al. Genome-widemidrange transcription profiles reveal
expression level relationships in human tissue specification.
Bioinformatics 21, 650–659 (2005).

76. Paraskevopoulou, M. D. et al. DIANA-LncBase v2: indexing micro-
RNA targets on non-coding transcripts. Nucleic Acids Res. 44,
D231–D238 (2015).

77. Li, Y. et al. LncMAP: Pan-cancer atlas of long noncoding RNA-
mediated transcriptional network perturbations. Nucleic Acids
Res. 46, 1113–1123 (2018).

78. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and sum-
mary statistics 2019. Nucleic Acids Res. 47, D1005–D1012
(2019).

79. Abbott, K. L. et al. The Candidate Cancer Gene Database: a data-
base of cancer driver genes from forward genetic screens inmice.
Nucleic Acids Res. 43, D844–D848 (2015).

80. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26, 841–842
(2010).

81. Therneau, T. A package for survival analysis in R. http://
creativecommons.org/licenses/by/4.0/ (2023).

82. Guillen-Ramirez, H. A. & Johnson, R. ezTracks v0.1.0. https://doi.
org/10.5281/ZENODO.4749431 (2021).

83. Seemann, S. E. et al. The identification and functional annotation
of RNA structures conserved in vertebrates. Genome Res. 27,
1371–1383 (2017).

84. Sentürk Cetin, N. et al. Isolation and genome-wide characteriza-
tion of cellular DNA:RNA triplex structures. Nucleic Acids Res. 47,
2306–2321 (2019).

85. Sanz, L. A. et al. Prevalent, dynamic, and conserved R-loop
structures associate with specific epigenomic signatures in
mammals. Mol. Cell 63, 167–178 (2016).

86. Kent, W. J. et al. The human genome browser at UCSC. Genome
Res. 12, 996–1006 (2002).

87. Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Res. 46, D794–D801 (2018).

88. Paz, I., Kosti, I., Ares,M., Cline,M.&Mandel-Gutfreund, Y. RBPmap:
a web server for mapping binding sites of RNA-binding proteins.
Nucleic Acids Res. 42, W361–W367 (2014).

89. Cook, K. B., Kazan, H., Zuberi, K., Morris, Q. &Hughes, T. R. RBPDB:
a database of RNA-binding specificities. Nucleic Acids Res. 39,
D301–D308 (2011).

90. Miladi, M., Raden, M., Diederichs, S. & Backofen, R. MutaRNA:
analysis and visualization of mutation-induced changes in RNA
structure. Nucleic Acids Res. 48, W287–W291 (2020).

91. Canisius, S., Martens, J. W. M. & Wessels, L. F. A. A novel inde-
pendence test for somatic alterations in cancer shows that biology
drives mutual exclusivity but chance explains most co-
occurrence. Genome Biol. 17, 1–17 (2016).

92. Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in
cancer. Nucleic Acids Res. 47, D941–D947 (2019).

93. Nguyen, T. H. et al. Treatment of acetaminophen-induced acute
liver failure in the mouse with conditionally immortalized human
hepatocytes. J. Hepatol. 43, 1031–1037 (2005).

94. Portmann, S. et al. Antitumor effect of SIRT1 inhibition in human
HCC tumor models in vitro and in vivo. Mol. Cancer Ther. 12,
499–508 (2013).

95. Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic
screens with multiple modalities. Nat. Commun. 9, 5416 (2018).

96. Esposito, R. et al. Oncogenic properties of the antisense lncRNA
COMET in BRAF- and RET-driven papillary thyroid carcinomas.
Cancer Res. 79, 2124–2135 (2019).

97. Roberta Esposito, A. et al. Multi-hallmark long noncoding RNA
maps reveal non-small cell lung cancer vulnerabilities. Cell
Genomics 0, 100171 (2022).

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 19

https://doi.org/10.1101/060426
https://github.com/therneau/survival
https://github.com/therneau/survival
https://doi.org/10.5281/ZENODO.4749431
https://doi.org/10.5281/ZENODO.4749431


98. Borowicz, S. et al. The soft agar colony formation assay. J. Vis. Exp.
https://doi.org/10.3791/51998 (2014).

99. Marín-Béjar, O. & Huarte, M. RNA pulldown protocol for in vitro
detection and identification of RNA-associated proteins.Methods
Mol. Biol. 1206, 87–95 (2015).

100. Carlevaro-Fita, J., Polidori, T., Das, M., Navarro, C., Zoller. TI.,
Johnson, R. Ancient exapted transposable elements promote
nuclear enrichment of human long noncoding RNAs. Genome
Res. 29, 208–222 (2019).

101. Uhlen, M. et al. Tissue-based map of the human proteome. Sci-
ence 347, 1260419 (2015).

102. Spiniello, M. et al. HyPR-MS for multiplexed discovery of MALAT1,
NEAT1, andNORAD lncRNAprotein interactomes. J. ProteomeRes.
17, 3022–3038 (2018).

103. Huang, J. et al. The longnoncodingRNANEAT1 promotes sarcoma
metastasis by regulating RNA splicing pathways.Mol. Cancer Res.
18, 1534–1544 (2020).

104. West, J. A. et al. The longnoncodingRNAsNEAT1 andMALAT1bind
active chromatin sites. Mol. Cell 55, 791–802 (2014).

105. Szklarczyk, D. et al. STRING v11: protein–protein association net-
works with increased coverage, supporting functional discovery
in genome-wide experimental datasets. Nucleic Acids Res. 47,
D607–D613 (2019).

106. Goldman, M. J. et al. Visualizing and interpreting cancer
genomics data via the Xena platform. Nat. Biotechnol. 38,
675–678 (2020).

107. gold-lab/ExInAtor2: gold-lab/ExInAtor2 | Zenodo https://zenodo.
org/record/7828265 (2023).

Acknowledgements
The results shown here are based upon data generated by the TCGA,
PCAWG and GTEx consortia. We thank Iñigo Martincorena (Sanger
Institute) for generouslyprovidingcertain data analysis scripts.We thank
Federico Abascal (Sanger Institute) for generously providing cancer cell
fraction data. We thank Alina Naveed (DBMR) for helpful discussions
about NEAT1.We acknowledgeAnne-ChristineUldry andManfredHeller
of theMass Spectrometry and Proteomics Laboratory at theUniversity of
Bern (PMSCF) for assistingwithallmass-spectrometry aspects.We thank
Basak Ginsbourger (DBMR) for administrative support, and Willy Hof-
stetter and Patrick Furer (DBMR) for logistical support. All computation
was performed on the Bern Interfaculty Bioinformatics Unit computing
cluster maintained by Rémy Bruggmann and Pierre Berthier. This pub-
lication and the underlying study have beenmade possible partly on the
basis of the data that the Hartwig Medical Foundation has made avail-
able. This work was funded by the Swiss National Science Foundation
through the National Centre of Competence in Research (NCCR) “RNA&
Disease” (51NF40-182880), project funding “The elements of long non-
coding RNA function” (31003A_182337), Sinergia project “Regenerative
strategies for heart disease via targeting the long noncoding tran-
scriptome” (173738); by the Medical Faculty of the University and Uni-
versity Hospital of Bern; by the Helmut Horten Stiftung, Swiss Cancer
Research Foundation (4534-08-2018); and by Science Foundation Ire-
land throughFuture Research Leaders award 18/FRL/6194. This research
was also fundedbyScience Foundation IrelandunderGrant number [18/
CRT/6214] (to S.R.) and in part by the EU’s Horizon 2020 research and

innovation programme under theMarie Sklodowska-Curie grant H2020-
MSCA-COFUND-2019-945385.

Author contributions
R.E., A.L. and R.J. conceived and designed the experiment procedure
and performed data analysis and interpretation. A.L., S.R. and K.S.
developed the software and performed most of the bioinformatics
analysis. T.U., G.B., A.M., and F.M. performed the RNA pull-down
experiments and NEAT1 FISH experiments. B.M.M., L.M., C.W., S.S., T.P.,
A.M.T., M.T. andN.B. performed theCRISPR experiments. I.B. performed
the experiments regarding LOLI1 gene. L.H. performed the experiments
regarding LOHAN1&2 genes. A.V. provided the set of known cancer
genes. H.G.-R., A.A. and D.M. contributed to the bioinformatics analysis.
M.R. performed the in vivo experiments. E.Z. and S.Z. performed func-
tional experiments on cancer cell lines. M.K.J., Mi.M., Ma.M., Y.Z., D.S.,
A.F., C.R. and A.F.O. provided key inputs and tools. R.E., A.L. and R.J.
wrote the manuscript with input from all the authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39160-7.

Correspondence and requests for materials should be addressed to
Roberta Esposito or Rory Johnson.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

1Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland. 2Department for BioMedical Research,
University of Bern, 3008 Bern, Switzerland. 3Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy. 4Graduate School of
Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland. 5School of Biology and Environmental Science, University College Dublin,
DublinD04V1W8, Ireland. 6Conway Institute for Biomolecular andBiomedical Research, UniversityCollegeDublin, DublinD04V1W8, Ireland. 7TheSFICentre
for Research Training in Genomics Data Science, Dublin, Ireland. 8Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital,
University of Bern, Bern, Switzerland. 9Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland. 10Department of Radiation Oncology,
Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland. 11School of Molecular Sciences, University of Western Australia, Crawley,

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 20

https://doi.org/10.3791/51998
https://zenodo.org/record/7828265
https://zenodo.org/record/7828265
https://doi.org/10.1038/s41467-023-39160-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


WA, Australia. 12School of Human Sciences, University of Western Australia, Crawley, WA, Australia. 13GENYO, Centre for Genomics and Oncological
Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain. 14Instituto de Investigación Biosanitaria, Granada 18014,
Spain. 15Department of Biochemistry and Molecular Biology I, University of Granada, Granada 18071, Spain. 16These authors contributed equally: Roberta
Esposito, Andrés Lanzós. e-mail: roberta.esposito@unibe.ch; rory.johnson@ucd.ie

Article https://doi.org/10.1038/s41467-023-39160-7

Nature Communications |         (2023) 14:3342 21

mailto:roberta.esposito@unibe.ch
mailto:rory.johnson@ucd.ie

	Tumour mutations in long noncoding RNAs enhance cell fitness
	Results
	Integrative driver lncRNA discovery with ExInAtor2
	Discovery of lncRNA and protein-coding driver genes
	The landscape of driver lncRNA in primary human tumours
	Driver lncRNAs carry features of functionality and clinical relevance
	The landscape of driver lncRNAs in metastatic tumours
	Driver mutations identify oncogenic lncRNAs
	Mutations in NEAT1 promote cell fitness and correlate with survival
	Mutations alter the NEAT1 protein interactome and increase paraspeckle formation

	Discussion
	Methods
	ExInAtor2 algorithm
	Tumour somatic mutations
	Gene annotation and filtering
	ExInAtor2 benchmarking against other driver discovery methods
	Evaluation of P value distributions
	Gene benchmark sets
	Precision, sensitivity and F1 comparison
	Simulated mutation datasets
	Generation and comparison of genomic features
	Survival analysis
	NEAT1 structure and element analysis
	Elements
	RBP motif mapping
	SNP structural impact analysis
	Mutual exclusivity and co-occurrence
	Cell culture
	Primary human hepatocytes
	Gene overexpression and knockdown experiments
	Crystal violet staining
	Proliferation assay—SNU-475 and HuH7
	CRISPR sgRNA design and cloning
	Lentivirus production
	Lentiviral transduction
	CRISPRKo
	CRISPRa
	sgRNAs
	RT-qPCR gene expression analysis
	Cell viability assay
	1:1 competition assay
	Pooled competition assay
	Deep sequencing to determine indel spectrum
	RNA-FISH and immunofluorescence
	Soft agar assay
	3D spheroid assay
	RNA pulldown and mass spectrometry
	Mass-spectrometry data processing
	RNA immunoprecipitation (RIP)
	Cloning
	Overexpression in HeLa cells
	RT-qPCR analysis
	siRNA experiments
	Mouse experiments
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




