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Nelson-Barr models solve the strong CP problem based on spontaneous CP violation and generically
require vectorlike quarks (VLQs) mixing with standard quarks to transmit the CP violation. We devise an
explicit parametrization for the case of two VLQs of either down or up type and quantitatively study several
aspects including the hierarchy of the VLQ Yukawas and their irreducible contribution to θ̄. In particular,
with the use of the parametrization, we show that a big portion of the parameter space for two up-type
VLQs at the TeV scale is still allowed by the constraint on θ̄, although this case had been previously shown
to be very restricted based on estimates.
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I. INTRODUCTION

The only source of CP violation in the standard model
(SM) measured so far is a single phase δCKM [1] residing in
the Yukawa couplings of quarks and the Higgs, hence it
manifests only in flavor violating phenomena. The meas-
urement of a similar phase in the leptonic sector is one of the
major goals of planned neutrino oscillation experiments. In
contrast, a flavor conserving source of CP violation exists,
in principle, in the SM in the form of the θ̄ term of QCD.
However, the nonobservation of the electric dipole moment
of the neutron constrains this parameter to be tiny: θ̄ ≲
10−10 [2,3]. Why this is so constitutes the strong CP
problem.
The only known avenue to solve this problem without

introducing an axion is to assume thatCP [4–6] (or P [7]) is
a fundamental symmetry of nature that is spontaneously
broken. The challenge is to arrange this breaking to
generate an order one δCKM but to suppress θ̄ sufficiently.
The best known examples with CP are based on the

Nelson-Barr [5,6] idea, which guarantees vanishing θ̄ at
tree level. Then higher order corrections must be suffi-
ciently suppressed. Corrections may already show up at one
loop [8], although it may be postponed to two loops by
using a nonconventional CP symmetry [9]. Recent pro-
posals based on spontaneously broken CP can be found in
Refs. [10–14].
In the Nelson-Barr setting, the spontaneous breaking of

CP is transmitted to the SM through the mixing of SM
quarks with heavy vectorlike quarks (VLQs). These were
denoted as VLQs of Nelson-Barr type (NB-VLQs) in
Refs. [15,16]. It is possible to keep the typical corrections
to θ̄ that appear at one or two loops under control if we
suppress the couplings of the CP breaking scalars to these
NB-VLQs or to the SM Higgs. There are, however,
corrections at three loops that cannot be arbitrarily sup-
pressed because they depend only on the Yukawa couplings
of NB-VLQs to the SM [17], the same ones carrying theCP
violation.
Quite similar to the axion solution, the Nelson-Barr

solution also suffers from a quality problem [18–20] that
requires that the CP breaking scale ΛCP cannot be arbi-
trarily high. On the other hand, the stability of the domain
walls from spontaneous breaking of the exact CP symmetry
[21] requires that inflation takes place before CP breaking
and this constraint leads to a number of cosmological
implications [20]. Additional gauge symmetries [14,20],
supersymmetry [19], or strong dynamics [13] can improve
the quality and allow higher values for ΛCP.
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In contrast to the CP breaking sector, the NB-VLQs that
mediate the CP breaking may lie at much lower energies,
constrained to be above the TeV scale from collider
searches. To comply with the Barr criteria [6], the NB-
VLQs can only be electroweak singlets or doublets, in the
same representations of SM quarks. The case of doublets
was argued to lead to too large corrections to θ̄ [22].
We have analyzed in Ref. [15] the case of one singlet
by devising an explicit parametrization for the beyond
the standard model (BSM) parameters. We have found
that these VLQs typically couple to the SM quarks and
Higgs following the hierarchy of the Cabibbo-Kobayashi-
Maskawa (CKM) last row or column, a feature that
alleviates the strongest flavor constraints that apply to
the first two quark families [15,16]. In Ref. [17], irreduc-
ible three-loop contributions to θ̄ were analyzed through
the construction of CP odd invariants and were estimated
in terms of SM Yukawas and mixing. It was shown that
the case of two or more singlet up-type NB-VLQs was
severely constrained by these contributions to θ̄.
Here we analyze in more detail the case of two or more

singlet NB-VLQs of either down or up type. In particular,
for two VLQs, we devise an explicit parametrization that
allows us to explore the large parameter space. In particular,
the case of two NB-VLQs covers the case of vanishing θ̄ at
one loop protected by nonconventional CP [9]. By being
quantitative, we show that the VLQ Yukawa couplings
typically follow the same hierarchies of the single VLQ
case, but with a possible variation that can be mapped out.
In particular, we show that the invariants estimating the
three-loop contributions to θ̄ for two NB-VLQs of up type
still allow for TeV scale VLQs.
The outline of this article is as follows. In Sec. II, we

review the model of singlet NB-VLQs. Section III reviews
the explicit parametrization for one NB-VLQ and analyzes
several aspects of the model, including the case of special
points where the VLQ Yukawa coupling may vanish for
some flavors. In Sec. IV, we describe the explicit para-
metrization for the case of two NB-VLQs and quantita-
tively study several aspects of the model, including the
hierarchy of Yukawa couplings and heavy mass matrices.
The implications to the invariants of three-loop contribu-
tion to θ̄ are also shown. We summarize in Sec. V and the
Appendixes contain auxiliary results.

II. REVIEW OF THE MODEL

We define down-type singlet VLQs of Nelson-Barr type
BaL; BbR, a; b ¼ 1;…; nB, through the Lagrangian [15]

−L ¼ q̄iLYd
ijHdjR þ q̄iLYu

ijH̃ujR

þ B̄aLMBd
aj djR þ B̄aLMB

abBbR þ H:c:; ð1Þ

where they couple to the SM quark doublets qiL and singlets
djR; ujR, i, j ¼ 1, 2, 3. The definition requires that Yu, Yd

are real 3 × 3 matrices,MB is a real mass matrix, and only
MBd is a complex matrix. This structure follows from CP
conservation and a Z2 symmetry1 under which only BL;R

are odd, and only MBd breaks CP and Z2 softly (sponta-
neously), realizing the Nelson-Barr mechanism that guar-
antees θ̄ ¼ 0 at tree level [5,6]. When not specified, we use
the basis where Yu ¼ Ŷu is diagonal, with a hat denoting
diagonal matrices.
In contrast, generic down-type VLQs are customarily

described by the Lagrangian

−L ¼ q̄iLYd
ijHdjR þ q̄iLYu

ijH̃ujR

þ q̄iLYB
iaHBbR þ B̄aLMB

abBbR þ H:c:; ð2Þ

where MB is expected to be much larger than the electro-
weak scale. We usually assume the basis where Yu ¼ Ŷu is
diagonal. We have shown in Ref. [15] that one more free
parameter is needed compared to the case of one NB-VLQ.
Hence, the NB case is just a subcase and when the
Lagrangian (1) is rewritten in the form (2), the various
parameters cannot be independent and correlations neces-
sarily appear [15]. Especially, for one VLQ, only one CP
violating parameter controls all CP violation in the NB
case, while the generic case depends on three CP violating
parameters [23,24].
Similarly, singlet up-type NB-VLQs TaL; TbR, a; b ¼ 1;

…; nT , are defined by the Lagrangian [15]

−L ¼ q̄iLYd
ijHdjR þ q̄iLYu

ijH̃ujR

þ T̄aLMTu
aj ujR þ T̄aLMT

abTbR þ H:c:; ð3Þ

with only MTu being complex, while generic up-type
VLQs can be described by

−L ¼ q̄iLYd
ijHdjR þ q̄iLYu

ijH̃ujR

þ q̄iLYT
irH̃TaR þ T̄aLMT

abTbR þ H:c: ð4Þ

Usually we assume the basis where Yd ¼ Ŷd and Yd ¼ Ŷd.
In most cases, to translate the result from down-type VLQs
to up-type VLQs, we just need to relabel d ↔ u and
B → T. So wewill often omit the up-type case and write the
explicit expressions only when necessary. When the dis-
tinction between down and up type is unimportant, we will
also use n instead of nB or nT for the number of VLQs.
The changing of basis from (1) to (2) can be performed

analytically rotating only in the space ðdR; BRÞ. One simple
choice leads to2

1A larger Zn or Uð1Þ are also possible [19].
2These relations were also given in Ref. [17], except for the

last one.
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Yd ¼ Ydð13 − ww†Þþ1=2; ð5aÞ

YB ¼ Ydw; ð5bÞ

MB ¼ MBð1n − w†wÞ−1=2; ð5cÞ

where

w ¼ w̃ð1n þ w̃†w̃Þ−1=2; w̃† ¼ MB−1MBd: ð6Þ

See Appendix A for the details. Changing basis from (3) to
(4) is analogous after relabeling d → u; B → T in (5). We
can also write in implicit form,

w† ¼ MB−1MBd: ð7Þ

For rotation in two dimensions, i.e., one SM family and one
VLQ, we could write w ¼ sin θ, while w̃ ¼ tan θ for some
angle θ.
The relations (5) make more explicit the correlation

between the SM Yukawa Yd and the VLQ Yukawa YB for
the case of NB-VLQs. In the generic case, these Yukawas
are independent, but for the NB-VLQ case, where (5) is
valid, they depend on common parameters with one less
parameter in total.
In order to eliminate the dependence on the unphysical

rotation in dR space, we can rewrite the relation (5a) as

YdYd† ¼ Ydð13 − ww†ÞYdT

: ð8Þ

Therefore, in leading order, the latter is determined from
SM input,

YdYd† ¼ VdLdiagðy2d; y2s ; y2bÞV†
dL
; ð9Þ

where VdL is the CKM matrix in the SM,

VdL ¼ Vsm
ckm; ð10Þ

in the basis where Yu is diagonal. One can see that the only
complex quantity on the right-hand side of (8) is w
(equivalently, MBd) which should generate the CP viola-
tion in the CKM, typically requiring order one w [15,17].
For up-type VLQs, Eq. (8) is rewritten as

YuYu† ¼ Yuð13 − ww†ÞYuT; ð11Þ

while (9) leads to

YuYu† ¼ VuLdiagðy2u; y2c; y2t ÞV†
uL : ð12Þ

The relation (10) between the diagonalization matrix and
the CKM matrix is modified to

V†
uL ¼ Vsm

ckm; ð13Þ

in the basis where Yd is diagonal.
For NB-VLQs, given the structure of (8) or (11), which

cannot be rephased, additional phases need to be taken into
account in VdL or VuL. So if we use a fixed parametrization
for the CKM, we need to modify (10) or (13) to

VdL ¼

0
BB@

1

eiβ1

eiβ2

1
CCAVsm

ckm; or

V†
uL ¼ Vsm

ckm

0
BB@

1

e−iβ1

e−iβ2

1
CCA: ð14Þ

We will often omit the phases β1, β2 when not relevant. For
generic VLQs, these phases can be transferred to the
Yukawas YB or YT, but for NB-VLQs the relation (5b)
forbids that.
Now let us use Eq. (5) to relate the SM Yukawa with the

VLQ Yukawa as

YB ¼ Ydw̃: ð15Þ

Naively, it seems that YB inherits the hierarchy of the SM
Yukawa Yd. However, since the diagonalizing matrix from
the right of Yd is unphysical, the relation is not so precise.
For one NB-VLQ of down type, its Yukawa couplings
typically follow the hierarchy of the CKM [15],

jYB
1 j∶jYB

2 j∶jYB
3 j ∼ jVubj∶jVcbj∶jVtbj ∼ 0.0036∶0.04∶1:

ð16Þ

For comparison, this is the exact hierarchy in the case
where one VLQ couples exclusively with the third family.
For one up-type NB-VLQ, we analogously have

jYT
1 j∶jYT

2 j∶jYT
3 j∼ jVtdj∶jVtsj∶jVtbj∼0.0085∶0.04∶1: ð17Þ

These properties roughly carry over to more than one
NB-VLQs as we will see. So this kind of hierarchy largely
renders the model flavor safe, as the most restrictive flavor
constraints of flavor changing among the first and second
families are naturally suppressed. We should note, however,
that the hierarchies (16) or (17) refer to typical values and
they can be badly violated for special points [25]. We will
also study how typical these properties are.
For future convenience, let us note that

Yd−1YB ¼ w̃ ¼ ðMB−1MBdÞ† ð18Þ
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is the ratio between the CP violating contribution MBd

(mass) and the CP conserving bare mass MB of the
NB-VLQs [17]. In terms of the diagonalized Yukawa matrix

Yd ¼ VdLŶ
dV†

dR
; ð19Þ

we obtain

Yd−1YB ¼ VdRðŶdÞ−1V†
dL
YB ¼ VdRðŶdÞ−1ỸB: ð20Þ

We have also incorporated the mixing matrix VdL into Y
B as

ỸB ≡ V†
dL
YB; ð21Þ

where the Yukawa YB is defined in the basis where Yu ¼ Ŷu.
In the basis of trivial VdR , we can finally define

Rd ≡ ðŶdÞ−1ỸB: ð22Þ

This is the ratio between the Yukawas of the VLQ and
the Yukawas of the SM quarks. The analogous quantity for
up-type NB-VLQs is

Ru ≡ ðŶuÞ−1ỸT; ð23Þ

where ỸT is analogous to (21) with YT being the Yukawa
in the basis where Yd ¼ Ŷd. Note that the quantities
(20) and (22) differ componentwise but their norms3

are the same,

jYd−1YBj ¼ jRdj; jYu−1YT j ¼ jRuj: ð24Þ

In the last equation, we showed the similar relation for
up-type quantities.
At last, we can summarize the deviations that appear

below the weak scale. For both generic VLQs and
NB-VLQs, we can use the same basis as (2) and (4)
where a small mixing between BaL (TaL) and diL (uiL) is
induced by YB (YT). In leading order, the mixing matrix V
that appears in the couplings to W is

down-typeVLQs∶ V ≈ Vsm
ckm

�
13 − 1

2
ΘdΘ†

d Θd

�
;

up-typeVLQs∶ V ≈
�
13 − 1

2
ΘuΘ

†
u

Θ†
u

�
Vsm
ckm; ð25Þ

which are, respectively, of size 3 × ð3þ nÞ and
ð3þ nÞ × 3. The coupling to Z depends on Xd ¼ V†V
or Xu ¼ VV†. At this order, all deviations depend on the
mixing between SM quarks and VLQs, quantified by the
matrices

Θd ≡ vffiffiffi
2

p ỸBMB−1;

Θu ≡ vffiffiffi
2

p ỸTMT−1: ð26Þ

If the VLQ mass matrix MB (or MT) is not diagonal,
further rotation on the spaces BaL; BaR (TaL; TaR) might be
necessary.

III. ONE VLQ

Here we consider the case of one VLQ, which can be of
down or up type. For comparison with [17], we will make
use of the quantity Rd in (22) or Ru in (23), which have size
Rd ∼ Ru ∼ 3 × 1 for one VLQ. We recall that their norm is
the ratio between the VLQ bare mass and the row matrix
that controls the mixing among VLQs and standard quarks;
cf. (18).

A. Explicit parametrization

Here we briefly sketch the explicit parametrization found
in Ref. [15]. This parametrization manages to incorporate
the 10 parameters of the SM flavor sector (six quark masses
and four parameters in Vsm

ckm), leaving five BSM parameters
free. The total number of parameters is 15. For example, the
Yukawa Lagrangian (1) for one down-type NB-VLQ
depends on 3 parameters in the up sector and 12 in the
down sector. The up quark Yukawa couplings are deter-
mined and we only need to treat the 12 parameters of the
down sector.
Focusing on one NB-VLQ of down type, we basically

need to invert (8) and find Yd and w in terms of YdYd†. The
latter is used as input, with seven parameters fixed from the
SM, whereas the phases β1, β2 in (14) are free. For w we
choose the basis where

w ¼

0
B@

0

ib

a

1
CA; ð27Þ

where b < a, a2 þ b2 < 1, with free b∈ ½0; 1= ffiffiffi
2

p � and
a fixed by other parameters [15]. The inversion is
performed by

Yd ¼ ½ReðYdYd†Þ�1=2Odiagð1;
ffiffiffiffiffiffiffiffiffiffiffiffi
1− b2

p
;
ffiffiffiffiffiffiffiffiffiffiffiffi
1− a2

p
Þ; ð28Þ

where O ¼ ðe1je2je3Þ is a real orthogonal matrix deter-
mined from YdYd†, with an additional free angle γ; the
vector e1 is the eigenvector of zero eigenvalue of
Λ−1=2
1 ImðYdYd†ÞΛ−1=2

1 for Λ1 ¼ ReðYdYd†Þ. We are left
with the following five free parameters:3For matrices, we use the Frobenius norm: jAj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½AA†�

p
.
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fMB; b; γ; β1; β2g; ð29Þ

where MB is the VLQ mass.

B. Perturbativity and CP violation transmission

Here we discuss the theoretical constraints on the VLQ
Yukawa couplings [15,17]. On the one hand, they cannot be
arbitrarily large if we require perturbativity. On the other
hand, they cannot be arbitrarily small as the transmission of
the CP violation to the CKM matrix depends on them.
To be explicit, we require for perturbativity,

jỸB
i j < 4π; jỸT

i j < 4π; ð30Þ

for each component. For two or more VLQs, these relations
are extended to all components,

jỸB
iaj < 4π; jỸT

iaj < 4π; ð31Þ

where a ¼ 1;…; n runs over the VLQs.
Let us see how the perturbativity constraint affects the

quantity Rd in (22) or Ru in (23), noting that their norms are
the same as the norms of Yd−1YB or Yu−1YB, respectively;
cf. (24). To analyze that, we show in Fig. 1 (left) the
components jYB

i j as a function of jRdj ¼ jYd−1YBj. The up-
type case is shown on the right figure. In dashed lines we
show ybjVibj, i ¼ t, c, u, and we clearly see that the Yukawa
couplings YB

i typically obey the hierarchy (16) of the third
column of the CKM matrix. Analogously, on the right, we
see the hierarchy (17) of the third row of the CKM matrix.
The dark shaded area denotes the perturbativity constraint
(30) applied to YB

i instead of ỸB and analogously for YT
i .

We see that such a constraint is relevant only for the up-
type VLQ.

The perturbativity constraint (30) implies for the third
component

jRd
3j ¼

���� 1yb ỸB
3

����≲ 4π

yb
∼ 900; ð32Þ

where we use the running Yukawa couplings of the SM at
the TeV scale [26]. Since ỸB

i is just YB
i rotated by the

CKM, the typical hierarchy of ỸB
i will be roughly the same

as (16). Considering that the hierarchy of the down quark
Yukawas are stronger than jVibj, the constraint on (32) will
be the strongest. To be more precise, we will see in Sec. III
C that the typical hierarchy for the components of Rd will
be Rd ∼ ð10; 2; 1Þ. Then we can convert the constraint on
the norm,

jRdj ∼
ffiffiffiffiffiffiffiffi
105

p
jRd

3j≲ 9200: ð33Þ

This is roughly the value in Fig. 1 attained by jYd−1YBj
when jYB

3 j reaches the perturbativity limit (dark shaded
region).
Similarly, for an up-type VLQ,

jRu
3j ¼

���� 1yt ỸT
3

���� < 4π

yt
∼ 14: ð34Þ

The typical hierarchy Ru ∼ ð1000; 10; 1Þ, studied in the
next section, leads to

jRuj≲ 1.4 × 104: ð35Þ

This is also roughly the value in Fig. 1 attained by jYu−1YT j
when jYT

3 j reaches the perturbativity limit (dark shaded
region).

FIG. 1. Components (i ¼ 3, 2, 1, in yellow, green, and blue, respectively) of the VLQ Yukawas for n ¼ 1 as a function of jRdj ¼
jYd−1YBj or jRuj ¼ jYu−1YT j. The dashed lines show ybjVibj, i ¼ t, c, u (left) and ytjVtij ∼ jVtij, i ¼ b, s, d (right). The dark shaded
areas denote the perturbativity constraint (30). The light shaded areas are valid for MB ¼ 1.2 and MT ¼ 1.3 TeV, and they go up
inversely proportional with the mass; see Sec. III E.
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Now, let us turn to the lower bound on jRdj (or jRuj). It
comes from the requirement that the imaginary part of w̃ ¼
Yd−1YB must attain a minimum value in order to allow the
correct generation of complex CKM. This can be under-
stood by rewriting (8) as

Yd−1YdYd†YdT−1 ¼ 13 − ww† ¼ ð13 þ w̃w̃†Þ−1; ð36Þ

that is,

YdTðYdYd†Þ−1Yd − 13 ¼ w̃w̃†: ð37Þ

One can never eliminate completely the left-hand side by
multiplying the real matrix Yd to the complex matrix
ðYdYd†Þ−1. So there must be a minimum value for the norm
of w̃ on the right-hand side. In Ref. [15], we have used a
similar reasoning to extract the minimum amount of flavor
changing neutral current (FCNC). In Ref. [17], this
constraint was estimated to extract the minimum value
for jw̃j ¼ jRdj.
Here, instead, we use our parametrization to directly

extract the lower bound from Fig. 1. We also update the
estimates for the perturbativity bounds in (33) or (35) from
the figure, noting that some variation beyond the typical
behavior can be clearly seen. Collecting these bounds from
the figure, we obtain

2≲ jRdj≲ 104;

30≲ jRuj≲ 3 × 105: ð38Þ

These values differ from Ref. [17] even if we translate
them from component to norm and also correct for the
different hierarchy we find for jRij in (39). This difference
stems in part from the use of our general parametrization
which captures in more detail the possible variation of the
parameters.

C. Hierarchy of Ri

Here we study the hierarchy of the quantity Ri defined
in (22) or in (23). They depend on the known Yukawa
couplings Ŷd or Ŷu and on the unknown Yukawa couplings
YB
i or YT

i .
The VLQ Yukawa couplings with the SM quarks YB or

YT were shown in the previous section to typically follow
the hierarchy of the CKM matrix in (16) or (17). However,
the deviation from these typical values may be larger than
an order of magnitude, so that simple estimates of the
hierarchy for Ri may not be reliable. So we use the explicit
parametrization described in Sec. III A to study the hier-
archy of Ri. In Fig. 2, we show randomly generated points
of the ratio Ri=R3 against the parameter b. Typically, with a
large variation, we see a mild hierarchy for a down-type
NB-VLQ and a larger hierarchy for an up-type NB-VLQ,

jRd
1j∶jRd

2j∶jRd
3j ≈ 10∶2∶1;

jRu
1j∶jRu

2j∶jRu
3j ≈ 103∶ 10∶1: ð39Þ

Notice that the definition (22) or (23), combined with the
typical hierarchy (16) or (17), leads to similar values for the
up-type case, but it underestimates jRd

1j.

D. Invariants estimating θ̄

The CP violation of a model can be quantified through
invariants that are defined by a combination of the CP
violation sources of that model and are independent of the
reparametrization of their fields. In the SM, the unique
experimentally measured CP violation is described by the
Jarlskog invariant [27].
In Nelson-Barr models, θ̄ is arranged to vanish at tree

level [5,6], but loop corrections may arise already at the
one-loop level [8]. These corrections, however, may be
arbitrarily suppressed by suppressing one or both of the
following couplings: the Yukawa coupling between SM
quarks and VLQs or the scalar portal couplings between the
CP violating scalar(s) and the SM Higgs.

FIG. 2. Ratios of Ri=R3 in (22) quantifying the strength of the Yukawa coupling to the NB-VLQ compared to the SM Yukawas.
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However, we have shown in [15] that the Yukawa
couplings between the SM quarks and the VLQs cannot
be arbitrarily small, as full decoupling of the VLQs would
not provide the SM with the necessary CP violation.
Therefore, as shown in Ref. [17], there are irreducible
and nondecoupling contributions, first appearing at three
loops, that depend solely on these Yukawa couplings. These
contributions were estimated through the construction of
CP odd flavor invariants. For a single down-type and a
single up-type VLQ, the leading order invariants with fewer
SM Yukawas insertions were shown to be [17]

Id1;0 ≡ ðYB†½YdYd†; YuYu†�YBÞ;
Iu1;0 ≡ ðYT†½YdYd†; YuYu†�YTÞ: ð40Þ

These invariants provide an estimate for θ̄ within an order of
magnitude, since order one prefactors are expected in a
calculation within a full model.
Let us review the estimates given in Ref. [17] for the

three-loop contribution to θ̄ coming from the invariants
(40). For a single down-type VLQ, the estimate is

θ̄ ∼
�

1

16π2

�
3

ImðId1;0Þ;

∼
λ2Cy

2
t y3bys

ð16π2Þ3
jRdj2
3

;

≈ 6 × 10−18
jRdj2
3

; ð41Þ

where λC ∼ 0.23, while for a single up-type VLQ, the
estimate is

θ̄ ∼
�

1

16π2

�
3

ImðIu1;0Þ;

∼
λ2Cy

2
by

3
t yc

ð16π2Þ3 ImðRu
2R

u�
3 Þ;

∼ 5 × 10−15λ2C
jRuj2
2

: ð42Þ

We are including the factor 1=3 in (41) because Ref. [17]
considers that Rd

i have all the components of the same
order, i.e.,

jRd
1j∶jRd

2j∶jRd
3j ≈ 1∶1∶1; ð43Þ

and considers the dependence with respect to one of these
generic components, while we are considering the depend-
ence on the norm jRdj. Similarly, in (42), the factors λ2C=2
appear because Ref. [17] considers

jRu
1j∶jRu

2j∶jRu
3j ≈ 1∶1∶λ2C; ð44Þ

and we are adapting the dependence on the component jRu
2j

to the norm jRuj.
However, by using our parametrization of Sec. III A, we

can generate points to test the properties (43) and (44). The
result, which is shown in Fig. 2, clearly demonstrates that
the ratios jRij=jR3j are typically very different. We can see
that typically the ratios are closer to (39).
If we adopt these values in the estimates of (41) and (42),

we obtain

�
1

16π2

�
3

ImðId1;0Þ ≈ 6 × 10−18
jRdj2
10

;�
1

16π2

�
3

ImðIu1;0Þ ≈ 5 × 10−20jRuj2: ð45Þ

FIG. 3. Dominant invariant contributing to θ̄ as a function of jðYqÞ−1YQj ¼ jRqj for NB-VLQ of down (q ¼ d,Q ¼ B) and up (q ¼ u,
Q ¼ T) types. The dark blue is for MB ¼ 1.2 TeV (MT ¼ 1.3 TeV), while the light blue is for MB ¼ 12 TeV (MT ¼ 13 TeV). The
green and yellow points refer to special points, cf. Sec. III F, with the same light/heavy masses.
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We see that the estimate of ImðId1;0Þ is corrected by an order
one factor but, in contrast, ImðIu1;0Þ is corrected by a very
suppressed factor 1=5300.
In fact, one can see in Fig. 3 that these corrected

estimates are in excellent agreement with the randomly
generated points. The figure shows 1010θ̄ as a function of
jRdj or jRuj and these estimates can be seen in the dashed
lines. The randomly generated points are given in dark blue
(M ∼ TeV) and light blue (M ∼ 10 TeV).

E. Flavor and electroweak constraints

In general, the presence of VLQs induce modifications
of flavor observables. Particularly relevant are FCNCs
generated by the Z exchange and the inclusion of VLQs
in box diagrams due to their mixing with the SM quarks.
Therefore, there are stringent bounds that models with
VLQs must pass, in general. In the case of VLQs of down
type, a global fit was performed rendering allowed regions
for the products of Yukawas couplings connecting the VLQ
and the SM quarks [16]. As a by-product, it was also
possible to extract upper limits for the transition between
the VLQ and up quarks induced by the W boson as below,

jVtBj ≤ 0.054;

jVcBj ≤ 0.0086;

jVuBj ≤ 0.013: ð46Þ
We will use these bounds in our plots, noting that, on the
Yukawas, they vary linearly with the VLQ mass as

ViB ≈
vffiffiffi
2

p
MB

YB
i ; ð47Þ

at leading order; cf. (25).
Regarding VLQs of up type, similar bounds can be

extracted. For the transition between the VLQ and the
bottom induced by theW boson, we will use the constraints
established in [28], where only mixing with third family
SM quarks was considered. For the product of Yukawa
couplings, bounds in terms of the VLQ mass can be found
in [29] where a plethora of flavor observables were
analyzed. Thus, in our plots we will use the following
constraints:

jVTbj ≤ 0.12;

jYT
3Y

T
1 j ≤

MT

25 TeV
;

jYT
3Y

T
2 j ≤

MT

6.4 TeV
;

jReðYT�
1 YT

2 Þj ≤
MT

42 TeV
;

jImðYT�
1 YT

2 Þj ≤
MT

670 TeV
: ð48Þ

Both constraints (46) and (48) are valid for VLQs at the
TeV scale.4 For VLQs with masses around 7 TeV or
heavier, box contributions with Higgs exchange start to
dominate as they lead to a different scaling in the mass as
Y4=M [29] for both B or T VLQs.

F. Special points

The NB-VLQs cannot decouple from the SM, as they
need to transmit the spontaneous CP violation to the other
sectors of the model. However, it is possible to eliminate
the coupling of NB-VLQ with a specific SM quark flavor
for special choices of the phases fβ1; β2g in (14), appearing
in CKM rephasing convention.5 This property was proved
in Ref. [25] for the similar case of vectorlike leptons
transmitting CP violation to the leptonic sector of the SM.
For the case of one NB-VLQ, these special choices lead to
one of the following patterns:

ðỸB
d ; Ỹ

B
s ; ỸB

b Þ¼ ð0;×;×Þ or ð×;0;×Þ or ð×;×;0Þ;
ðỸT

u ; ỸT
c ; ỸT

t Þ¼ ð0;×;×Þ or ð×;0;×Þ or ð×;×;0Þ: ð49Þ

By choosing one more free parameter appropriately, we can
further make two components of ỸB or ỸT vanish [25]. We
will not treat this subcase here.
For the case of one down-type (up-type) VLQ, the matrix

VdL (VuL ) is the matrix that diagonalizes YdYd† (YuYu†);
see Eq. (9). In the basis where Yu is diagonal for the down-
type VLQ (or Yd is diagonal for the up-type VLQ), these
diagonalizing matrices are related to the CKMmatrix of the
SM as

VdL ¼ Vsm
ckm ¼ ðv1jv2jv3Þ; ð50Þ

or

V†
uL ¼ Vsm

ckm ¼ ðv1jv2jv3Þ†: ð51Þ

We see that the vectors vi are the eigenvectors of the matrix
YdYd† or YuYu† in each case.
By rephasing rows (down type) or columns (up type) of

Vsm
ckm, we can always make one of the columns or rows vi

real. This is equivalent to choosing appropriate phases βi
in (14).
For illustration, to show the third pattern in (49), i.e.,

ðỸBÞ3 ¼ v†3Y
B ¼ 0, we need to show that YB is orthogonal

to v3. Let us choose v3 real, corresponding to having the
third row of the CKM matrix real. This implies that

4The first constraint in (48) comes from oblique parameters
S, T [28] for MT ¼ 1.3 TeV. For higher masses, the constraint is
tighter, but we neglect this weak variation.

5Unlike in the SM, these phases are physical in the presence
of VLQs.
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ReðYdYd†Þv3 ¼ y23v3; ImðYdYd†Þv3 ¼ 0: ð52Þ

As a result, using the notation ReðYdYd†Þ ¼ Λ1 and
ImðYdYd†Þ ¼ Λ2, the real vector v3 is also an eigenvector
of Λ−1=2

1 Λ2Λ
−1=2
1 with eigenvalue zero. So the first column

e1 of the orthogonal matrix O in (28) is either v3 or −v3.
Then,

v†3Y
d ¼ �y3ð1; 0; 0Þ: ð53Þ

Since YB ¼ Ydw and w in (27) is orthogonal to the vector
above, we obtain the desired property.
Although we can choose to eliminate other components

of ỸB, quantitatively, this is the case where we can see the
most significant difference because ỸB

3 tends to be hier-
archically larger for generic points. In Fig. 3 (left), we show
these special points with ỸB

3 ¼ 0 in green (MB ¼ 1.2 TeV)
and yellow (MB ¼ 12 TeV). We clearly see the values of
the estimate of θ̄ are highly suppressed compared to the
generic case (blue and cyan). On the right, we also show the
analogous case of ỸT

3 ¼ 0 for a similar value of masses and
the suppression is similar. This strong suppression is
sufficient to evade any experimental bound on θ̄.

IV. TWO OR MORE VLQs

We focus mainly on the case of n ¼ 2 VLQs of either
down or up type, but we treat the case of any n when
possible.
We will detail the parametrization for n ¼ 2 in the

following subsections, but we anticipate some results based
on it.
First, Fig. 4 (left) shows the norm

jYB
i j≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jYB

i1j2 þ jYB
i2j2

q
; ð54Þ

as a function of jYd−1YBj ¼ jRdj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ia jRd
iaj2

p
. The

figure on the right shows the same plot for two up-type
VLQs. For both cases, we clearly see a hierarchy of the
components that couple to each qiL following the hierarchy
of the CKM in (16) or (17), which are shown in dashed
lines. The typical Yukawa couplings are hierarchically
larger for the couplings with the heavier SM quark. The
perturbativity constraint (31) is shown in the dark gray
band. The red points are the ones filtered using the
dominant flavor or electroweak constraint, as explained
in Sec. IV E. The mass spectrum of the VLQs follow the
κ ¼ 1 case of Fig. 7, with μ0 ¼ 1.2 TeV (μ0 ¼ 1.3 TeV)
for down-type (up-type) VLQs. These values correspond
roughly to the lightest mass. The values for the Yukawa
couplings, however, do not change significantly if we
change the spectrum (μ0; κ).
To analyze the relative size of the Yukawa couplings YB

3a
to Ba, a ¼ 1, 2, we show in Fig. 5 (left) the values of jYB

31j
(blue) and jYB

32j (orange) as a function of jRdj. Note that we
conventionally order B1, B2 from lighter to heavier. We see
that the Yukawa couplings to B2 tend to be larger than to
B1. A similar plot for up-type VLQs is shown on the right,
where the coupling to T2 also tends to be larger than the
coupling to T1.
Finally, Fig. 6 (left) shows the ratio between the different

norms

jRd
i j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRd

1j2 þ jRd
2j2

q
ð55Þ

and jRd
3j as a function of the whole norm jYd−1YBj ¼ jRdj.

The plot on the right is the same plot for up-type VLQs.
We can see that jRij follows the same hierarchy for n ¼ 1
in (39); see Fig. 2.

FIG. 4. Left: norm jYB
i j, cf. (54), as a function of the norm jYd−1YBj ¼ jRdj for i ¼ 3, 2, 1, respectively, in yellow, green, and blue.

Right: similar plot for two up-type NB-VLQs. The dashed lines show ybjVibj, i ¼ t, c, u (left) and ytjVtij ∼ jVtij, i ¼ b, s, d (right). The
dark shaded areas denote the perturbativity constraint (31). The red points (right) are filtered with electroweak S, T; see Sec. IV E.
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A. Inversion formula

In Sec. III A we have reviewed the explicit parametriza-
tion devised in [15] for one NB-VLQ. Such a parametriza-
tion allowed us to use the ten SM flavor parameters as input
and vary the additional five free parameters. Here we want
to devise a similar way to use the SM parameters as input
and parametrize Yd or Yu.
Let us focus on the down-type VLQ model, cf. (1),

initially with an arbitrary number nB of VLQs. Three of the
ten SM parameters are fixed in the diagonal Yu ¼ Yu.
Another seven SM parameters should be accounted for in
the down sector including the VLQs. The task is then to
solve for Yd in (8), given the SM input in (9), with possible
additional phases in (14).
We first rewrite (8) as

13 − ww† ¼ Yd−1YdYd†Yd−1T: ð56Þ

Then, after defining the real and imaginary parts,

YdYd† ≡ Λ ¼ Λ1 þ iΛ2;

13 − ww† ≡Ω ¼ Ω1 þ iΩ2; ð57Þ

we separate the equation into the real and imaginary parts,

Ω1 ¼ Yd−1Λ1Yd−1T; ð58aÞ

Ω2 ¼ Yd−1Λ2Yd−1T: ð58bÞ

Note that Λ1, Λ2 are fixed from SM input, except for the
phases βi.
As Ω1 and Λ1 are real symmetric and positive definite,6

the real part (58a) can be solved for Yd as

Yd ¼ Λ1=2
1 OΩ−1=2

1 ; ð59Þ

where O is a real orthogonal matrix to be determined.
Plugging the form (59) into the imaginary part (58b)
leads to

Ω−1=2
1 Ω2Ω

−1=2
1 ¼ OTΛ−1=2

1 Λ2Λ
−1=2
1 O: ð60Þ

FIG. 5. Left: plot for jYB
31j and jYB

32j as a function of the norm jYd−1YBj ¼ jRdj. Right: similar plot for two up-type NB-VLQs.

FIG. 6. Ratios of jRij=jR3j in (55) quantifying the strength of the Yukawa coupling to the NB-VLQs compared to the SM Yukawas.

6Because Ω is positive definite to satisfy (56), then its real part
Ω1 is also positive definite.
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So O is a matrix that transforms the known antisymmetric
matrix on the right-hand side, function of Λ ¼ YdYd†, to
another one depending on w on the left-hand side.
Now we need to study how to parametrize Ω (or ww†)

considering that Ω is positive definite and 13 − Ω ¼ ww† is
positive semidefinite (ranks 1, 2, and 3, for nB ¼ 1, 2,
and nB ≥ 3).
We can try to simplify Ω by exploring the reparamet-

rization freedom

Ω → OT
dR
ΩOdR; ð61Þ

which comes from

w → OT
dR
w; Yd → YdOdR; ð62Þ

induced by dR → OdRdR. The matrixOdR is real orthogonal.
We can go to the basis where

O†
dR
ðww†ÞOdR ¼

0
@x1

x2
x3

1
A− i

0
B@

0 y3 −y2
−y3 0 y1
y2 −y1 0

1
CA

;ð63Þ

where xi, yj are real. The eigenvalues xi of the real part
are non-negative and we can choose the ordering
0 ≤ x1 ≤ x2 ≤ x3. Also, xi < 1 as Ω1 ¼ diagð1 − xiÞ is
positive definite. We avoid spurious cancellations and
assume rankðww†Þ ¼ minðnB; 3Þ. For nB ¼ 1, after a dis-
crete choice, it is guaranteed that x1 ¼ 0, y2 ¼ y3 ¼ 0, and
y21 ¼ x2x3; see Appendix B. The parametrization of Sec. III
A corresponds to x2 ¼ b2 and x3 ¼ a2. It is impossible that
more than one xi vanishes for a complex matrix.
We can now analyze (60), which can be rewritten as

ỹi ¼ bjOji detO; ð64Þ

after defining the vectors bk and ỹk as

ðΛ−1=2
1 Λ2Λ

−1=2
1 Þij ¼ ϵijkbk;

ðΩ−1=2
1 Ω2Ω

−1=2
1 Þij ¼ ϵijkỹk: ð65Þ

In the basis (63), we can find

ỹ1 ¼
y1

ð1 − x2Þ1=2ð1 − x3Þ1=2
; ð66Þ

and the other components follow from cyclic replace-
ment: 1 → 2 → 3.
Equation (64) tells us that the norm of ỹi should be equal

to the norm of bi and O should rotate one to the other.
Since the sign of detYd can be chosen positive by

eventually flipping dR → −dR, the solution (59) allows
us to choose detO ¼ 1. Let us denote by μ the norm,

μ≡ ffiffiffiffiffiffiffiffi
bibi

p
: ð67Þ

Note that this quantity is only a function of Λ and can be
calculated as

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

detðΛÞ
detðReðΛ1ÞÞ

s
; ð68Þ

see Appendix B. One can show that 0 < μ < 1 [15]. Then
the equality of norms can be written as

ỹ21 þ ỹ22 þ ỹ23 ¼ μ2: ð69Þ

Once ỹi is confined to this sphere, O can be found from
(64) as a rotation that connects it to bi, except for rotations
that leave bi invariant. We parametrize this freedom by an
angle γ, which only affects (59).
One difficulty is that not all the sphere in (69) is physical.

We need to ensure ww† ¼ 13 −Ω is positive semidefinite.
Let us first analyze the case where all xi ≠ 0. This covers
the case nB ≥ 3 and most of nB ¼ 2. We prove in
Appendix B that ỹi should be confined to the ellipsoid

ỹ21ð1 − x2Þð1 − x3Þ
x2x3

þ ỹ22ð1 − x1Þð1 − x3Þ
x1x3

þ ỹ23ð1 − x1Þð1 − x2Þ
x1x2

≤ 1: ð70Þ

The inequality is for nB ≥ 3 and the equality is for nB ¼ 2.
To have an intersection, the ellipsoid (70) cannot be
internal to the sphere (69) and then at least one of its
semiaxes needs to be larger than μ, so we need for the
largest semiaxis,

x2x3
ð1 − x2Þð1 − x3Þ

≥ μ2: ð71Þ

Note that the function fðxÞ ¼ x=ð1 − xÞ is a monotonically
increasing function in the interval [0, 1) with fð1=2Þ ¼ 1.
For x2 ¼ x3, the equality is achieved for x2 ¼ μ=ð1þ μÞ,
which is less than 1=2. If we introduce the shorthand
notation

fi ¼ fðxiÞ; ð72Þ

we can rewrite (71) as

f2f3 ≥ μ2: ð73Þ

On the other extreme, if the smallest semiaxis obeys
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f1f2 ≥ μ2; ð74Þ

then the whole sphere is allowed.
If x1 ¼ 0 (ỹ2 ¼ ỹ3 ¼ 0), then (69) implies that ỹ21 ¼ μ2.

As Ω becomes block diagonal, the condition (70) is
replaced exactly by (73) where the inequality is valid for
nB ¼ 2 and the equality is for nB ¼ 1. The case of
inequality restricts the region for ðx2; x3Þ in the unit square
ð0; 1Þ × ð0; 1Þ, restricted to x2 < x3.
Let us now specialize to nB ¼ 2. The subcase x1 ¼ 0was

treated above so we assume x1 > 0. If x1 > 0, we can
isolate f3 in (70) for the equality as

f3 ¼
1

f1f2 − ỹ23
ðf1ỹ21 þ f2ỹ22Þ; ð75Þ

which is a solution once f3 > 0 is ensured. Once ỹi is
restricted to the sphere (69), condition (71) is indeed a
necessity. Therefore, we need to know the values of f1, f2,
and all ỹi to determine f3. In the case of f1 and f2, we just
need to know the values of x1 and x2. As ỹi are restricted to
the sphere (69), we parametrize

ỹ1 ¼ μ sinðϕ2Þ cosðϕ1Þ;
ỹ2 ¼ μ sinðϕ2Þ sinðϕ1Þ;
ỹ3 ¼ μ cosðϕ2Þ: ð76Þ

Thus, x3 is determined from f3, which in turn is a function
of Λ and the parameters fx1; x2;ϕ1;ϕ2g.
Once x3 is determined, Ω1 is obtained from

Ω1 ¼ diagð1 − x1; 1 − x2; 1 − x3Þ: ð77Þ

Finally, Yd is determined from the inversion formula (59),
which depends on the SM parameters in Λ and additionally
on

fx1; x2;ϕ1;ϕ2; γ; β1; β2g: ð78Þ

For the case x1 ¼ 0, the additional parameters of the
inversion formula become

fx2; x3; γ; β1; β2g: ð79Þ

Let us check the number of parameters so far for nB ¼ 2.
In this case, there are 21 parameters in total, among which
ten must account for the SM flavor parameters. Three of the
latter are just the three up-type quark masses of the SM.
Another seven SM parameters reside inΛ. The remaining 11
parameters should be free, seven of which are listed in (78).
There are still four more parameters that are not needed for
Yd. We treat them in the following.

B. Additional parameters in w and MB

In Sec. IVA, to account for the SM flavor parameters in
YdYd† to describe Yd—the inversion formula—we have
chosen the basis (63) for ww†. However, additional param-
eters are still needed to describe w itself and this quantity
enters in YB in (5b). The rest of the parameters reside
in MB.
We first analyze w. Being a complex matrix of size

3 × nB, we can write the singular value decomposition of
w as

w ¼ UwŵV
†
w; ð80Þ

where Uw and Vw are 3 × 3 and nB × nB unitary matrices,
respectively. The matrixUw and the singular values in ŵ are
fully determined from the parameters xi, yi in (63), except
for rephasing of columns of Uw. This freedom will be
absorbed in V†

w. Then the parameters in V†
w are the

additional parameters in w.
Specializing now to nB ¼ 2, we use

ŵ ¼

0
B@

0 0

ŵ1 0

0 ŵ2

1
CA: ð81Þ

In the basis (2), rephasing of the fields BaR leads to
rephasing from the right to w and then to V†

w. So V†
w is

a 2 × 2 unitary matrix with rephasing freedom from the
right, and we can parametrize it using two additional
parameters,

V†
w ¼

 
eiψ2 cosðψ1Þ sinðψ1Þ
− sinðψ1Þ e−iψ2 cosðψ1Þ

!
: ð82Þ

We can now analyze MB ∼ nB × nB. In the original
basis (1), there is still freedom that allows us to choose
diagonal

MB ¼ M̂B ¼ diagðμ1; μ2;…; μnBÞ: ð83Þ

These parameters complete the number of parameters
and the mass matrix for the heavy VLQs is determined
from (5c). Note that the latter is nondiagonal and complex,
in general. For nB ¼ 2, we have two free mass parameters
μ1, μ2.
Hence, for nB ¼ 2, the four additional parameters that

are unnecessary for Yd are

fψ1;ψ2; μ1; μ2g: ð84Þ

These four parameters, together with the seven in Eq. (78)
that enters in Yd, complete the 11 free parameters besides
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the SM parameters. A similar analysis can be extended to
general nB.

C. Heavy mass matrix

In the parametrization described in Secs. IVA and IV B,
besides the SM parameters present in YdYd†, we use w and
diagonal MB as input. These quantities specify the
various parameters in the original Lagrangian (1): Yd

follows from the inversion formula (59), while MBd

follows from (6) or (7) as

MBd ¼ MBw̃† ¼ MBw†: ð85Þ

The mass matrix MB for the heavy VLQs is given by (5c).
Note that it is nondiagonal for diagonal MB. Here we
analyze the various relations between MB and the other
parameters.
Specifically, for nB ¼ 2, the parameters (78) are neces-

sary to parametrize Yd and ww†, while the ones in (84) are
additionally necessary to specify w and MB. We continue
the discussion below restricted to nB ¼ 2.
We can first parametrize the singular values in (81) in

terms of angles θi,

ŵi ¼ si ≡ sin θi; ð86Þ

with θi ∈ ½0; π=2�. Typically, these singular values are close
to unity and depend on the parameters xi, yi in (63). In
terms of θi, the matrix w̃ in (6) or (18) is

w̃ ¼ Yd−1YB ¼ Uw

0
B@

0 0

t1 0

0 t2

1
CAV†

w; ð87Þ

where ti ≡ tan θi and the matrices Uw, Vw are the same as
in (80). Typically ti ≫ 1. Note that its norm is the same as
the norm of Rd, cf. (24).

In the same way, the mass matrix (5c) for the heavy
VLQs becomes

MB ¼ M̂BVwdiag

�
1

c1
;
1

c2

�
V†
w; ð88Þ

where ci ≡ cos θi and Vw is parametrized as in (82).
For fixed values of μi in M̂B, we note that large values
of ti in (87) lead to large values of 1=ci inMB and it tends to
lead to larger VLQ masses.
Instead of μ1, μ2, we could equally use μ0; κ as

MB ¼ μ0diagðκ; κ−1ÞVwdiag

�
1

c1
;
1

c2

�
V†
w: ð89Þ

Using this form, we show in Fig. 7 (left) the singular values
for MB=μ0 for down-type VLQs. The analogous plot for
up-type VLQs are shown on the right. The darker points are
for fixed κ ¼ 1, while the lighter points are obtained by
varying κ∈ ½1; 100�. For the latter, choosing κ∈ ½0.01; 1�
instead leads to a similar result. For κ ¼ 1, we can see that
the lighter mass is approximately given by μ0, while the
larger mass increases with jRdj or jRuj. Relative to μ0, the
points in the plots also correspond to 1=c1; 1=c2 in (89).
Note the mass hierarchy for the up-type VLQs is stronger.
Incidentally, κ ¼ 1 corresponds to theCP4model proposed
in Ref. [9]. As κ is allowed to vary, we can see that the
masses get scattered around the values for κ ¼ 1 with
relative variation of the order of the maximum κ.

D. Invariants for θ̄ for n= 2

The invariants shown in (40), for one VLQ, only
involved two insertions of the VLQ Yukawa YQ, Q ¼ B,
T. With two or more families of VLQs, one can construct
invariants involving more insertions of YQ and insertions of
the SM up quark Yukawa Yu, but without the down quark
Yukawa Yd [17]. In principle, these invariants will lead to
larger estimates of θ̄, hence to more stringent constraints.

FIG. 7. VLQmassesMQ1
;MQ2

relative to μ0 in (89) against jðYqÞ−1YQj for NB-VLQ of down (q ¼ d,Q ¼ B) and up (q ¼ u,Q ¼ T)
types. The darker colors (dark blue and orange) refer to κ ¼ 1 and the lighter colors (cyan and yellow) refer to κ∈ ½1; 100�.
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Considering two or more NB-VLQs of either down or up type, Ref. [17] finds the following invariants as the dominant
ones for estimating θ̄:

down type nB ≥ 2∶
�

1

16π2

�
3

ImTrð½YB†YuYu†YB; YB†YB�FðMB†MBÞÞ;

up type nT ≥ 2∶
�

1

16π2

�
3

ImTrð½ỸT†
YuYu†ỸT; ỸT†

ỸT �FðMT†MTÞÞ; ð90Þ

where we use for the function F the form

FðMQ†MQÞ ¼ MQ†MQ

TrðMQ†MQÞ ; ð91Þ

for Q ¼ B, T. Note that for both invariants in (90), we are
adopting the basis where Yu ¼ Ŷu is diagonal and then, for
the up-type case, the VLQ Yukawa should be ỸT ; cf. (21).
The invariant above can be further estimated in terms of

SM Yukawas and jRdj or jRuj. These estimates can be
found in Ref. [17] but, similar to the n ¼ 1 case, the
hierarchy of the components of jRiaj were not correct.
Taking the correct typical hierarchy shown in Fig. 6, we can
correct the estimate in (90) for two down-type VLQs as

θ̄ ∼
λ2Cy

3
by

2
t ys

ð16π2Þ3
� jRdj
10

ffiffiffi
2

p
�

4

∼ 6 × 10−18
� jRdj
10

ffiffiffi
2

p
�

4

: ð92Þ

Similarly, the invariant for two up-type VLQs in (90) can be
estimated as

θ̄ ∼
y4t y2c

ð16π2Þ3
� jRuj
103

ffiffiffi
2

p
�

4

∼ 10−12
� jRuj
103

ffiffiffi
2

p
�

4

: ð93Þ

Here the factor
ffiffiffi
2

p
is specific for n ¼ 2.

We show in Fig. 8 (left) the invariant of the down type
in (90) as a function of jRdj. A similar plot for up-type VLQs
is on the right. For the masses, we fix κ ¼ 1 and choose two
values for μ0, one around 1 TeV (dark blue) and the other
one around 10 TeV (light blue). We filter through flavor and
electroweak observables discussed in Sec. IV E. We antici-
pate that their constraints are weaker for higher masses,
allowing one to estimate their impact by comparing the light
blue and dark blue regions. The estimate functions in (92)
and (93) are shown in dashed lines. The correctness of these
estimates can be checked as the lines pass through the
middle of the points. However, the scattered points show that
a large deviation from the estimate is possible, in some cases
of a few orders of magnitude.
We can see that for down-type VLQs, the constraint on

θ̄ is very weak. The flavor and electroweak constraints
(difference between light blue and dark blue) do not lead to
visible differences by changing μ0 ¼ 1.2 to μ0 ¼ 12 TeV.
In contrast, for up-type NB VLQs, θ̄ < 10−10 roughly
constrains half the points. Even if we consider that the
invariant (90) contributes to θ̄ with a prefactor of order 10,
there is still plenty of points that pass the constraints. As for
the flavor and electroweak constraints, we can see that more
points are allowed for the higher masses. Finally, the special
points that led to a large suppression on θ̄ for n ¼ 1,
cf. Fig. 3, are not present for n ¼ 2 and no significant

FIG. 8. Invariants (90) estimating three-loop contributions to θ̄ as a function of jðYqÞ−1YQj ¼ jRqj for NB-VLQ of down type
(q ¼ d, Q ¼ B) in the left plot and up type (q ¼ u, Q ¼ T) in the right plot. Dark blue points denote μ0 ¼ 1.2 TeV (μ0 ¼ 1.3 TeV),
while light blue points denote μ0 ¼ 12 TeV (μ0 ¼ 13 TeV) for the down type (up type). We fix κ ¼ 1. Dashed lines denote the estimates
(92) and (93).
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suppression is seen if we choose one column or row of CKM
real. So we do not show these points separately.

E. Flavor and electroweak constraints

For one VLQ of down type that couples exclusively with
the third family, one of the strongest constraints is given by
the measurement of Rb ≡ ΓðZ → bb̄Þ=ΓðZ → hadronsÞ
[30]. This constraint can still be applied with more than
one VLQ. In terms of Xbb, which enters in the neutral
current to the Z, we obtain the bound

Xbb − 0.2815ðXdd þ XssÞ ¼ 0.4381� 0.0017: ð94Þ

At leading order, we can write Xij ≈ δij − ðΘΘ†Þij, where
Θ is defined in (26). As can be seen in Fig. 4, the VLQ
Yukawa couplings to the third family are naturally stronger

and they are larger for larger jRdj. In the region of large
jRdj, for κ ¼ 1, Fig. 7 tells us that the hierarchy of masses
overcomes the mild hierarchy of YB

3a in Fig. 5, and we can
assume jΘ31j dominates in Xbb. For varying κ, the domi-
nance ofΘ31 is still valid. Therefore, (94) leads, at 2σ, to the
constraint

jΘ31j < 0.05: ð95Þ

This corresponds to jỸB
31j < 0.33 for MB1

¼ 1.2 TeV. This
is never achieved for jYB

31j ≈ jỸB
31j in Fig. 5 and this

constraint is satisfied for all points.
For an up-type VLQ coupling, exclusively with the third

family, the strongest constraint comes from the oblique
parameters S, T [30]. We can extend this constraint to two
up-type VLQs by using the expressions [31]

ΔS¼ 3

2π

h
ðjVtbj2− 1Þψðyt;ybÞþ jVT1bj2ψðyT1

; ybÞþ jVT2bj2ψðyT2
;ybÞ− jXT1tj2χðyT1

; ytÞ− jXT2tj2χðyT2
; ytÞ
i
;

ΔT ¼ 3

16πs2Wc
2
W

h
ðjVtbj2− 1Þθðyt;ybÞþ jVT1bj2θðyT1

; ybÞþ jVT2bj2θðyT2
; ybÞ− jXT1tj2θðyT1

;ytÞ− jXT2tj2θðyT2
;ytÞ
i
; ð96Þ

with the loop functions given by

χðy1; y2Þ ¼
5ðy21 þ y22Þ − 22y1y2

9ðy1 − y2Þ2

þ 3y1y2ðy1 þ y2Þ − ðy31 þ y32Þ
3ðy1 − y2Þ3

log
y1
y2

;

θðy1; y2Þ ¼ ðy1 þ y2Þ −
2y1y2
y1 − y2

log
y1
y2

;

ψðyα; yiÞ ¼
1

3
−
1

9
log

yα
yi

; ð97Þ

for yi ≡m2
i =m

2
Z.

Recently, the CDF Collaboration released a new analysis
for the W-boson measurement [32], which may signifi-
cantly modify the values of the oblique parameters S, T
(hereafter, we only consider the case ΔU ¼ 0) [33,34].
Since the main focus of our work is on characterizing NB-
VLQs, we will conservatively consider the values for S, T
obtained from an electroweak global fit previous to the
CDF new analysis [35],

ΔS ¼ 0.00� 0.07; ΔT ¼ 0.05� 0.06;

correlation ¼ 0.92: ð98Þ

Using (98) at 95% C.L., we require

Δχ2 ¼ 1

1 − ρ2
ðx̄2 þ ȳ2 − 2ρx̄ ȳÞ < 5.99146; ð99Þ

where ρ is the correlation, x̄ ¼ ðx − μxÞ=σx for x ¼ ΔS and,
similarly, y ¼ ΔT. We show as red points in Fig. 4 the
points that do not pass this constraint. We can see that the
Yukawas that pass the constraint obeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jYT
31j2 þ jYT

32j2
q

≲ 5 ×
1.3 TeV
MT1

; ð100Þ

and larger Yukawas start to be cut. For these points, we are
using κ ¼ 1 and μ0 ¼ 1.3 TeV, which roughly corresponds
to the lightest mass MT1

; cf. Fig. 7.
To constrain less frequent but possible VLQ Yukawas

away from the typical hierarchy (16) or (17), we should
also consider flavor changing processes involving the first
and second families. For simplicity, we focus on ΔF ¼ 2
transitions, which are the strongest. For large VLQ mass,
the effective Lagrangian for neutral meson mixing, coming
from box diagrams with Higgs exchange, can be written
as [29]

Lmeson ¼ −
Λij

128π2

"X
klmn

ðūkLVkiγμV
†
jlu

l
LÞðūmLVmiγ

μV†
jnu

n
LÞ

þ ðd̄iLγμdjLÞðd̄iLγμdjLÞ
#
; ð101Þ

where

Λij ¼
1

M2
Q
ðYQ

i1Y
Q�
j1 þ YQ

i2Y
Q�
j2 Þ2; ð102Þ
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for the VLQ Q ¼ B, T exchange. For simplicity, we
assumed the common mass M2

Q for the VLQs. Also note
that YQ → ỸB for down-type VLQs. Now, the constraints
obtained in Ref. [29] for two up-type VLQs read

jYT�
31Y

T
11 þ YT�

32Y
T
12j ≤

MT

25 TeV
;

jYT�
31Y

T
21 þ YT�

32Y
T
22j ≤

MT

6.4 TeV
;

jReðYT�
11Y

T
21 þ YT�

12Y
T
22Þj ≤

MT

42 TeV
;

jImðYT�
11Y

T
21 þ YT�

12Y
T
22Þj ≤

MT

670 TeV
: ð103Þ

For two down-type VLQs, the same is valid with the
exchange MT → MB and YT

ia → ỸB
ia.

Only points that satisfy all the constraints of this
subsection are shown in Fig. 8. We can see that for up-
type VLQs more points extend on the right for the case of
the larger mass (light blue), while for down-type VLQs
there is no appreciable difference.

V. SUMMARY

Generalizing the parametrization found in Ref. [15] for a
single VLQ of Nelson-Barr type of either down or up type,
we have proposed an explicit parametrization for two
singlet NB-VLQs. With the explicit parametrization in
hand, we studied several aspects of the model. Specially,
we analyzed the flavor invariants presented in Ref. [17] that
estimate the three-loop contribution to θ̄ that arises solely
from the VLQ Yukawas needed for the transmission of CP
violation to the SM. As shown in Fig. 8, for two down-type
NB-VLQs, the constraint arising from θ̄ is very weak. On
the other hand, confirming Ref. [17], the constraint on two
up-type NB-VLQs is very strong. Here, using the explicit
parametrization, we were able to be more quantitative and
found out that the θ̄ constraint eliminates roughly half the
points if the estimate is taken with coefficient unity. But
even if the θ̄ invariant underestimates the real contribution
by 2 orders of magnitude, there is still room for TeV scale
NB-VLQs. Therefore, it is crucial that an explicit para-
metrization be used for a detailed and quantitative analysis,
as some quantities may deviate from the estimates by few
orders of magnitude.
We briefly summarize other important points that were

analyzed in the paper:
(i) We have reviewed the case of a single NB-VLQ

(n ¼ 1) and have explicitly shown the distribution of
the VLQ Yukawas in Fig. 1, illustrating their
hierarchy: the NB-VLQ couples more strongly with
the heavier SM quark.

(ii) For n ¼ 1, we corrected the numerical estimates,
found in Ref. [17], of the flavor invariants for θ̄. The
scatter plot for θ̄ is shown in Fig. 3. The correction is

mainly due to a better estimate of the hierarchy for
Rq
i , q ¼ u, d; see Fig. 6. Another aspect is that an

explicit parametrization gives the full description,
which cannot be captured by simple estimates. For
this reason, the range of possible jRqj is also seen to
be larger, cf. (38),

2≲ jRdj≲ 104;

30≲ jRuj≲ 3 × 105:

In the Nelson-Barr setting, they quantify the ratio
between the CP violating contribution and the CP
conserving bare mass of the VLQs. They are
expected to be larger than unity, but we see they
span quite a range.

(iii) We also showed that, for n ¼ 1, there are special
points (cf. Sec. III F) where the VLQ Yukawas to the
third SM family vanish, making the θ̄ invariants
extremely suppressed; see Fig. 3. These special
points were analyzed first for the case of vectorlike
leptons transmitting CP violation [25].

(iv) For n ¼ 2, we show explicitly the distributions of
various quantities. In particular, Fig. 4 shows the
norm of the VLQ Yukawas that couple to each SM
family. They obey the same approximate hierarchy
of the n ¼ 1 case, cf. (16) and (17).
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APPENDIX A: PARTIAL DIAGONALIZATION

The changing of basis from (1) to (2) is easily described
by comparing the complete mass matrix of the down-type
quarks following from each case after electroweak sym-
metry breaking,

NB∶ MdþB ¼
 

vffiffi
2

p Yd 0

MBd MB

!
;

generic∶ MdþB ¼
 

vffiffi
2

p Yd vffiffi
2

p YB

0 MB

!
: ðA1Þ

Only a unitary transformation from the right is necessary to
connect them,
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MdþBWR ¼ MdþB: ðA2Þ

We can find an explicit form forWR in (A2) by assuming

WR ¼
 
ð13 − ww†Þ1=2 w

−w† ð1n − w†wÞ1=2

!
: ðA3Þ

It will be easier, however, to use a slightly different
parametrization,

WR ¼
 

13 w̃

−w̃† 1n

! 
ð13 þ w̃w̃†Þ−1=2 0

0 ð1n þ w̃†w̃Þ−1=2

!
;

ðA4Þ

valid for w̃ ≠ 0, where both matrices are not unitary but the
product is. The crucial point is that only the first matrix
matters to guarantee the zero block in MdþB so that the
solution is easily

w̃† ¼ MB−1MBd; ðA5Þ

where MB is guaranteed to be nonsingular. We can write
everything in terms of w if needed. For example,

w ¼ w̃ð1n þ w̃†w̃Þ−1=2 ¼ ð13 þ w̃w̃†Þ−1=2w̃: ðA6Þ

If WR ∼ 2 × 2 were real, we would have w ¼ sin θ, while
w̃ ¼ tan θ for some angle θ.
Then, we get explicitly

Yd ¼ Ydð13 þ w̃w̃†Þ−1=2 ¼ Ydð13 − ww†Þþ1=2; ðA7aÞ

YB ¼ Ydw̃ð1n þ w̃†w̃Þ−1=2 ¼ Ydw; ðA7bÞ

MB ¼MBð1n þ w̃†w̃Þþ1=2 ¼MBð1n −w†wÞ−1=2: ðA7cÞ

These are the relations in (5).

APPENDIX B: PARAMETER REGION
FOR POSITIVE (SEMI)DEFINITE MATRIX

Let A ∼ 3 × 3 be a complex positive definite or positive
semidefinite matrix. So this discussion applies to YdYd†, to
ww†, or to Ω ¼ 13 − ww†.
We first decompose A into real and imaginary parts,

A ¼ A1 þ iA2: ðB1Þ

Allowing real orthogonal basis change, we choose a
specific basis where A1 is diagonal,

A1 ¼ diagða1; a2; a3Þ; ðA2Þij ¼ ϵijkbk: ðB2Þ

Note that A1 is positive (semi)definite if A is positive (semi)
definite. Then ai ≥ 0 and we can order a1 ≤ a2 ≤ a3. We
assume bibi ≠ 0 to exclude real A.
If we calculate the characteristic equation,

detðA − λIÞ ¼ −½λ3 − γ1ðAÞλ2 − γ2ðAÞλ − γ3ðAÞ�; ðB3Þ

we obtain in the basis (B2),

γ1ðAÞ ¼ Tr½A� ¼ a1 þ a2 þ a3;

γ2ðAÞ ¼
1

2
Tr½A2 − γ1ðAÞA� ¼ b21 þ b22 þ b23 − a1a2

− a2a3 − a3a1;

γ3ðAÞ ¼
1

3
Tr½A3 − γ1ðAÞA2 − γ2ðAÞA� ¼ detðAÞ

¼ a1a2a3 − ða1b21 þ a2b22 þ a3b23Þ: ðB4Þ

Because Tr½A� ¼ Tr½A1�, but the determinant detðAÞ ≤
detðA1Þ, the spectrum of A1 is squashed compared to the
spectrum of A.
Positive definiteness of A is equivalent to the conditions

γ1ðAÞ > 0; γ2ðAÞ < 0; γ3ðAÞ > 0: ðB5Þ

If one eigenvalue of A is zero, then γ3ðAÞ ¼ 0, and if two
are zero, then γ2ðAÞ ¼ 0 as well.
For A ¼ YdYd† positive definite, we can obtain an

interesting formula for μ in

Λ−1=2
1 Λ2Λ

−1=2
1 ∼ μ

0
B@

0

0 1

−1 0

1
CA; ðB6Þ

where the right-hand side is the canonical form of a real
antisymmetric matrix. In the basis (B2), the matrix in (B6)
can be written as

ðΛ−1=2
1 Λ2Λ

−1=2
1 Þij ¼ ϵijkb̃k; ðB7Þ

where

b̃i ≡
ffiffiffiffi
ai

p
biffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a2a3
p : ðB8Þ

It is clear that μ ¼
ffiffiffiffiffiffiffiffi
b̃ib̃i

p
. Rewriting the last relation in

(B4) as

detðAÞ ¼ detðA1Þð1 − b̃ib̃iÞ; ðB9Þ

we obtain the formula
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μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

detA
detA1

s
: ðB10Þ

For A ¼ ww† in (63), we substitute ai → xi and
bi → −yi. If A is rank 1, by orthogonal transformations,
we can go to a basis where A is block diagonal. Then x1 ¼ 0
and y2 ¼ y3 ¼ 0. We are left with the down-right subblock
nonzero. The zero determinant condition on this subblock
leads to y21 ¼ x2x3. If A is rank 2, the determinant detðAÞ in
(B4) is zero and

x1x2x3 ¼ x1y21 þ x2y22 þ x3y23: ðB11Þ

We can still have x1 ¼ 0 as a special possibility, in which
case y2 ¼ y3 ¼ 0. But γ2ðAÞ < 0 leads to x21 < y2y3. If A is
rank 3, detðAÞ > 0 leads to

x1x2x3 > x1y21 þ x2y22 þ x3y23: ðB12Þ

Equations (B11) and (B12) written in terms of ỹi in (66)
lead to the ellipsoid condition (70).
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