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Abstract. Inflaton-vector interactions of the type φFF̃ have provided interesting phe-
nomenology to tackle some of current problems in cosmology, namely the vectors could
constitute the dark matter component. It could also lead to possible signatures imprinted
in a gravitational wave spectrum. Through this coupling, a rolling inflaton induces an expo-
nential production of the transverse polarizations of the vector field, having a maximum at
the end of inflation when the inflaton field velocity is at its maximum. These gauge particles,
already parity asymmetric, will source the tensor components of the metric perturbations,
leading to the production of parity violating gravitational waves. In this work we exam-
ine the vector particle production in the weak coupling regime, integrating the gauge mode
amplitudes spectrum during the entirety of its production and amplification epochs, until
the onset of radiation domination. Finally, we calculate the gravitational wave spectrum
combining the vector mode analytical solution, the WKB expansion, valid only during the
amplification until horizon crossing, and the numerical solution obtained at the beginning of
radiation domination when the modes cease to grow.
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1 Introduction

Cosmological inflation, an early phase of accelerated expansion, is currently the preferred
solution to address the flatness and horizon problem in Standard Cosmology [1–3]. Typi-
cally a scalar field, the inflaton φ, during a slow-roll phase drives such an expansion, and
through its quantum vacuum fluctuations gives a natural mechanism to generate the ob-
served anisotropies in the Cosmic Microwave Background (CMB). The question on how to
move into the better known Standard Cosmology has to be addressed, including the period
known as reheating, the transition into a radiation dominated universe, where production of
light nuclei at Big Bang Nucleosynthesis (BBN) takes place [4, 5]. To do so one has to couple
the inflaton with other particles species [6].

Inspired by “axion-like” inflation models [7], where a shift symmetry protects the flatness
of the inflaton potential, couplings with U(1) vector particles αφFF̃/f are often considered,
where α is the coupling constant and f an energy scale. As φ rolls down in the slow-roll
evolution it will source a tachyonic amplification of the vector modes from their vacuum
fluctuations into a classical state. As the interaction parameter will depend linearly on the
inflaton velocity, the largest amplification is expected at the end of inflation, as the system
escapes the slow-roll evolution.1 Due to the parity violating nature of the interaction only
one of the vector transverse degrees of freedom is amplified [9]. This abrupt production of
gauge fields may source a sizable production of gravitational waves (GW) [10–13], also parity
asymmetric, within a range of frequencies that will depend on the stage of inflation.2 This
could mean an observational signal in the CMB or at interferometer scales.

1In regimes with large interaction parameters and considering the backreaction of vector production on
inflaton evolution, there are non-linear effects which affects the dynamics and the analysis is not as straight-
forward, see [8].

2Parity violating GWs have also been proposed in the context of a gravitational Chern Simons term, as
discussed in [14–18].
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Phenomenology with these models is extremely broad. For example the production
of non-Gaussianities in the primordial comoving curvature perturbations has been stud-
ied in [19–21], and provides the strongest bound on the interaction parameters at CMB
scales. The inflaton-vector dynamics has also been used to study the production of primor-
dial magnetic fields [9, 22, 23], as a dissipation mechanism allowing inflation with steeper
potentials [24], or as an ignition for warm inflation in the case of Yang-Mills gauge interac-
tions [25, 26]. Other studies focus on the generation of different dark sectors, like primordial
black hole production [12, 21] but also particle dark sectors [27–34]. Within the later, we
may have the vectors as a dark matter candidate, compatible with the observed dark matter
relic abundance for masses µeV . m . 10 TeV [35, 36], or due to the extremely efficient pair
production via Schwinger effect when including a fermion-vector coupling [37, 38]. The parity
asymmetry within the system has also been exploited to explain the baryon asymmetry in
the Universe [39–44].

In this work we will examine the gravitational wave spectrum sourced by the inflaton-
vector coupling not only during inflation, but until the onset of a radiation dominated era.
End of inflation (accelerated expansion) is set by the condition εH = −Ḣ/H2 = 1, H being
the Hubble expansion rate and Ḣ its time derivative, whereas in a radiation dominated
universe one has εH = 2. In this extra period from εH = 1 to εH = 2, one still finds amplitude
enhancement in the larger momentum modes that are still sub-horizon at the end of inflation.
Indeed, vector particle production can easily take place during preheating [30, 45, 46], i.e.,
the first stages of the reheating period [47, 48], but typically for coupling values αmP /f larger
than those required to avoid backreaction (BR) effects during inflation. Gravitational wave
production has been extensively studied in this preheating regime [49–52]. We will therefore
stay within the linear, non-backreaction (NBR) regime, for which preheating effects can be
ignored. Nevertheless, our main point is that even in this regime where we may expect to be
able to treat the transition to radiation perturbatively, particle production continues up to
εH = 2 invalidating the linear analyses. Taking into account this regime, we aim to derive
an upper bound on αmP /f for which non-linear effects may be ignored.

We will take a semi-analytical approach to describe the gauge mode amplitudes that
result from the tachyonic amplification sourced by φ. It will consist on combining the ana-
lytical solution valid to describe the vector amplitudes during the amplification until horizon
crossing and the solution obtained numerically at the beginning of radiation domination,
when the modes cease to grow. In our analysis we will see that in order to avoid backre-
action effects due to vector production at the latter stages of inflation, one must take an
interaction parameter ξ = (α/f)(φ̇/H)/2 at 60 e-folds before the end of inflation smaller
than what is constrained by non-Gaussianities (ξ60 . 2.5). We will try a simple scheme,
based on energy conservation of the vector modes, to mimic the backreaction effects on the
inflaton motion without doing the individual numerical integration for every vector. This
will allow us to study systems with αmP /f . 16 (ξ60 . 0.16) for the α-attractor model with
a good description. We will find a spectrum of gravitational waves with a peak at very large
frequencies, 107 Hz . f . 109 Hz, typical of production mechanisms at the end of inflation
and (p)reheating.

There has been an effort to study the full non-linear regime with different methodologies.
Through what is called the gradient expansion formalism, a truncated system of bilinear
functions of the electric and magnetic fields in position space, one mimics the backreaction
effects and can source the dissipation on the inflaton dynamics. In [53, 54] these integrations
were performed until the end of inflation at εH = 1, with a quadratic inflaton potential, thus
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they do not account for the effects during (p)reheating until εH = 2. Nevertheless, interesting
dynamics results from the backreaction estimation, namely on the oscillating effect on the
interaction parameter ξ at the end of inflation and the double peak structure at the spectral
energy density of the vector modes. In the works [8, 55–58] the non-linear evolution of ξ was
also obtained, and recently confirmed in [59–61] after the first lattice computations on gauge
particle production in axion inflation.

This paper is organized as follows. In section 2 we set the model and study the vector
production to discuss the validity of the non-backreaction description. We provide a zero
order attempt to manage the backreaction effects in section 3. Finally, we calculate the
gravitational wave spectrum in section 4, to then conclude and discuss followup work in
section 5. Technical details about the parametrization used for the vector power spectrum
and the calculation of the induced GW spectrum are given respectively in appendix A and B.
We also provide a comparison between the results for an α-attractor inflationary model and
the standard evolution with a quartic potential in C.

2 Vector particle production

Consider a system described by the action

S = −
∫
d4x
√
−g

[1
2∂µφ∂

µφ+ V (φ) + 1
4FµνF

µν + 1
2m

2AµA
µ + α

4f φFµνF̃
µν
]

(2.1)

where the potential V (φ) drives the slow-roll evolution, α/f quantifies the inflaton-vector
coupling, Fµν is the field strength and F̃µν its dual, F̃µν = εµναβFαβ/(2

√
−g). We use the

Friedmann-Robertson-Walker metric with ds2 = −dt2 + a2(t)dx2 and the convention ε0123 =
1/
√
−g. The vector mass can be of a Stueckelberg type or be produced through a symmetry

breaking phase transition. It will be considered to be smaller than the Hubble scale at the
end of inflation, making it negligible during the tachyonic production.

In our analysis we will consider an α-attractors potential
V (φ) = (9λ/4) tanh4[φ/(

√
6mP )]m4

P [62], allowed by Planck data [63], which at the end of
inflation and reheating will tend towards the quartic potential V (φ) = λφ4/4 [64].

In order to study the production of gauge particles induced by the rolling inflaton, we
promote the classical field A(t, x) to an operator Â(t, x), to then be expanded in terms of
creation and annihilation operators and the mode functions in an helicity basis

Âi(t,x) =
∫

d3k
(2π)3 e

ik·xÂi(t,k) =
∑

λ=±,L

∫
d3k

(2π)3

[
εiλ(k)Aλ(t,k)âk

λe
ik·x + h.c.

]
, (2.2)

where we have separated the three degrees of freedom of the vector into transverse and
longitudinal components ĀT and AL respectively, k̄ · Ā = kAL and k̄ · ĀT = 0. Furthermore,
we have written the transverse component in terms of the two helicities, ĀT = ε̄+A+ + ε̄−A−.
The creation and annihilation operators satisfy the commutation relations,[

aλ(~k), a†λ
(
~k′
)]

= (2π)3δλλ′δ3
(
~k − ~k′

)
. (2.3)

The time components of A for both longitudinal and transverse polarizations have been
recently derived in appendix A of [36] and are given by

A L
0 (~k, τ) = −ik · ∂τAL(~k, τ)

k2 + a2m2 , (2.4)

A ±0 (~k, τ) = 0 . (2.5)
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As a result, the time component of the vector field does not mix the transverse and longi-
tudinal components. The scalar field and the vector mode spatial components, in Fourier
space, will follow the equations of motion [19, 24, 36]

φ̈+ 3Hφ̇+ V ′(φ) = α

4f 〈FF̃ 〉 , (2.6)

Ä± +HȦ± +
(
k2

a2 ±
k

a

αφ̇

f
+m2

)
A± = 0 , (2.7)

ÄL + 3k2 + a2m2

k2 + a2m2 HȦL +
(
k2

a2 +m2
)
AL = 0 , (2.8)

where the overdots denote derivatives with respect to physical time t and k ≡ |k| is the
magnitude of the comoving momentum. We consider only the spatially homogeneous zero
momentum mode (k = 0) of the inflaton.

Immediately, one observes how the inflaton motion enters into the equations of motion
for the transverse modes. We will take the vector mass to be smaller than the Hubble scale at
the end of inflation and so that its effects are negligible for the tachyonic production, see [36],
and as a result having also little effect on the GW generation. As for the longitudinal mode
it is not affected by the presence of the coupling with the inflaton, nonetheless it may be
produced via inflationary fluctuations, as described in [29]. At the end of inflation the energy
density can be estimated as

ρAL
ρφ

= H4
end

4(2π)2
1
ρφ
' 1

24π2

(
Hend
mP

)2
' 6× 10−18

(
λ

10−14

)
, (2.9)

where we took H2
end = V (φend)/(3m2

P ). Thus, the longitudinal modes do not have a relevant
contribution on the expansion and, as they do not mix with the transverse modes, will not
play any role on the backreaction on the inflation motion. Therefore, for the sake of simplicity,
for the rest of the analysis we will neglect the effects of the vector mass and the evolution of
the longitudinal mode during inflation, and for simplicity we set the mass to zero. We can
then write the transverse modes equation of motion in conformal time defined as adτ = dt,[

∂2

∂τ2 + k2 ± 2k ξ
τ

]
A±(k, τ) = 0, ξ ≡ αφ̇

2Hf =
√
ε

2
α

f
mP . (2.10)

where τ ' −1/(aH) during inflation, and ε ≡ −Ḣ/H2, which for single field inflation is
given by

ε ' φ̇2

2H2m2
Pl
. (2.11)

Depending on the sign of the interaction parameter, ξ, one of the modes will experience
tachyonic enhancement, when

k2 ± 2k ξ
τ

= k2 ∓ 2kξaH < 0 . (2.12)

Using the convention φ̇ > 0, it results in ξ > 0, implying that only the A+ mode will develop
an instability, while A− will stay in vacuum.
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Figure 1. Comparison of the time evolution, in a normalized conformal time, of the WKB expansion
eq. (2.13), with the numerical solution for |Ak|2 and the semi-analytical approximation eq. (2.14) for
a fixed mode with k ' 4× 10−5(aH)end and αmP /f = 20.

Treating ξ as constant, appropriate during a slow-roll evolution one can solve eq. (2.10)
analytically in terms of Coulomb functions [65]. In the tachyonic regime which we are in-
terested in, −kτ < 2ξ (k < 2ξaH), and for 1/(8ξ) < −kτ the Coulomb functions are well
approximated by the WKB expansion

A+(k, τ)WKB '
1√
2k

(−kτ
2ξ

)1/4
eπξ−2

√
−2ξkτ . (2.13)

This analytical expression provides a good intuition into the behavior of the modes around
horizon crossing, when they experience the tachyonic enhancement [20, 24]. However, for
regions outside 1/(8ξ) < −kτ < 2ξ, eq. (2.13) is not expected to provide a reliable description.

We compare the evolution of the approximation in eq. (2.13) with the numerical solutions
of the system of equations in figure 1. As expected we see that the WKB approximation
describes well the time evolution during the tachyonic growth, but fails to describe the
numerical results both when the modes go out of the horizon, and the initial vacuum state.
In regards to the numerical integration one obtains what is theoretically predicted, a three
phase function: first in the vacuum state, then the tachyonic growth at τtac = −ξ/k, to then
almost freezing at the horizon crossing after τh ' −1/(10k).

With the aim of correctly describing the behavior of the gauge modes amplitudes and
velocities, we build a semi-analytical solution. We combine the known analytical expressions
in the vacuum state and the WKB solution during the tachyonic enhancement, with the
amplitudes of A and A′ at the end of inflation, for which we will use the subscript “end”
Thus, from an arbitrary τ to τend, we use a step function that shall give

A+(k, τ) =


ABD(k) τ < τtac

AWKB(k, τ) τtac < τ < τh

A+(k, τend) τ > τh ,

(2.14)

with an analogous function for A′+(k, τ). Finally, to obtain A+(k, τend) one must integrate
the full numerical system for several modes k to obtain the spectrum at τend. We compare
in figure 1 the semi-analytical approximation with the WKB and the numerical descriptions.
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Recalling the inflaton equation of motion, on the right-hand side one has the backreac-
tion of the gauge modes on the inflaton evolution

φ̈+ 3Hφ̇+ V ′(φ) = α

4f 〈FF̃ 〉 . (2.15)

Typically backreaction effects are neglected if ξ < O(10) [36, 65], with ξ defined in eq. (2.10).
Moreover, ξ is constrained from the non-observation of non-gaussianities in CMB measure-
ments to be . 2.5 [19, 20] at these scales (around 60 e-folds from the end of inflation).
Naturally, this will constrain the coupling constant αmP /f . We then write ξ60 as the value
of ξ at 60 e-folds before the end of inflation to fix such constants. In the case of slow-roll
inflation with the α-attractors potential and no-backreaction ones has

ξ60 = 2
√

2
3
αmP

f
csch

(√
2
3
φ60
mP

)
. (2.16)

Studying ξ evolution within the allowed parameter range one easily finds that from
an initial non-backreacting regime the system evolves at the end of inflation to a relevant
backreaction scenario, see figure 2. As expected from the proportionality with the inflaton
velocity we get the maximum at the end of slow-roll inflation. In order to test if the system
reaches a backreaction regime before the end of inflation, we may calculate the energy density
spectrum for the vector modes3 ρA (see appendix A of [36])

ρA = 1
2〈
~E2 + ~B2〉

= 1
4π2a4

∫ ∞
0

dk k2
(
|∂τA+(k, τ)|2 + k2 |A+(k, τ)|2

)
= 1

2a4

∫
d ln k

(
P∂τA+(k, τ) + k2PA+(k, τ)

)
, (2.17)

where we have neglected the subdominant contributions from A−, and defined the power
spectrum

PX(k, τ) = k3

2π2 |X(k, τ)|2 X = A+ or ∂τA+ , (2.18)

with ρA ≡ 〈ρA〉 as the spacial average. Solving numerically for the equation of motion we
can compute the quantity

1
ρend

dρA
d ln k = 1

ρend

1
2a4

(
P∂τA+(k, τ) + k2PA+(k, τ)

)
(2.19)

at the end of inflation, where ρend corresponds to the total energy density in the universe.
In a valid approximation, this ratio cannot be larger than one, i.e. the energy density of a
single mode ought not to overcome the total energy density in the universe, here ρend ' ρφ.
The vector energy density spectrum at the end of inflation, normalized by the inflaton energy
density, is shown on the r.h.s. in figure 2. One can then see that already values of ξ60 ≥ 0.30
will require taking into account backreaction effects to study gauge mode enhancement close
to the end of inflation.

3Deriving the stress-energy tensor Tµν from the action there are two terms proportional to φFF̃ which
cancel exactly. As a result, the operator responsible for inducing the tachyonic instability will not contribute
to the total energy density. Nonetheless, as described in section 3, such a term will be relevant and mediates
the energy transfer between the inflaton and the vector fields.
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α mP /f = 30 → ξ60 = 0.30

α mP /f = 23 → ξ60 = 0.23

α mP /f = 20 → ξ60 = 0.20

α mP /f = 18 → ξ60 = 0.18

α mP /f = 16 → ξ60 = 0.16

0 10 20 30 40 50 60
0

5
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15

20

Ne

ξ
α mP/f = 30 → ξe = 21.21

α mP/f = 23 → ξe = 16.26

α mP/f = 20 → ξe = 14.14

α mP/f = 18 → ξe = 12.73

α mP/f = 16 → ξe = 11.31

10
-4 0.01 1 100

10
-21
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-11

0.1

k/(aeHe)

ρ
e

n
d
-

1
d
ρ
D
/d

ln
k

Figure 2. Left panel: ξ evolution under no backreaction effects, we consider different values for the
inflaton-vector coupling α/f , fixing ξ at 60 e-folds before the end of inflation as indicated in the plot.
Right panel: vector energy density spectrum normalized with the inflaton energy density at the end
of inflation. The values for the interaction parameter at the end of inflation ξe are also indicated for
each α/f .

Finally, as visible in the right panel of figure 2, the integral in eq. (2.17) will diverge.
The divergence comes from the vacuum contribution as ρABD ∝ Λ4, with Λ being a cut off
scale, that can be addressed with a proper vacuum subtraction [66]. It can be seen from
the same figure that the effects of the tachyonic amplification do not contain extra divergent
contributions as UV modes will not be enhanced. In practice one can use a hard cut off
on the integration taking Λ as the larger mode to be amplified. As discussed in section 4,
when parametrizing the amplification we will introduce a regulator, a decaying exponential,
to softly modulate this divergence.

3 Backreaction on the inflaton evolution at 0th-order

As seen in the previous section, from an initial non-backreacting dynamics at 60 e-folds, with
the progression of slow-roll inflation the interaction parameter ξ will tend to grow into a
backreacting regime. The equations of motion together with the Bianchi identities in terms
of the electric and magnetic fields in conformal time are given by

φ′′ + 2aHφ′ −∇2φ+ a2dV (φ)
dφ

= α

f
a2Ē · B̄ , (3.1)

Ē′ + 2aHĒ −∇× B̄ = −α
f
φ′B̄ − α

f
∇̄φ× Ē , (3.2)

B̄′ + 2aHB̄ + ∇̄ × Ē = 0 , (3.3)

∇̄ · Ē = −α
f
∇̄φ · B̄ (3.4)

∇̄ · B̄ = 0 , (3.5)

with

a2B̄ = ∇̄ × Ā , (3.6)
a2Ē = −Ā′ + a∇̄A0 , (3.7)

where ′ denotes a derivative in conformal time τ .
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We now try a method to control the backreaction effects without relying on the WKB
time derivative expansion, describing the electric contribution from the gauge modes. In
essence we will rely on energy conservation of the vector modes, to measure its impact on
the background dynamics. The energy density evolution is given by

ρ̇φ + 3H(ρφ + pφ) = φ̇
α

f
SEB , (3.8)

ρ̇A + 3H(ρA + pA) = −φ̇α
f
SEB , (3.9)

where SEB =
〈
Ē · B̄

〉
is the source term. This interaction term will mediate the transfer of

energy between the inflaton and the gauge fields. With eqs. (3.2) and (3.3) one can study its
time evolution,

ṠEB = ˙̄E · B̄ + Ē · ˙̄B = −4HĒ · B̄ − α

f
φ̇
∣∣∣B̄∣∣∣2 , (3.10)

resulting in

ṠEB + 4HSEB = −α
f
φ̇
∣∣∣B̄∣∣∣2 , (3.11)

which composes a system of equations together with eqs. (3.8) and (3.9) that only requires
initial conditions and the input of the mean value of the magnetic field. We use the WKB
approximation for the vector modes to estimate the later. Only the modes that suffer a
tachyonic enhancement, k < 2ξaH, become classical and can contribute to source the back-
reaction,

〈
∣∣∣B̄∣∣∣2〉 = 1

8π3a4

∫
d3k k2 ∑

λ=±
|A+|2 '

e2πξ

4π2a4

∫
dk k3

(
k

2ξaH

)1/2
e−4
√

2ξk/(aH)

' e2πξ

π2ξ

(
H

64ξ

)4
× I[8ξ] , (3.12)

with

I[x] = 8!
(
1− e−x

)
− 8! e−x

8∑
n=1

xn

n! . (3.13)

This system of equations acts as the 0th-order equations present in the gradient expansion
formalism [54]. We have taken only this first correction to a no-backreacting system as it
provides a consistent evolution for any coupling α/f until the end of reheating.

Computing ξ, and starting with the same initial conditions for the inflaton field than
in figure 2, one now sees in figure 3 a flattening of the curves at the end of inflation when
εH = 1, leading to ξe < 9. In addition, one has some extra e-folds of inflation due to the
slowing of the inflaton velocity. Therefore, in the case with backreaction, as we deviate from
a pure single field slow-roll evolution, the definition for ξ60 eq. (2.16) no longer holds. With
the same inflaton initial conditions we now have a larger ξ60 than in a no-backreaction regime.
Nonetheless, for an α-attractor potential as the inflaton velocity is extremely low at the early
e-folds the difference can be neglected.

Although with a better picture in regards to the ξ parameter, and smaller values at
the end of inflation ξe, we ought to compute again the spectral energy density to verify if
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Figure 3. Left panel: comparison of ξ evolution with 0th-order (dashed) and without (solid) backre-
action effects for αmP /f = 30, 23, 20 and 18 and 16. Without backreaction, this gives respectively:
ξ60 =0.3, 0.23, 0.2, 0.18 and 0.16, at 60 e-folds.

the system maintains the correct energy balance. Normalizing this quantity with the total
energy density, inflaton plus vector modes, we obtain the results shown in figure 4. Solid
lines give the spectrum at the end of inflation when εH = 1, and for example for αmP /f = 23
the energy of the amplified vector modes will be larger than the total energy density in the
universe, revealing that the backreaction effects are not still under control.

The situation is direr if one takes into consideration the reheating transition, letting
the system evolve until εH = 2, dashed lines in figure 4. Note that having an inflaton
in a α-attractor model, reheating effectively as a quartic potential [64], we have ensured
a radiation-like stage after inflation, since the scalar field oscillating about the minimum
redshifts as radiation. Although modes for which k & aH at εH = 1 will remain inside
the horizon, when analyzing the evolution, one realizes that there is still relevant amplitude
growth until εH = 2 for these modes that started to be amplified during the slow-roll regime.
Thus, the parameter space where one can study gauge mode amplification with this system of
backreaction equations is severely reduced, allowing only good estimates when αmP /f < 16.

Indeed, what we have shown is that including only 0th order BR effects in the background
evolution is not enough to capture the dynamics of the system near the end of inflaton and
especially during the transition towards a radiation dominated universe, in particular that
of the vector fluctuations. Even if we stay well within the linear regime when computing the
evolution of the vector modes up to the end of inflation (αmP /f < 23), non-linearities are
unavoidable during the transition towards εH = 2, and these effects will set the final shape
of the transverse modes spectrum. Accordingly, for the rest of the analysis we will take the
subscript “end” to mean at the end of reheating i.e. εH = 2.

We have kept an analysis with our 0th-order system of equations as it is the correction
where we can completely control the numerical errors in the evolution from the beginning of
inflation until the end of reheating at εH = 2. Recently there have been interesting results in
managing the backreaction of the vector modes on the inflaton evolution without requiring
an integration and inclusion of the effects mode by mode, see [53, 54, 67]. Nonetheless, no
reheating has been included in these works. In a future work we hope to include a complete
study for the gauge mode production. In regards to the present work, we will proceed with
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the numerical results obtained within the possible parameter space consistent with no BR
up to εH = 2 in order to calculate the full gravitational spectrum produced from the gauge
modes amplification.

4 Power spectrum GW’s

Here we study the production of gravitational waves induced by the electromagnetic modes.
Focusing just on GW’s we take the metric

ds2 = a2(τ)
[
−dτ2 + (δij + hij) dxidxj

]
, (4.1)

where hii = hij,j = 0. The evolution of the tensor modes is given by

h′′ij + 2a
′

a
h′ij −∆hij = 2

m2
P

Πij
lmTEMlm , (4.2)

where Πlm
ij = Πi

lΠ
m − 1

2ΠijΠlm is the transverse traceless projector, with Πij = δij − ∂i∂j/∆
and TEMlm contains the spacial contributions of the electromagnetic stress energy tensor. Now
we change into a description in momentum space, projecting the tensor modes on the positive
and negative-helicity solutions

hij(k) =
√

2
∑
λ=±

εiλ(k)εjλ(k)hλ(τ,k) , (4.3)

and introduce the polarization tensors Πij
±(k) = εi∓(k)εj∓(k)/

√
2, so that h±(k) =

Πij
±(k)hij(k). Using that Πij

±Πlm
ij = Πlm

± , the particular solution of eq. (4.2) is given by

h±(k) =− 2H2

m2
P

∫
dτ ′Gk

(
τ, τ ′

)
τ ′2
∫

d3q
(2π)3 Πlm

± (k)×

×
[
A′l
(
q, τ ′

)
A′m

(
k− q, τ ′

)
− εlabqaAb

(
q, τ ′

)
εmcd (k − q)cAd

(
k− q, τ ′

)]
, (4.4)
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where Gk (τ, τ ′) is the retarded Green function for the operator d2/dτ2 − (2/τ)d/dτ + k2,

Gk
(
τ, τ ′

)
= 1
k3τ ′2

[(
1 + k2ττ ′

)
sin k

(
τ − τ ′

)
+ k

(
τ ′ − τ

)
cos k

(
τ − τ ′

)]
| (4.5)

for τ > τ ′, while Gk (τ < τ ′) = 0.
We will be interested in promoting the gauge modes to operators, see eq. (2.2), to then

proceed with the tensor modes. As discussed in section 2 we will describe the vector mode
amplitudes with a step function. In order to relate each stage to the amplitudes at the
maximum, at the end of reheating, recovering eq. (2.14), we write our step function for A+
and A′+ with the transfer functions T and T̄ as

A+(k, τ) = Aend(k)Tk(τ, τend) '


ABD(k) τ < τtac

AWKB(k, τ) τtac < τ < τh

Aend(k) τ > τh .

(4.6)

As previously discussed, the Bunch-Davis vacuum contributions give a UV divergence
on the amplitudes that must be regularized. When integrating over all momentum k and
for the entire evolution of τ one automatically includes modes that will always remain sub
horizon and that will not be amplified, i.e. where the condition τ > τtac is never realized
before the end of inflation. To circumvent this issue, as the tachyonic amplification effects
dominate the system, when integrating the GW amplitude we remove the Bunch-Davis vac-
uum contribution in the gauge amplitudes. We will keep the WKB amplitude until horizon
crossing. Specifically we will we use the smooth functions

|Aend(k)|2 Tk(τ, τend)2 = |AWKB(k, τ)|
2

2 [
1− tanh

(
δ

(
τ

τh
− 1

))]
+ |Aend(k)|

2

2 [
1 + tanh

(
δ

(
τ

τh
− 1

))]
, (4.7)

with δ = 10, τtac = −ξ/k and τh = −1/(10 k). An analogous description is used for A′+(k, τ)
with T̄ as the respective transfer function.

Furthermore, to describe the spectrum for |A′end (k) |2, k2|Aend (k) |2 and k|AA′end (k) |
at εH = 2, we use the functions in eqs. (4.8), (4.9) and (4.10) which have a very good
agreement with the numerically computed spectrums at the end of reheating (see figure 8 in
appendix A):

|A′end (k) |2 ' (aeHe) exp
[(
xA

′
0 + xA

′
1 k̃ + xA

′
2 k̃2 + xA

′
3 k̃3

)(
1− eaA

′
0 (k̃−aA′

1 )
)]

, (4.8)

k2|Aend (k) |2 ' (aeHe) exp
[(
xA0 + xA1 k̃ + xA2 k̃

2 + xA3 k̃
3
) (

1− eaA0 (k̃−aA1 )
)]

, (4.9)

k
∣∣AA′end(k)

∣∣ ' (aeHe) exp
[(
xAA

′
0 + xAA

′
1 k̃ + xAA

′
2 k̃2 + xAA

′
3 k̃3

)(
1− eaAA

′
0 (k̃−aAA′

1 )
)]

,

(4.10)

with k̃ = k/(aeHe) and where the x’s and a’s are functions of αmP /f listed in appendix A.
Furthermore, as visible in figure 8, the use of the functions in eqs. (4.8), (4.9) and (4.10)
provides us a regulator that controls, in a semi-analytical way, the divergences that come
from the higher momentum vacuum contributions. Finally, setting A− = 0 we calculate the
two point function for the gravitational waves as described in detail in appendix B.
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Figure 5. Spectral density of GW’s in frequency today sourced by the tachyonic amplification of
vector modes. Sensitivity curves for LISA, DECIGO and BBO are included as well as the BBN energy
density limit.

Taking x = −kτ and q̃ = q/(aeHe) we get

〈hshs′〉 = 2
(2π)3

H4

mP
4

(aeHe) 5

k8

∫ ∞
0

∫ ∞
0

dx1dx2 (sin x1 − x1 cosx1) (sin x2 − x2 cosx2)∫ ∞
0

dq̃

∫ 2π

0

2π
16 q̃

2dθ(1 + s cos θ)
(
1 + s′ cos θ

)
1 + s

1− q̃ cos θ
k̃√

1 + q̃2

k̃2 − 2 q̃
k̃

cos θ

1 + s′
1− q̃ cos θ

k̃√
1 + q̃2

k̃2 − 2 q̃
k̃

cos θ

 (4.11)

(q̃2(k̃ − q̃)2 |Aend (q̃)|2
∣∣∣Aend

(
k̃ − q̃

)∣∣∣2 T x1
q̃ T x2

q̃ T x1
k̃−q̃T

x2
k̃−q̃

+
∣∣A′end (q̃)

∣∣2 ∣∣∣A′end

(
k̃ − q̃

)∣∣∣2 T̄ x1
q̃ T̄ x2

q̃ T̄ x1
k̃−q̃T̄

x2
k̃−q̃

+ q̃(k̃ − q̃)
∣∣AA′end (q̃)

∣∣ ∣∣∣AA′end

(
k̃ − q̃

)∣∣∣ (T x1
q̃ T̄ x2

q̃ T x1
k̃−q̃T̄

x2
k̃−q̃ + T x2

q̃ T̄ x1
q̃ T x2

k̃−q̃T̄
x1
k̃−q̃)) .

From the correlation functions we obtain the power spectrum that is then related to the
fraction of energy density of gravitational waves today by [68, 69]

Ωss′h2 = ΩR 0h
2

24
k3

2π2 〈hshs′〉 , (4.12)

where ΩR 0h
2 ≡ ρR 0h

2/3H2
0m

2
P ' 4.18× 10−5. Finally the dependence in k is related to the

frequency today by

f = k

2πa0
= k̃

2πHe
ae
a0
, (4.13)

with k̃ = k/(aeHe). In figure 5 we represent the spectral energy density of the induced
gravitational waves from eq. (4.12) for both s = s′ = + (solid lines) and s = s′ = − (dashed
lines), and several values of ξ60. The BBN limit, ΩGWh

2 < 1.8 × 10−6, that sets an upper
bound on the radiation excess at BBN, and the sensitivity curves for planned GW detectors
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are also included [13, 70]. We find a parity asymmetric spectrum with a difference at the
peaks of 2/3 orders of magnitude between the ++ and −− correlations, in line with the
results obtained at CMB scales in [10, 12, 13]. The peaks for the spectral distribution come
around 107, 108 Hz, typical in end of inflation and (p)reheating stages, exactly where we had
the maximum spectral amplification for the vector modes. At larger frequencies the spectrum
falls exponentially, again following the effects of the electromagnetic sources with a correct
vacuum subtraction [66]. In the range of frequencies where one could have a detection of
the represented signals there are no current or planed GW detectors, although interesting
proposals and motivations are discussed in [71–75]. At present and planed interferometer
scales the energy densities are negligible for the interaction parameters αmP /f we were able
to consider. For αmP /f = 23, a parameter already beyond the linear backreaction treatment
that we have employed as discussed in section 3, we obtain a energy density that surpasses
the BBN bound. This does not exclude models with this or larger couplings, only reveals
the need for an appropriate description of the vector mode amplification, fully including non-
linearities in the evolution. Moreover, from the figure one can also see that production in
the linear regime αmP /f < 16, for an α-attractor potential, will lead to an extremely small
signal in the GW spectrum. The spectrum going beyond the linear regime remains to be
calculated. We now compare, in figure 6, our results with the expressions obtained in [13],
following the work in [10], where the analytic expression in eq. (2.13) was employed on the
two point correlation function.

ΩWKB
++ h2 ' 1.5× 10−13 H

4

m4
P

e4πξ

ξ6 , (4.14)

ΩWKB
−− h2 ' 3.1× 10−16 H

4

m4
P

e4πξ

ξ6 . (4.15)

The shortcomings of the analytical estimations with the WKB expansion are apparent in
figure 6. With the expressions in eqs. (4.15) and (4.14) one may get appropriate descriptions
at CMB scales, allowing for instance the study of parity violating signals in the B-modes [10].
However, at frequencies typical of end of inflation (MHz) the expressions become less reliable
as we are no longer in the constant ξ regime and the deviations from our curves are substantial.
Furthermore, for an interaction parameter ξ60 ' 2.5 (αmP /f ' 249), as was considered
in [13], the linear description no longer holds and the estimation for a detection with LISA
is a stretch for the model capabilities. Nonetheless, as the non-linear dynamics present with
strong backreaction remains to be integrated in the GW spectrum calculation, the possibility
may be dim but it is not excluded.

Finally, we can combine the numerical procedure to obtain the energy density of the
gravitational waves today, where we use the amplitude spectrum of the gauge modes con-
tributions through eqs. (4.9), (4.8) and (4.10), and the upper bound on the radiation excess
at BBN to set an estimate of a ceiling on the amplitude of such electromagnetic sources.
As each individual contribution, from |A′(k)|2, k2|A(k)|2 and k|A′(k)A(k)|, are of similar
order, through a simple linear fit we find the would be maximum amplitude of the electric
contribution |A′(k)|2, our representative, to reach the BBN bound, see figure 7. We obtain
a maximum amplitude at |A′(k)|2 ∼ 1021 aeHe. Note that this analysis is independent of
a correct or incorrect parametrization of the backreaction effects on the inflaton evolution.
The assumption is that the gauge modes spectrum will keep a similar shape, where the main
contribution for the integration in eq. (4.11) comes through a dominant peak for the modes
amplified close to the end of inflation as in the amplitudes represented in figure 8. One might
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Figure 6. Comparison of the spectral energy density for the GW’s produced from the tachyonic
amplification estimated by the semi analytical method described with eqs. (4.11) and (4.12), and the
analytical description with the WKB solution for the vector modes eqs. (4.15) and (4.14). In the left
panel we show the ++ two point function and in the right panel the −− correlation.
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Figure 7. Linear interpolation to obtain the maximum amplitude on the electric field contribution
|A′(k)|2. The points to obtain the linear fit were obtained using (from left to right) αmP /f = 16, 18,
20, 23.

expect a broadening of the vector mode spectrum with a correct account of the backreaction
effects leading to larger contribution of the smaller k modes, thus this result will provide an
upper bound on the maximum amplitude of the electric contribution. As we will present in
appendix C, this relation may also depend on the inflationary potential as the shape of the
vector modes is influenced by the inflaton velocity.

5 Conclusion

In this work we have calculated the gravitational wave spectrum produced from the “axion-
like” interaction between the inflaton and an U(1) gauge field, in the linear regime during
inflation and reheating. Main results are presented in figure 5.

During the slow-roll evolution, the inflaton motion sources a tachyonic amplification of
the gauge field amplitudes. From the asymmetry present in the φFF̃ interactions, only one
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of the transverse polarizations is amplified resulting in a parity asymmetric source for the
gravitational waves. Naturally this propagates into the GW spectrum as seen in figure 5 and
predicted when contrasting eqs. (4.14) and (4.15). The peaks in the GW spectrum appear
around 108 Hz, as expected from the maximal amplification of the vector modes at the end
of inflation and reheating. We have also shown an example with αmP /f ' 23 (ξ60 ' 0.23),
where computing a spectrum with a inadequate description could point to an erroneous
exclusion of a parameter space due to a crossing into the BBN limit on the GW energy
density. The analytical predictions obtained with the WKB solution eqs. (4.14) and (4.15)
vary significantly from our curves at large frequencies, as seen in figure 6. The prediction of
a detection with LISA obtained for ξ60 ' 2.5 (αmP /f ' 249) goes beyond the validity of
the WKB analytical description. Nevertheless, a signal within the detector sensitivity may
come as a combination of the undescribed non-linear dynamics in the strong backreaction
regime and a low scale inflation model compatible with the observations.4 At the large
frequencies ranges (MHz) predicted in our calculations there are no planned or expected
detectors. Nonetheless there is an a raising interest in studying such scales, see [71–75]. We
thus hope that this work motivates proposals and further development of ideas to detect
signals within this regime where there are no known astrophysical sources.

To derive the GW spectrum we have studied the vector production until the end of
reheating when the tachyonic amplification comes to a halt. The gauge field amplitudes are
described with a smoothed step function, initially with the analytical WKB solution, and
after horizon crossing with the amplitudes value at εH = 2, obtained through the numerical
integration of the equations of motion. Therein we combine the good estimation in the
WKB solution for the start of the tachyonic enhancement with an almost constant amplitude
from the horizon crossing of the modes until the end of the inflationary dynamics. Here
we have considered a simple system to attempt to mimic the backreaction effects on the
inflationary motion based on energy conservation on the vector modes. We were then able to
reproduce the vector production with the correct description for αmP /f < 16. However in
this linear regime, signals in the GW spectrum are extremely small. Furthermore, we have
obtained an estimation of the upper bound on the amplitudes of the electromagnetic sources,
k2|A(k)|2, |A′(k)|2, k|A′(k)A(k)|. In order to avoid radiation excess at BBN one has to verify
|A′(k)|2 . 1021 aeHe.

In order to extend the parameter space to the constrains given by the upper bound on
non-Gaussianities, ξ60 ' 2.5 (αmP /f ' 249), the non-linear dynamics of the backreaction
effects have to be integrated in the system. With the gradient expansion formalism, through
a system of 3-n differential equations for bilinear functions of the electromagnetic fields in
coordinate space, the authors of [54] were able to manage those effects until the end of
inflation, εH = 1 for a quadratic inflationary potential. The oscillating effects in the ξ
evolution close to the end of inflation, also confirmed in the works [8, 55–57, 59, 61], seem
to induce a double peak in the gauge particle amplitudes spectrum that could result in
interesting effects on the GW spectrum.

As future a direction of this work we will be looking for a correct estimation of vector
production in the strong backreaction case both during inflation and until the end of reheat-
ing, at εH = 2. To then estimate the gravitational wave spectrum in the entirety of the
allowed parameter range. It would also be interesting to study if the GW spectrum exhibits
non-Gaussian statistics inducing a more distinct signal on a possible detection.

4For instance, with the potential in [76] one may lower inflation scale enough to possibly generate a peak
around Hz scale.
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A Spectrum for E2, B2 and E ·B

We present here how we modeled the parameters in the functions in eqs. (4.8), (4.9) and (4.10)
in terms of z = αmP /f . In figure 8 we compared our semi-analytical parametrization with
the spectrum obtained numerically for the amplitudes of a4E2, a4B2 and a4E ·B.

xA
′

0 (z) = −2.74794 + 2.1837 z (A.1)
xA

′
1 (z) = −0.772418 + 0.422345 z (A.2)
xA

′
2 (z) = −0.128614 + 0.033448 z (A.3)
xA

′
3 (z) = −0.00304119 + 0.000889556 z (A.4)
aA

′
0 (z) = 2.1696− 0.0366212 z (A.5)
aA

′
1 (z) = 2.94837− 0.00690561 z (A.6)

xA0 (z) = −0.0253472 + 2.15692 z (A.7)
xA1 (z) = 4.3119 + 0.226113 z (A.8)
xA2 (z) = 0.447448 + 0.00360117 z (A.9)
xA3 (z) = 0.0153263− 0.000179546 z (A.10)
aA0 (z) = 1.36358− 0.00473288 z (A.11)
aA1 (z) = 2.93832− 0.00626591 z (A.12)

xAA
′

0 (z) = 1.78408 + 2.01315 z (A.13)
xAA

′
1 (z) = 3.46606 + 0.247637 z (A.14)
xAA

′
2 (z) = 0.413299 + 0.00765184 z (A.15)
xAA

′
3 (z) = 0.0171652− 0.000100337 z (A.16)
aAA

′
0 (z) = 0.91585 + 0.0183234 z (A.17)
aAA

′
1 (z) = 3.18199− 0.0187605 z (A.18)

B Details on 〈hshs′〉

We want to calculate the two point functions trying to keep the result in terms of the
amplitude solutions for the gauge field modes at the end of inflation. Let us recover the
vector mode expansion

Âi(τ,x) =
∫

d3k
(2π)3 e

ik·xÂi(τ,k) =
∑
λ=±

∫
d3k

(2π)3

[
εiλ(k)Aλ(τ,k)âk

λe
ik·x + h.c.

]
(B.1)

where âk
λ, â

k†
λ are the annihilation and creation operators. Now, we promote the tensor modes
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Figure 8. Spectrum for E2 (|A′(k)|2), B2 (k2|A(k)|2) and E·B (k|A′(k)A(k)|) contributions at εH = 2
compared to functions in eqs. (4.8), (4.9) and (4.10), respectively. We have considered different values
for the inflaton-vector coupling αmP /f .
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to operators

ĥ±(k) =− 2H2
√

2m2
P

∫
dτ ′Gk

(
τ, τ ′

)
τ ′2
∫

d3q
(2π)3

[
Â′±,λ

(
k,q, τ ′

)
Â′±,λ′

(
k,k− q, τ ′

)
− εlabqaÂ±,λ

(
k,q, τ ′

)
εmcd (k − q)c Â±,λ′

(
k,k− q, τ ′

) ]
(B.2)

=− 2H2
√

2m2
P

∫
dτ ′Gk

(
τ, τ ′

)
τ ′2
∫

d3q
(2π)3×

×
∑

λ,λ′=±

[ (
εl∓(k)εlλ(q)A′λ

(
q, τ ′

)
âk
λ + h.c.

)(
εm∓ (k)εmλ′(k− q)A′λ′

(
k− q, τ ′

)
âk
λ + h.c.

)
− (−λ)(−λ′)i2q |k − q|

(
εl∓(k)εlλ(q)Aλ

(
q, τ ′

)
âk
λ + h.c.

)
×
(
εm∓ (k)εmλ′(k− q)Aλ′

(
k− q, τ ′

)
âk
λ + h.c.

) ]
(B.3)

where Âs,λ (k,q, τ ′) = εl−s(k)εlλ(q)Aλ (q, τ ′) âk
λ, we have used εabckbεcλ = −λikεaλ and decom-

posed Πlm
± (k). Now, to calculate the two point function we may use Wick’s theorem to sim-

plify our expression, the only non zero terms will be given by 〈ĉk
λ ĉ

k′†
λ′ 〉 = (2π)3δ

(
k− k′

)
δλλ′

contributions

〈hs(k)hs′
(
k′
)
〉 =

2H
4

m4
P

∫
dτ ′dτ ′′τ ′2τ ′′2Gk

(
τ, τ ′

)
Gk
(
τ, τ ′′

) ∫ d3q
(2π)3

∫
d3q′

(2π)3

±∑
λ,λ′,Λ,Λ′〈[

εl−s(k)εlλ(q)εm−s′(k)εmλ′(k− q)A′λ
(
q, τ ′

)
A′λ′

(
k− q, τ ′

)
âq
λâ

k−q
λ′

+ λλ′q(k − q)εl−s(k)εlλ(q)εm−s′(k)εmλ′(k− q)Aλ
(
q, τ ′

)
Aλ′

(
k− q, τ ′

)
âq
λâ

k−q
λ′

]
[
ε∗a−s(k′)ε∗aΛ (q′)ε∗b−s′(k′)ε∗bΛ′(k′ − q′)A∗′Λ

(
q′, τ ′′

)
A∗′Λ′

(
k′ − q′, τ ′′

)
â†q

′

Λ â†k
′−q′

Λ′

+ ΛΛ′q′(k′ − q′)ε∗a−s(k′)ε∗aΛ (q′)ε∗b−s′(k′)ε∗bΛ′(k′ − q′)A∗Λ
(
q′, τ ′′

)
A∗Λ′

(
k′ − q′, τ ′′

)
â†q

′

Λ â†k
′−q′

Λ′

]〉
(B.4)

with the relations on 〈âq
λâ

k−q
λ′ â†q

′

Λ â†k
′−q′

Λ′ 〉 the two point function can be simplified into

〈
hs(k)hs′

(
k′
)〉

= 2
(2π)3

H4

m4
P

δ
(
k + k′

) ∫
dτ ′dτ ′′τ ′2τ ′′2Gk

(
τ, τ ′

)
Gk
(
τ, τ ′′

)
∫
d3q

±∑
λ,λ′

εl−s(k)εlλ(q)εm−s(k)εmλ′(k− q)ε∗a−s′(k)ε∗aλ (q)ε∗b−s′(k)ε∗bλ′ (k− q)

×
[
A′λ
(
q, τ ′

)
A′λ′

(
k− q, τ ′

)
+ λλ′q(k − q)Aλ

(
q, τ ′

)
Aλ′

(
k− q, τ ′

)]
×
[
A∗′λ

(
q, τ ′′

)
A∗′λ

(
k− q, τ ′′

)
+ λλ′q(k − q)A∗λ

(
q, τ ′′

)
A∗λ′

(
k− q, τ ′′

)]
.

(B.5)

As studied for the cosmological evolution during inflation, the gauge modes with + helicity
will be severely amplified and the negative solution will be suppressed. Taking A− ' 0
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we find

〈hs(k)hs′
(
k′
)
〉 =

2
(2π)3

H4

m4
P

δ
(
k + k′

) ∫
dτ ′dτ ′′τ ′2τ ′′2Gk

(
τ, τ ′

)
Gk
(
τ, τ ′′

)
∫
d3q εl−s(k)εl+(q)ε∗a−s′(k)ε∗a+ (q)εm−s(k)εm+ (k− q)ε∗b−s′(k)ε∗b+ (k− q)× (B.6){
A′+

(
q, τ ′

)
A′+

(
k− q, τ ′

)
A∗′+

(
q, τ ′′

)
A∗′+

(
k− q, τ ′′

)
+ q2(k − q)2A+

(
q, τ ′

)
A+

(
k− q, τ ′

)
A∗+

(
q, τ ′′

)
A∗+

(
k− q, τ ′′

)
+ q(k − q)

[
A+

(
q, τ ′

)
A+

(
k− q, τ ′

)
A∗′+

(
q, τ ′′

)
A∗′+

(
k− q, τ ′′

)
+A′+

(
q, τ ′

)
A′+

(
k− q, τ ′

)
A∗+

(
q, τ ′′

)
A∗+

(
k− q, τ ′′

) ]}
.

Assuming A+ (q, τ ′) = A+(q, τ)T (q, τ, τ ′) = Aτ+(q)Tq
τ,τ ′ and A′+(q, τ ′) = A′+(q, τ)T̄ (q, τ, τ ′)

= A′τ+(q)T̄q
τ,τ ′ , where T and T̄ are real functions. We can then write

〈
hs(k)hs′

(
k′
)〉

= 2
(2π)3

H4

m4
P

δ
(
k + k′

) ∫
dτ ′dτ ′′τ ′2τ ′′2Gk

(
τ, τ ′

)
Gk
(
τ, τ ′′

)
∫
d3q εl−s(k)εl+(q)ε∗a−s′(k)ε∗a+ (q)εm−s(k)εm+ (k− q)ε∗b−s′(k)ε∗b+ (k− q)×{
|A′+

(
q, τ ′

)
|2|A′+

(
k− q, τ ′

)
|2T̄q

τ ′,τ ′′ T̄
k-q
τ ′,τ ′′

+ q2(k − q)2|A+
(
q, τ ′

)
|2|A+

(
k− q, τ ′

)
|2 Tq

τ ′,τ ′′T
k-q
τ ′,τ ′′

+ q(k − q)
[
T̄q
τ ′,τ ′′ T̄

k-q
τ ′,τ ′′ A+

(
q, τ ′

)
A∗′+

(
q, τ ′

)
A+

(
k− q, τ ′

)
A∗′+

(
k− q, τ ′

)
+ Tq

τ ′,τ ′′T
k-q
τ ′,τ ′′A

′
+
(
q, τ ′

)
A∗+

(
q, τ ′

)
A′+

(
k− q, τ ′

)
A∗+

(
k− q, τ ′

) ]}
. (B.7)

The cross term between A and A′ can be written as

A+
(
q, τ ′′

)
A∗′+

(
q, τ ′′

)
=A

(R)
+
(
q, τ ′′

)
A′+

(R) (q, τ ′′)+A
(I)
+
(
q, τ ′′

)
A′+

(I) (q, τ ′′)
+ i

{
A

(I)
+
(
q, τ ′′

)
A′+

(R) (q, τ ′′)−A(R)
+
(
q, τ ′′

)
A′+

(I) (q, τ ′′)}
= Re[A+

(
q, τ ′′

)
A′∗+

(
q, τ ′′

)
] + i Im[A+

(
q, τ ′′

)
A′∗+

(
q, τ ′′

)
]. (B.8)

This imaginary contribution is obtained from the normalization of the wave function giving it
a constant value 1/2. With the proper renormalization one removes this vacuum contribution.
The last line in eq. (B.7) becomes

T̄q
τ ′,τ ′′ T̄

k-q
τ ′,τ ′′Re[Aq

+
(
τ ′
)
A′∗q

+
(
τ ′)
]
Re[Ak−q

+
(
τ ′
)
A′∗k−q

+
(
τ ′
)
]

+ Tq
τ ′,τ ′′T

k-q
τ ′,τ ′′Re[A′q+

(
τ ′
)
A∗q

+
(
τ ′
)
]Re[A′k−q

+
(
τ ′
)
A∗k−q

+
(
τ ′
)
] . (B.9)

To simplify the integration on q we use

∣∣∣εi−λ (p1) εi+ (p2)
∣∣∣2 = 1

4

(
1 + λ

p1 · p2
p1p2

)2
, (B.10)
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and the second line of eq. (B.7) becomes∫
d3q 1

16

(
1 + s

k · q
kq

)(
1 + s′

k · q
kq

)(
1 + s

k · (k− q)
k|k− q|

)(
1 + s′

k · (k− q)
k|k− q|

)
. (B.11)

As we are numerically solving the gauge mode equations of motion until the end of inflation,
with an unknown analytical solution, we will try to use the semi-analytical approach explained
in section 2 to obtain these correlation functions. Integrating until εH = 2 for several modes
we get the gauge mode amplitude and velocity spectrums where they are expected to be
at a maximum, just before the onset of a radiation dominated universe. Using the transfer
functions, T and T̄ we can relate both derivatives and gauge field amplitudes at a given time
τ to its values at the end of inflation and to write〈

hs(k)hs′
(
k′
)〉

=

2
(2π)3

H4

m4
P

δ
(
k + k′

) ∫
dτ ′dτ ′′τ ′2τ ′′2Gk

(
τ, τ ′

)
Gk
(
τ, τ ′′

)
∫
d3q 1

16

(
1+ s

k · q
kq

)(
1+ s′

k · q
kq

)(
1+ s

k · (k− q)
k|k− q|

)(
1+ s′

k · (k− q)
k|k− q|

)
×{

|A′ τe+ (q) |2|A′ τe+ (k− q) |2T̄q
τ ′,τe

T̄k-q
τ ′,τe

T̄q
τ ′′,τe

T̄k-q
τ ′′,τe

(B.12)

+ q2(k − q)2|Aτe+ (q) |2|Aτe+ (k− q) |2 Tq
τ ′,τe

Tk-q
τ ′,τe

Tq
τ ′′,τe

Tk-q
τ ′′,τe

+ q(k − q)
( ∣∣Aτe+ (q)A′∗ τe+ (q)

∣∣ ∣∣Aτe+ (k− q)A′∗ τe+ (k− q)
∣∣Tq

τ ′,τe
Tk-q
τ ′,τe

T̄q
τ ′′,τe

T̄k-q
τ ′′,τe

+
∣∣A′τe+ (q)A∗ τe+ (q)

∣∣ ∣∣A′τe+ (k− q)A∗ τe+ (k− q)
∣∣ T̄q

τ ′,τe
T̄k-q
τ ′,τe

Tq
τ ′′,τe

Tk-q
τ ′′,τe

)}
.

where to simplify the notation we have written Re[Aτe+ (q)A′∗ τe+ (q)] =
∣∣Aτe+ (q)A′∗ τe+ (q)

∣∣.
Using the results in eqs. (4.6) and (4.7) with the functions (4.8), (4.9) and (4.10) for

the amplitudes at the end of inflation we find the result in (4.11)

〈hshs′〉 = 2
(2π)3

H4

mP
4

(aeHe) 5

k8

∫ ∞
0

∫ ∞
0

dx1dx2 (sin x1 − x1 cosx1) (sin x2 − x2 cosx2)∫ ∞
0

dq̃

∫ 2π

0

2π
16 q̃

2dθ(1 + s cos θ)
(
1 + s′ cos θ

)
1 + s

1− q̃ cos θ
k̃√

1 + q̃2

k̃2 − 2 q̃
k̃

cos θ

1 + s′
1− q̃ cos θ

k̃√
1 + q̃2

k̃2 − 2 q̃
k̃

cos θ

 (B.13)

(q̃2(k̃ − q̃)2 |Aend (q̃)|2
∣∣∣Aend

(
k̃ − q̃

)∣∣∣2 T x1
q̃ T x2

q̃ T x1
k̃−q̃T

x2
k̃−q̃

+
∣∣A′end (q̃)

∣∣2 ∣∣∣A′end

(
k̃ − q̃

)∣∣∣2 T̄ x1
q̃ T̄ x2

q̃ T̄ x1
k̃−q̃T̄

x2
k̃−q̃

+ q̃(k̃ − q̃)|AA′end (q̃) |
∣∣∣AA′end

(
k̃ − q̃

)∣∣∣ (T x1
q̃ T̄ x2

q̃ T x1
k̃−q̃T̄

x2
k̃−q̃ + T x2

q̃ T̄ x1
q̃ T x2

k̃−q̃T̄
x1
k̃−q̃)) ,

where x = −kτ and q̃ = q/(aeHe).
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Figure 9. Comparison of the spectral energy density for the GW’s produced from the tachyonic
amplification estimated by the semi analytical method described with eqs. (4.11) and (4.12) in the
cases of an α-attractors (solid) and quartic inflationary potentials (dashed).

C Comparison with a chaotic quartic potential

In this section we compare the results on the GW spectrum with quartic inflationary
potential V (φ) = λφ4/4. It has been shown that an α-attractor potential V (φ) =
(9λ/4) tanh4[φ/(

√
6mP )]m4

P at the end of inflation and reheating coincides with the behavior
from the quartic case [62, 64]. There is a natural assumption that a tachyonic production
of gauge fields centered at the end of inflation would lead to similar characteristics of the
spectrum of the vector modes and the signal with gravitational waves. In figure 9 we see
which properties can be kept in the GW spectrum with the inflation model dependency in
the cases with backreaction effects.

In essence we approximately retain the peak frequencies and somehow a similar shape
for the spectrum. Nevertheless, for a quartic scenario, since during the earlier stages of
inflation one finds larger inflaton velocities we have broader spectrums as the lower k modes
are more amplified, see figure 10. On the other hand, the vector modes in the α-attractor
case have a higher peak, revealing a larger amplification at the end of inflation. The final
GW spectrum will also depend on the time evolution of each vector mode.

We can also compare the upper bound obtained for the maximum amplitude to avoid
the BBN bound, see figure 11.

We realize that in the α-attractor scenario, in the no-backreaction limit, higher am-
plitudes for the gauge fields can be obtained without touching the BBN ceiling. This can
possibly be explained due to an amplification concentrated closer to the peak, as described
in figure 10, and only realized very close to the end of inflation, as seen from the ξ evolution
in figure 3.
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Figure 10. Comparison of the electric field |A′(k)|2 spectrum generated from the tachyonic amplifi-
cation in the cases of an α-attractors (solid) and quartic inflationary potentials (dashed).
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Figure 11. Comparison of the BBN bound on the amplitudes of the electric field |A′(k)|2 in the
cases of an α-attractors and quartic inflationary potentials.
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