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Abstract
This paper proposes a simplemethod for calculating the shear deformation and the shear capacity of reinforced and prestressed

concrete elements containing shear reinforcement. This new approach considers that, for large deformations, concrete

elements follow compatibility conditions based on displacements of the composite material subjected to shearing forces. The

result is a beam, inspired by the Timoshenko-Ehrenfest beam theory, which considers a new hypothesis regarding shearing

deformation, informed by the behavior of the shear reinforcement. The new method is compared with previous approaches,

allowing us to assess the technological advances of the new proposal. The new method is easy to implement and provides

information about the shearing deformation (in the elastic and plastic domains) and the shearing capacity of concrete beam-

column elements. A detailed example is developed, in which all the components of the shear deformation are evaluated, and

the simplification of the newmethod is analyzed in comparison with othermore comprehensivemethods in the elastic domain.

Keywords Reinforced concrete elements � Compression field theories � Beam theories � Shear deformation �
Deflexion of RC elements

1 Introduction

The study of the behavior of beam-column elements under

shearing forces is still a challenge, [1–3].

The infinitesimal strain theory (also known as small

deformation theory) is frequently adopted for civil engi-

neering materials (concrete and steel) for the analysis of the

deformation of structures, [4]. Nevertheless, for large

deformations, this hypothesis may be unreliable, and other

models or theories could be more accurate.

The use of displacement-based compatibility, as

opposed to the infinitesimal strain theory, is still a topic of

discussion. However, it has been demonstrated to be a

more realistic approach for the capacity design of rein-

forced concrete slabs [5–8].

However, the use of fiber elements for the calculation of

the dynamic response of RC structures is verywidespread, as

in OpenSees [9], in which the deformation of fiber elements

is based only on flexural deformation. The study of shear

deformation and capacity when applied to structural ele-

ments is still a challenge [10], and the international com-

munity is concerned about finding a sound solution to

calculate the shearing deformation and capacity of RC ele-

ments when using fiber elements. Recently, A fiber beam-

column element that incorporates flexure-shear interaction

for cyclic analysis of RC structures was recently proposed

[11]. The element in [11] is based on the Timoshenko beam

theory, in which the transverse shear deformation is assumed

to be uniformly distributed along the section, and shear

deformation is only held on by concrete (using the Modified

Compression Field Theory, [12]).

A new simple method is proposed in this work for the

shear deformation of beam-column elements, based on

displacement compatibility. Section two presents an anal-

ysis of the well-known Timoshenko beam theory, which

emphasizes what we have used in our approach.

& Enrique Hernández-Montes

emontes@ugr.es

Luisa Hdz-Gil

luisahernandez@correo.ugr.es

Luisa Marı́a Gil-Martı́n

mlgil@ugr.es

1 E.T.S. Ingenieros de Caminos, Canales y Puertos, University

of Granada, Campus Universitario de Fuentenueva,

18072 Granada, Spain

123

International Journal of Civil Engineering
https://doi.org/10.1007/s40999-023-00864-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-6068-1264
http://crossmark.crossref.org/dialog/?doi=10.1007/s40999-023-00864-y&amp;domain=pdf
https://doi.org/10.1007/s40999-023-00864-y


Section three introduces effective shear strain (ceff), a

concept that enables the axial deformation of the shearing

reinforcement to be converted into effective shear strain,

and an interesting comparison of the new method with the

work of Ueda et al. [13] is carried out. Section four is

devoted to the compression field approach for calculating

the angle of inclination of the strut. Finally, Section five

combines tension stiffening of concrete with effective

shear strain to formulate shear deformation, which is

shown in a detailed example.

2 The Timoshenko-Ehrenfest Beam

The deflection calculation in the Euler–Bernoulli beam

theory takes into account only the effect of the bending

moment [14]. In section 39 of Timoshenko’s book [14],

titled ‘Effect of Shearing Force on the Deflection of

Beams,’ the Timoshenko-Ehrenfest beam is introduced as

an extension of the Euler–Bernoulli beam theory. This new

theory considers the influence of shearing force in the

deflection of structural elements. The two main hypotheses

about the Timoshenko beam are:

a. There is a mutual sliding of adjacent cross-sections

along the length of the element, see Fig. 1a.

b. As a result of the non-uniform distribution of the

shearing stresses, the cross-sections, which are initially

plane, become curved (see Fig. 1b taken from the

original text).

Timoshenko considers that the cross-sections at the level

of the centroid remain vertical and slide along one another,

and that the slope of the deflection curve (dy1/dx), only

caused by shear, is equal to the shearing strain (c) at the
centroid of each cross-section.

With y1 as the deflection caused by shear. The shearing

strain may be expressed as:

dy1
dx

¼ c ¼
ðsyxÞy¼0

G
¼ aV

AG
ð1Þ

where sxy is the shear stress, G is the shear modulus, V is

the shear force, A is the cross-sectional area, and a is a

factor with which the average shear stress (V/A) is multi-

plied to obtain the shear stress at the centroid of the cross

section. An approximation for rectangular cross-sections is

a = 3/2 [14], for other cross-sections, Poisson’s ratio is

used, see [15].

If there is a continuous load on the beam (q), Eq. 1 can

be differentiated, resulting in a curvature caused by shear

given by:

d2y1
dx2

¼ a
AG

dV

dx
¼ � a

AG
q ð2Þ

So, the total curvature of the beam (i.e. caused by both

bending and shear) is:

d2y

dx2
¼ � 1

EIz
M þ aEIz

AG
q

� �
ð3Þ

With E as the modulus of elasticity, Iz as the principal

moment of inertia in the z axis, and M as the bending

moment in the same axis.

Equations (1) to (3) are taken from Timoshenko’s book

[14], and the original nomenclature has been used.

3 Effective Shear Strain

The approach proposed is inspired by the shear failure

mode described in the American code (see Fig. 2a). Fig-

ure 2a is adapted from Figure R9.4.3.2a of §9.4 in the

American code ACI-318 [16].

In this section, only shear deformation is going to be

considered.

For large deformations, the shearing forces acting on

reinforced concrete beam-column elements are mainly

withstood by the transversal reinforcement (hoops, stirrups,

and/or links). Figure 2b shows the portion of a beam with a

crack, with h as the angle of the crack. In Fig. 2b, only the

blue stirrups are withstanding the shearing forces. Let d1 be
the elongation of the stirrups induced by shear deformation.

In order to obtain an expression similar to Eq. 1, which

can be differentiated, and subsequently introduced into the

curvature expression, such as the expression that Timosh-

enko introduced in Eq. 3, an effective shear strain is

defined (ceff), see Fig. 2c:

ceff ¼
d1

z coth
ð4Þ

where z is the lever arm of the beam-column (see Fig. 2b).

In Eq. 4, the shear reinforcement is assumed to be per-

pendicular to the axis of the element.

dy1

dx

a) Mutual sliding

γ

b) Curved cross sec�ons. Deflec�on due to 
shear. Adapted from original drawing.

V

V

y

x

Fig. 1 Timoshenko-Ehrenfest beam. Adapted from [14]
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Note that all the stirrups that contribute to the shearing

deformation (in blue in Fig. 2b) have the same longitudinal

strain (e), given by:

e ¼ d1
z
¼

ceff z coth

z
¼ ceff coth ð5Þ

An embedded bar model is used here for the steel model.

In doing so, the tension-stiffening behavior of the concrete

surrounding each of the legs of the stirrups is considered

for the stretching deformation.

Let Ac,eff be the effective cross-sectional area of con-

crete in tension associated with each leg, AØ is the cross-

sectional area of each leg, and e is the longitudinal strain of

the leg. The effective area of concrete, Ac,eff, perpendicular

to the bar, has been traditionally defined as the square area

centered at the bar at a distance shorter than 7.5Ø [17], with

Ø as the diameter of the bar. Recently, prEN1992 [18] has

changed from 7.5 to 5.0. Maintaining the same capacity

results in an increase in the tensile stress of concrete due to

the reduction in its effective area.

For a given value of e, each leg of the transverse rein-

forcement contributes to the shear response with a force

equal to (see Fig. 3):

A/rsvðeÞ þ Ac;effrctðeÞ ð6Þ

With rsv as the mean stress of the leg of the stirrup and

rct as the mean stress of the concrete. Both of these are

measured along the length of the leg.

The contribution of concrete in the compression zone

and the dowel action of the longitudinal reinforcement can

be considered by adjusting the tension stiffening model for

the concrete surrounding the legs, [19].

The angle of the crack (h) can be obtained from linear

elasticity by using compression field theories [12, 19–21].

These theories assume that the angle of the principal

direction of compressive stress coincides with the angle of

the principal direction of compressive strain [22]. The

value of h given by the compression field theories is vali-

dated in the next section by comparing it with two exper-

imental results taken from the literature. Nevertheless,

international regulations propose an approximate value of

h = 45 degrees for beams with no axial load (e.g. ACI-318

[16]) while, h equal to 0.5ArcTan(2s/r) can be used for

beam-columns elements.

Note that the above formulation (Eqs. 4, 5, and 6) does

not change if several cracks cross the stirrup, and so, the

approach can be extended along the length of the beam-

column element, Eq. 7.

s

z cot θ

γeff

b) Shear deformation 

δ1

c) Effective shear strain 

z

a) Shear failure, adapted from ACI-318 (§9.4)

θ

ƩAvfyt

C

T
d

Fig. 2 Shear deformation and effective shear strain

Aφσsv(ε)+Ac,effσct(ε)

Fig. 3 Embedded bar model
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ceff ¼
d1

z Coth
¼ dy1

dx
ð7Þ

Imposing vertical equilibrium in Fig. 4 and considering

Eqs. 4, 5, and 6:

VðxÞ ¼ z Cot h
s

nl A/rsv ceff Cot h
� �

þ Ac;effrct ceff Cot h
� �� �

ð8Þ

with nl as the number of legs of each stirrup and s as the

space between stirrups (see Fig. 4).

Once the shearing force diagram is known (V(x)), the

value of the effective shear strain (ceff) as a function of x

(i.e. ceff(x)) can be deduced from Eq. (8), and therefore the

shear deformation can be obtained by numerical integration

of ceff(x) along the length of the beam-column element.

The authors have used finite differences to do the numer-

ical integration of ceff(x) in the example presented in

Sect. 5. The code is available upon reasonable request to

the authors.

The theory presented here is of great practical interest

because it enables the shear deformation (up to failure) of

RC members to be obtained. Moreover, the formulation

presented could easily be implemented in a new finite

element.

3.1 Ueda’s Approach

Ueda et al. [13] proposed a truss model for the study of

shear deformation after shear cracking, Fig. 5a. In their

approach, the deformation is separated in two: deformation

caused by bending and deformation caused by shear. The

deformation of the compression and tension chords is the

flexural deformation, while the deformation of the struts

and the ties is the shear deformation (d1), see Fig. 5b.

According to [13], the relation between shear strain (c)
and shear deformation (d1) is:

c ¼ d1
zðcot hþ cot aÞ ð9Þ

which, for vertical stirrups (a = 90�) is the same as with

Eq. 4. So, shear strain after shear cracking (c) is the same

as with the previously defined effective shear strain (ceff).
Based on very detailed experimental observations (laser

speckle method), Ueda et al. [13] concluded that shear

deformation before shear cracking can be neglected given

that this type of deformation is usually much smaller than

the flexural deformation.

Ueda et al. [13] proposed that shear strain after shear

cracking is obtained as the summation of the shortening of

the struts plus the elongation of the ties (Fig. 5b) as:

c ¼ V

z cot hþ cot að Þ2
1

Ecbw sin
4 h

þ s

nl EsA/ þ EcAc;eff

� �
sin3 a

" #

ð10Þ

The first summand on the right side of the equality of

Eq. 10 corresponds to the shortening of the strut (see

Fig. 5b), and the second summand corresponds to the

elongation of the tie. It can be proved that if the shortening

of the strut is ignored in comparison to the elongation of

the tie (i.e. if the first summand of Eq. 10 is not consid-

ered), then Eq. 10 is equal to Eq. 8 in the elastic range.

Ueda et al. [13] verified the goodness of fit of their

method with an experimental campaign based on four point

bending tests of beams in the post-shear cracking domain

and in the elastic range.

Regarding the angle of the compressed strut, h, in [13]

this value was obtained from non-linear finite element

analysis, and an expression to evaluate h as a function of

the shear span to depth ratio, and the tension and shear

reinforcement ratios were proposed. So, in [13] the orien-

tation of the struts (h) in each specimen was a given data.

Other alternative methods can be used to obtain the

value of h, such as: CFT, MCFT [23], RA-STM[20],

RFCT[24], ….1

4 The Angle of the Compression Field

The Annex of this paper summarizes the compression field

formulation needed to calculate the angle of the compres-

sion field (h), as presented in prEN1992 [18].

Note that because in this case h is an unknown, both

equilibrium and compatibility equations are necessary.

Two alternatives for the compatibility equations are

developed in the Annex of this paper, and both of them are

compared with two beams from the experimental test

campaign shown in [25], where a typical four-point

z

z cot θ

Compression zone

d

θ

V

s

Fig. 4 Vertical equilibrium

1 CFT stands for Compression Field Theory, MCFT stands for

Modified Compression Field Theory, RA-STM stands for Rotating

Angle Softened Truss Model, and RCFT stands for Refined

Compression Field Theory.
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bending scheme and setup were used (see Fig. 6). The two

beams used for the comparison are the ST120 and the

ST80, shown in Fig. 7.

The concrete compressive strength of the two beams

tested was 28.5 MPa, and the yield strength of the

transversal and longitudinal reinforcement was fyt-
= 310 MPa and fyl = 550 MPa, respectively. The longi-

tudinal reinforcement layout is that shown in Fig. 6.

Beams ST120 and ST80 were shear reinforced with 5.5

diameter stirrups spaced at 120 mm and 80 mm, respec-

tively. According to [25], the first cracks at the bottom

appeared for V = 35 kN, inclined cracks appeared for

V = 50 kN, and one big shear crack appeared for V = 60

kN in both specimens, see Fig. 7.

The cracking pattern in Fig. 7 shows that the inclination

of the shear crack was 33� for the ST120 beam, and 36� for
the ST80 beam.

The angles of inclination of the struts were theoretically

obtained from the compression field developed in the

Annex, and the best results are obtained when the small

displacement hypothesis is used, and the compatibility

equations are imposed at the bottom reinforcement. In this

case, the inclination of the compression field obtained is

30� for the ST120 beam and 34� for the ST80 beam.

5 Example

The shear deformation of the beam in Fig. 8 is calculated

and compared with the deformation caused by bending.

The example shown in Fig. 8 has been adapted from

[26]. The values of the effective depth, the modulus of

elasticity of concrete, and the steel yield stress are

d = 450 mm, Ecm = 30,500 MPa and fy = 400 MPa,

respectively.

In the original example, the beam was subjected to a

uniform load, q, that was equal to 16.9 kN/m. The shear

demand, VEd, is calculated as a function of x, as shown in

Fig. 9. At a distance of less than d from the face of the

support, the shear demand is constant (EN 1992 [27],

§6.2.1(8)).

The maximum short-term deflection for this load, cal-

culated according to ACI-318[16], is 10.7 mm2 while the

value of the maximum short-term deflection calculated

using the simplified method of EN 1992[27] is 11.2 mm3.

In this example, a bilinear tension stiffening model is

adopted for concrete [28], see Fig. 10. The descending

branch is defined by a certain point, wfctm, of the ascending

branch, (w B 1, and fctm is the mean axial tensile strength

of concrete according to EN 1992 [27]), and the point that

corresponds to the steel yield strain is (ey), for which the

tension stiffening capacity is zero. Additionally, the model

adopted presents a residual plateau that has been formu-

lated as in [29]. In this example, the value of w is deduced

in an indirect way from the minimum shear reinforcement

ratio proposed by EN 1992 [27] (Expression 9.5N), which,

when applied to this beam, leads to:

nlA/

s bw
¼ 0:08

ffiffiffiffiffi
fck

p

fy
! / ¼ 6:8mm

wfctmAc;eff min ¼ wfctmð50þ 7:5/Þð2 � 7:5/Þ

¼ p/2

4
fy ! w ¼ 0:6

ð11Þ

With bw as the breadth of the beam (= 300 mm),

s = 240 mm, nl = 2, fck = 25 MPa, fctm = 2.56 MPa, and

AØ = pØ2/4. The first of these equations leads to the

minimum diameter of the stirrups that is needed to meet the

minimum shear reinforcement requirement (resulting in

Ø = 6.8 mm). In the second equation the maximum

capacity of the concrete that surrounds a leg with

Ø = 6.8 mm (whose effective concrete area is called Ac,-

eff,min, see Fig. 11) equals the tensile capacity of the leg

(resulting in w = 0.6). The aim of Eq. (11) is to avoid

sudden failure, and this objective is the reason why the

provision of a minimum amount of shear reinforcement

exists. Note that, as shown at a later point, this approxi-

mation is not relevant for large displacements, where the

contribution of the concrete in tension is almost zero.

In the case of 10 mm diameter stirrups at 240 mm, the

effective area of concrete proposed by prEN 1992 [18] is

shown in Fig. 10.

Because the model adopted for steel lacks an apparent

yield [20], both the bare bar model and the embedded bar

z

z (cot θ + cot α)

Compression chord

θ α

Tension chord

Strut Tie

b) Shear deformation of truss unit

a) Truss model

θ α

Shortening  of the strut Elongation of the tie

δ1

Fig. 5 Truss model for shear deformation. From [13]

2 This solution can be found in a video uploaded onto Youtube

(https://www.youtube.com/watch?v=_YInm-fDRXs).
3 Likewise, the solution can be found in a video uploaded onto

Youtube (https://www.youtube.com/watch?v=BkXO6s2Ktwk).
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model are the same. So, the model of steel is defined by the

modulus of elasticity (Es = 200,000 MPa), the plastic

modulus after yield (Es/100), and the maximum strain

(0.01). Additionally, it is assumed that the crack angle (h)
is 45 degrees (which is reasonable for a beam with no axial

load).

From a theoretical point of view, Eq. 10, proposed by

Ueda et al. [13] has two major drawbacks. The first one is

that Eq. 10 assumes the linear behavior of the concrete in

compression, which, according to EN1992, is true for

stresses up to 0.4fcm (for C25, r = 0.4fcm corresponds to

e = 0.000438). According to Eqs. 19 and 20 in [13], the

method described therein can be applied to determine the

upper value of the shear force (with z = 0.9d):

ψfctm

ε

σct (MPa)

0.000 0.001 0.002 0.003 0.004 0.005 0.006
0.0

0.5

1.0

1.5

2.0

εy

Fig. 10 Bilinear model for tension stiffening for concrete

270 mm

200 mm

2Ø14

4Ø18

Concrete compressive strength 28 MPa

Longitudinal steel yield strength 550 MPa

Transversal steel yield strength 310 MPa

Separa�on between s�rrups s cm

5.5 @ s

V kN 720 mm 720 mm

200 mm

Load cell

P kN

300 mm

Fig. 6 Four-point bending test step up, adapted from [25]

5.5@120

5.5@80

ST120

ST80

θ=33°

θ=36°

Diagonal cracks

Fig. 7 Tested Beams ST120 and ST80, adapted from [25]

q kN/m

0.5 m

0.3 m

6 m

A's = 450 mm2

10@24cm

As = 900 mm2

Fig. 8 Example of a reinforced concrete beam

0 1000 2000 3000 4000 5000 6000
– 40

– 20

0

20

40

x (mm)

VEd (kN)

Fig. 9 Shear demand in the beam in Fig. 8 for q = 16.9 kN/m
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Vmax ¼ 0:000438Ecmbwz sin
2ðhÞ cotðhÞ þ cotðaÞð Þ

¼ 812 kN

The second drawback is that Eq. 10 does not consider

either the tension stiffening of cracked concrete or the

yielding of the steel. This limitation can be overcome by

substituting the relation between V and c given by the

second summand of Eq. 10 with the relation given by

Eq. 8, which considers both phenomena. Equation 8 sum-

marizes the new method proposed in this paper.

Figure 12 (left) shows that before the cracking of con-

crete, the contribution of the shortening of the struts

(dashed red line) to the shear strain is of the same order as

that of the elongation of the ties (thick blue line). However,

after cracking (Fig. 12 (right), the contribution of the

elongation of the ties to the shear strain (c) grows signifi-
cantly, as can be seen in this figure. For the value of the

strain corresponding to the yielding of the steel, the con-

tribution of the shortening of the struts in the shear

deformation of the beam is negligible.

In Fig. 12 (right), the two components on the right side

of Eq. 8 and their summation are represented. The dashed

blue line is the contribution of the steel, while the thin blue

line is the contribution of concrete in tension (tension

stiffening). The thick blue line is the summation of both

contributions, steel and concrete. As can be observed, the

tension stiffening effect can be considered to have disap-

peared when the steel yields.

Shear rotation (or shear strain) and shear deflection for

the beam shown in Fig. 8, for values of q ranging from 17

to 47 kN/m, are represented in Fig. 13 (in this example,

collapse happens at q = 47.1 kN/m). Due to symmetrical

behavior only values from 0 to 3 m are shown in Fig. 13. It

can be observed that the response is in the linear elastic

range up to q = 39 kN/m (Fig. 13a) and in the plastic range

for q[ 39 kN/m. For q = 17 kN/m, shear deformation

(= 0.03 mm) is negligible in comparison with bending

deformation (= 11 mm). For q = 39 kN/m, the maximum

deformation caused by shear is 0.088 mm at mid span, see

Fig. 13a.

For load values over q = 39 kN/m, a major increment in

both shear rotation and shear deflection occurs in the

vicinity of the supports, see Figs. 13b and c. This increment

is associated with the yielding of the legs of the stirrups

located near the supports.

Figure 13 shows that the maximum shear deflection at

mid span for q = 40 kN/m is 0.21 mm, while for q = 47

kN/m, it is 5.4 mm. The load increase and the corre-

sponding increase in deflection show ductile behavior that

is suitable for seismic engineering design.

300 mm

240 mm

50 mm 50 mm

50 mm

50 mm

Legs

Fig. 11 Effective area of the concrete surrounding each leg, Ac,eff

0.0000 0.00002 0.00004 0.00006 0.00008 0.0001
0

10

20
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40

50

60

γ (rad)

VEd (kN)

Concrete cracking (ψfctm)

VEd (kN)

0.000 0.001 0.002 0.003 0.004
0

20

40

60

80

100

120 Steel yields

γ caused by the:
elonga�on of the �es
shortening of the struts

Concrete contribu�on
Steel contribu�on

γ (rad)

Fig. 12 Contribution of the shortening of the struts and the elongation of the ties to the shear strain
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6 Conclusions

A new approach for the calculation of the shear deforma-

tion of beam-column elements made of reinforced concrete

is presented in this paper. The approach proposed, based on

the Timoshenko-Ehrenfest beam, is easy to implement, and

it is in line with what other authors have proposed. The

method proposed for obtaining the shear deformation of a

beam provides a solution to a widespread concern in the

structural engineering community.

Based on the results obtained for a beam of regular

dimensions, the following conclusions can be reached:

– In the linear range, shear deformation is very small

(negligible) in comparison with bending deformation

– Shear deformation is significant near collapse

– Near collapse, the accuracy of the tension stiffening

model adopted for concrete is irrelevant for the study of

the shear deformation of the RC elements

– Compatibility conditions based on the concept of

effective shear strain is a very sound alternative that

can be used to study the shear deformation of reinforced

concrete elements.
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Fig. 13 Shear rotation and shear deflection in the beam for several values of the uniform load, q
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Annex. Compression Field Based on EN1992

Compression fields (prEN1992 §8.2.3(1)) is a useful

approach for studying the post-cracking shear behavior of

beam-column members.

When cracking in the principal tension direction hap-

pens, the beam starts to work as a truss structure in which

the actions are withstood by a combination of diagonal

compressive struts in the concrete and both longitudinal

and transverse ties. These components form the rein-

forcement that can resist the tension forces.

The structure is not determined because the angle of the

compression field is not known a priori. So, compatibility

and material behavior equations also have to be considered

in conjunction with equilibrium equations.

The problem is solved in continuum mechanics by

considering smeared stressses and strains. Figure 14 shows

the external and internal actions considered in the com-

pression field.

Internal and external actions (forces and moments) in

Fig. 14 have to be equivalent, so:

C sin h ¼ VEd ) C ¼ VEd

sin h

Fcd
z

2
þ Ftd

z

2
¼ MEd

Fcd � Ftc þ
VEd

sin h
cos h ¼ NEd

9>=
>;

)
Ftd ¼

MEd

z
þ 1

2
VEd cot h� NEdð Þ

Fcd ¼
MEd

z
� 1

2
VEd cot h� NEdð Þ

ðA:1Þ

Figure 15 shows the equilibrium equations in the com-

pression field are (see Fig. 15):

rcbwz cos h sin h ¼ VEd ðA:2Þ

Asvrsv ¼ rcbws sin hð Þ2 ðA:3Þ

Asxrsx ¼
MEd

z
þ 1

2
VEd cot h� NEdð Þ ðA:4Þ

Equation A.2 is to the vertical equilibrium in the free

body of Fig. 15-left. Equation A.3 is the vertical equilib-

rium in the free body of Fig. 15-right. Being Asv = nl�AØ,

with nl as the number of legs of each of the stirrups, and AØ

as the cross-sectional area of the bar of the stirrup. It can be

observed that as h decreases, the required Asv also

decreases, since a greater number of stirrups act together to

resist the shearing force. Equation A.4 is the equilibrium in

the longitudinal tension reinforcement (i.e. Ftd = Asxrsx).

For given values of NEd, VEd and MEd, the equilibrium

equations (A2, A3 and A4) can be solved as long as h is

known. In this case the unknowns are rc, rsv and rsx. On

the contrary, if h is unknown, compatibility equations are

needed to solve the problem.

If the small displacement theory is used, new equations

based on the infinitesimal strain tensor can be added as in

CFT, MCFT [23], RA-STM [20], or RFCT [24]. See

Fig. 16.

Based on the infinitesimal strain tensor, the following

compatibility equations are obtained (Fig. 16):

e1 ¼ ex þ ev � ec ðA:5Þ

tan hð Þ2¼ e1 � ev
e1 � ex

ðA:6Þ

It is important to realize that the infinitesimal strain

tensor can be used when the deformation of the solid body

is very small, but for large deformations the infinitesimal

strain tensor may not be appropriate.

Internal actions External actions

θ

VEd

C

σcd

s

Fcd

Ftd

0.5 z

0.5 z

MEd

NEd

Shear reinforcement

Compression chord

Tension chord
Struts (compression field)

Longitudinal reinforcement

Fig. 14 Compression field of prEN1992 [18]. Notation for shear reinforced members
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Asvσsv
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Fig. 15 Free-body diagrams
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Equations for material behavior are needed to connect

stresses and strains. Before plasticization, linear elastic

behavior can be assumed for both concrete and steel:

rc ¼ Ecmec ðA:7Þ
rsv ¼ Esesv ðA:8Þ
rsx ¼ Esesx ðA:9Þ

EN 1992 [18] formulates ex as the average strain of the

bottom and top chords calculated at a cross-section that is

no closer than 0.5�z�cot h from a support or a concentrated

load. For simplicity, we have formulated ex at the tension

reinforcement (i.e. ex = esx), which is a good representation
of the behavior of the region close to the tension

reinforcement.

Equations A.2–A.9 are a system of eight equations and

eight unknowns (r2, rsv, rsx, h, e1, ex, ec, ev), whose

solutions are obtained numerically.

However, if instead of the small displacement theory,

the large displacement theory is used, then compatibility is

based on displacements, see Fig. 17. In this case, l0 is the

reference length used for the deduction of the compatibility

equations. From Fig. 17:

lx ¼
l0

sin h
ðA:10Þ

ly ¼
l0

cos h
ðA:11Þ

Accordingly, the strains at the reinforcements in x and y

directions are, respectively:

ex ¼
u

lx
¼ u

l0= sin h
¼ e1 sin h ðA:12Þ

ey ¼
u

ly
¼ u

l0= cos h
¼ e1 cos h ðA:13Þ

which are the compatibility equations.

So, if the large displacement theory is used, then

Eqs. A.5 and A.6 have to be changed by A.12 and A.13.
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