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Abstract

Machine learning (ML) is increasingly applied to predict adverse postoperative outcomes in

cardiac surgery. Commonly used ML models fail to translate to clinical practice due to

absent model explainability, limited uncertainty quantification, and no flexibility to missing

data. We aimed to develop and benchmark a novel ML approach, the uncertainty-aware

attention network (UAN), to overcome these common limitations. Two Bayesian uncertainty

quantification methods were tested, generalized variational inference (GVI) or a posterior

network (PN). The UAN models were compared with an ensemble of XGBoost models and

a Bayesian logistic regression model (LR) with imputation. The derivation datasets con-

sisted of 153,932 surgery events from the Australian and New Zealand Society of Cardiac

and Thoracic Surgeons (ANZSCTS) Cardiac Surgery Database. An external validation con-

sisted of 7343 surgery events which were extracted from the Medical Information Mart for

Intensive Care (MIMIC) III critical care dataset. The highest performing model on the exter-

nal validation dataset was a UAN-GVI with an area under the receiver operating characteris-

tic curve (AUC) of 0.78 (0.01). Model performance improved on high confidence samples

with an AUC of 0.81 (0.01). Confidence calibration for aleatoric uncertainty was excellent for

all models. Calibration for epistemic uncertainty was more variable, with an ensemble of

XGBoost models performing the best with an AUC of 0.84 (0.08). Epistemic uncertainty was

improved using the PN approach, compared to GVI. UAN is able to use an interpretable and

flexible deep learning approach to provide estimates of model uncertainty alongside state-

of-the-art predictions. The model has been made freely available as an easy-to-use web

application demonstrating that by designing uncertainty-aware models with innately explain-

able predictions deep learning may become more suitable for routine clinical use.
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Introduction

Machine learning (ML) is increasingly being applied to risk stratification and prediction of

postoperative outcomes in cardiac surgery [1]. The extreme physiological demands of cardiac

surgery make the development of effective risk stratification tools an important strategy for

improving patient care [2]. Currently, the most widely used tools are clinical scores, which are

derived from logistic regression (LR) models [3–5]. Modern approaches, such as ensemble

decision tree (EDT) models or deep neural networks, have had limited success improving

upon the performance or the interpretability of the standard linear regression methods [6–9].

A ML model must demonstrate four key qualities to be safely applied in a healthcare setting.

It needs to be performant, interpretable, uncertainty-aware, and robust to incomplete data

[10]. The current gold standard in risk stratification for cardiac surgery is the LR model, which

has proven performant, interpretable, and to an extent uncertainty aware [11]. EDT models,

such as gradient boosting machines, have also been shown to be highly performant, flexible to

missing data, and globally interpretable [12]. While these models each fulfill some of the quali-

ties needed, their limitations restrict widespread adoption into clinical practice.

Aims and hypothesis

Our aims were: 1. Develop a novel ML model, the uncertainty-aware attention network

(UAN), that fulfilled the four key qualities of an ML model. 2. Benchmark predictive perfor-

mance against two current gold standard models. These models were a popular EDT,

XGBoost, and a Bayesian LR model. 3. Benchmark uncertainty quantification against the gold

standard models. 4. Benchmark performance with missingess against common imputation

methods. 5. Demonstrate the predictive explanations generated from the UAN.

We hypothesized that the UAN would be as performant as the benchmark models, quantify

uncertainty well, and provide individual explanations for each prediction, visualized with a

heat map.

Methods

Study population

The Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) Car-

diac Surgery Database registry recorded 153,932 cardiac surgery events in 151,078 unique

patients from June 2001 to December 2019, captured at 32 centers in Australia. As the Data-

base stores sensitive patient information, it is not publicly available. Criteria for inclusion

within the database was any patient undergoing cardiac surgery, other thoracic surgery using

cardiopulmonary bypass (CPB), or pericardiectomy for constrictive pericarditis, where per-

formed on or off CPB [13].

The third version of the Medical Information Mart for Intensive Care (MIMIC III), a large

single-center database, contained data from 53,423 distinct hospital admissions for 38,597 dis-

tinct adult patients admitted to the intensive care unit at Beth Israel Deaconess Medical Center

in Boston, Massachusetts between 2001 and 2012 [14]. A surgical cohort undergoing either

coronary artery bypass or valvular surgery was subsetted and used for external validation of

models fitted to the ANZSCTS database.

Variable selection

41 preoperative, intraoperative, and early postoperative variables available across either dataset

were analyzed for inclusion in the predictive modeling. Included variables and their defini-

tions are listed in S1 of the supplemental materials.
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Outcomes

Eight clinically significant outcomes were modeled, however, only 30 day mortality was avail-

able in both datasets for external validation. Outcomes and their definitions are listed in S2 of

the supplemental materials. While multiple clinically important outcomes were tested, for sim-

plicity only the results for 30 day mortality on the external validation dataset will be reported

in the rest of the manuscript. Performance and calibration results for all outcomes on training

and validation datasets are available in the S4 and S5 of the supplemental materials.

Data preprocessing

Three different processing strategies were utilized. Firstly, a minimal processing strategy was

used for models capable of handling missing data, whereby all patient data were included in

training and validation. Secondly, a partial dataset was further subsetted, including only vari-

ables present in both external and derivation datasets and excluding patient data with missing

values. The partial dataset was used to train and validate models incapable of handling missing

data. Thirdly, two imputation strategies were used to replace missing values and train the base-

line models and compare performance against the UAN without imputation. Simple imputa-

tion using mode and mean replacement, and multivariate imputation with chained equations

(MICE) were used [15]. Throughout this process, outlier values for each variable were rela-

belled as missing. The data processing pipeline for the datasets described above is visualizes in

Fig 1. Definitions for outliers can be found in the S1 of the supplemental materials.

Machine learning models

Uncertainty-aware attention network. At the core of the UAN, is the attention function.

The attention function is a method of mapping outcome vectors, called ‘queries,’ to inputs that

are transformed with neural networks to ‘keys’ and values’ [16]. The queries, keys, and values

are combined using dot product operations, allowing for processing of sequences of different

lengths and masking of specific values [16]. Dot-product attention has been very successful in

processing sequences, but can be extended to processing incomplete inputs [16].

In predictive tasks with missing values, the question being answered is ‘what is the probabil-

ity of the outcome given the observed values?’ An attention model that learns a posterior distri-

bution with Bayesian methods can effectively answer that question for multiple outcomes, in a

principled and consistent way, without imputation, excluding data, or limiting the scope of

input variables to the model. The attention function is also innately interpretable, whereby the

attention the model is paying to each variable can be visualized in a heat-map, allowing for pre-

dictive explainability.

Two different approaches to modeling uncertainty were applied to the UAN. The first was

to learn the parameters of a posterior beta distribution using generalized variational inference

(GVI) [17]. The second was to learn the parameters of a posterior beta distribution with the

addition of posterior networks (PN), which have the reported advantage of better uncertainty

on out-of-distribution inputs [18].

A further description and implementation details of the UAN can be found in S1 Appendix.

An example code-base for the model and web application for hosting the model can be found

at https://github.com/jahanpd/UAN.

Bayesian logistic regression. A Bayesian logistic regression model is a generalized linear

model which learns a distribution over the coefficients in the model [11]. It was trained using

variational inference [19].
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Extreme gradient boosting (XGBoost). XGBoost is a popular gradient boosting decision

tree model [12]. In order to estimate uncertainty, an ensemble of XGBoost models was trained

on bootstrapped sampling of the training dataset [20].

Implementations. All models were implemented using open source software, with the

UAN and LR models implemented in Pytorch, and XGBoost from the publicly available

python package [12, 21]. Imputation was performed using the implementations in the python

package scikit-learn [22].

Training, visualization, and statistical methodology

Models were trained on rebalanced datasets using randomly combined majority and minority

class undersampling and oversampling [23]. Model performance was assessed using 5-fold

cross-validation repeated 4 times. Imputation, rebalancing, and standardization of data were

all calibrated using the training set on a per-fold basis. Performance metrics were the area

under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Pairwise

testing of distributional differences was performed using a student T-test.

To assess confidence calibration we distinguished between two forms of uncertainty, which

were aleatoric and epistemic. Aleatoric uncertainty arises from irreducible noise intrinsic to

the data, and epistemic uncertainty from absent knowledge due to unseen data [18]. Confi-

dence calibration was assessed using the AUC with labels of 1 for correct predictions and 0 for

incorrect. Aleatoric confidence calibration was determined using the probability of the pre-

dicted class as scores. Epistemic confidence calibration was determined using either the

Fig 1. Flow diagram depicting included and excluded data following cleaning and subsetting for the full and partial ANZSCTS datasets, and the

MIMIC III dataset.

https://doi.org/10.1371/journal.pone.0289930.g001
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maximum parameter of the beta distribution for the UAN, or the inverse empirical variance

for the LR model or ensemble models, as scores. The Brier score was measured to further

assess aleatoric uncertainty calibration for each model. Performance of the model was also

measured on high confidence samples, which was defined as a prediction where the 95% credi-

ble or confidence interval did not overlap with the baseline risk.

Model interpretability for UAN predictions was visualized using an attention heatmap

depicting the outcomes and feature importance from the partial dataset. The UAN model was

further interrogated for model fit by plotting methods in two ways. Firstly, the univariate pre-

dicted probability for mortality was plotted against the input range of four continuous features,

which were age, body mass index, estimated glomerular filtration rate (eGFR), and preopera-

tive creatinine. This is possible as the UAN is flexible to input features and able to provide pre-

dictions with only one input variable, in contrast to the other models. Secondly, the embedded

representations of the input features and outcomes were visualized using t-distributed stochas-

tic neighbor embedding (t-SNE) to 2-dimensional space. This plot shows how the UAN learns

how closely related features or outcomes are to each other as demonstrated by the proximity in

the plot.

Ethics

This project was conducted in concordance with the National Health and Medical Research

Council (NHMRC) National Statement on Ethical Conduct in Human Research, with

approval from the Monash University Human Research Ethics Committee (HREC) approval

number 2020-24850-45439. The ANZSCTS National Database has approval for data collection

from Monash University and Alfred Health HREC utilizing an opt-out system for patient con-

sent with the data policy and patient information sheet available in the supplemental materials.

Results

Data subsets

All 153,932 cardiac surgical procedures in 151,078 unique patients were included from the

ANZSCTS Database, and 7,343 cardiac surgical procedures in 6,748 unique patients were sub-

setted from the MIMIC III database. 149,988 procedures in 147,317 unique patients were fur-

ther subsetted from the ANZSCTS Database for the partial dataset. Patient characteristics for

the partial dataset and the MIMIC III dataset are presented in Table 1, and for the full dataset

in S3 of the supplemental materials.

As expected, there were many differences detected between the derivation and external vali-

dation datasets. The largest were in a recorded history of cardiac arrhythmia with 17. 17% and

52.34%, and a history of smoking with 57.35% and 15.92% for the ANZSCTS and MIMIC III

datasets respectively.

Model performance and uncertainty calibration

For the main outcome of AUC, the highest performing model was the UAN-GVI and

UAN-PN with scores of 0.78 (0.01) (Table 2). All model performance improved when mea-

sured on high confidence samples, with the UAN-GVI and UAN-PN performing the best with

scores of 0.82 (0.01) (Table 3).

Confidence calibration for aleatoric uncertainty was excellent for all models, achieving a

score of close to, or exactly 1.0. Calibration for epistemic uncertainty was more variable, with

the ensemble of XGBoost models with MICE performing the best with a score of 0.84 (0.08)

(Table 3). The UAN-GVI and LR with simple imputation had the worst epistemic calibration
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with scores of 0.63 (0.10) and 0.57 (0.14), respectively. Compared to the UAN-GVI, the PN

approach had better epistemic calibration with a score of 0.63 (0.10). The Brier score was best

in the XGBoost and worst in the LR model with scores of 0.12 (0.07) and 0.23 (0.01)

respectively.

Statistical testing is reported in S5–S12 Tables of the supplementary materials.

Interpretability

The attention paid to each feature by the UAN-PN model was visualized for high risk, low risk

and uncertain risk prediction (Fig 2).

Table 1. Patient characteristics of the partial database subsets.

Variable ANZSCTS Subset Mean (SD) or % MIMIC III Subset Mean (SD) or %

Age (years) 65.61 (12.89) 69.57 (27.69)

Sex 73.20% 68.19%

Body Mass Index 28.48 (5.43) 28.59 (5.77)

Insurance

Private 25.64% 36.63%

DVA 1.34% 0%

Medicare 71.74% 56.50%

Self Insured 0.31% 0.39%

Overseas 0.52% 0%

Other 0.44% 6.47%

History of Arrhythmia 17.17% 52.34%

History of Smoking 57.35% 15.92%

History of Diabetes 29.19% 33.26%

History of Hypercholesterolaemia 66.08% 55.07%

History of Hypertension 72.08% 70.26%

History of Peripheral Vascular Disease 8.93% 14.88%

History of Heart Failure 20.99% 29.93%

Type of Operation

CABG alone 53.46% 58.18%

Isolated Valve 20.47% 26.27%

CABG+Valve 10.20% 15.55%

Other 15.87% 0%

Preoperative Creatinine (micromol/L) 101.77 (85.71) 109.65 (126.57)

Hours in ICU 83.80 (147.93) 92.67 (129.66)

30 Day Mortality 3438 (2.29) 147 (2.00)

https://doi.org/10.1371/journal.pone.0289930.t001

Table 2. Model performance on the MIMIC III dataset for 30 day mortality.

Model AUC Sensitivity Specificity

LR 0.75 (0.00) 0.72 (0.02) 0.67 (0.01)

LR (simple imputation) 0.66 (0.01) 0.21 (0.03) 0.90 (0.01)

LR (MICE) 0.73 (0.00) 0.53 (0.02) 0.78 (0.01)

XGBoost 0.78 (0.02) 0.47 (0.29) 0.84 (0.12)

XGBoost (simple imputation) 0.57 (0.03) 0.36 (0.22) 0.70 (0.19)

XGBoost (MICE) 0.75 (0.01) 0.63 (0.09) 0.72 (0.07)

UAN (GVI) 0.78 (0.01) 0.76 (0.05) 0.66 (0.05)

UAN (PN) 0.78 (0.01) 0.76 (0.05) 0.66 (0.05)

https://doi.org/10.1371/journal.pone.0289930.t002
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Model interrogation

The univariate predicted probability distribution for age, body mass index, eGFR, and preop-

erative creatinine demonstrated sensible trends. The probability of 30-day mortality increased

with age, body mass index, and preoperative creatinine and decreased with eGFR (Fig 3).

The cluster-mapped features showed that the UAN learned feature embeddings that were

similar for features that were related or had similar effects on the predicted outcome (Fig 4).

Web application

The UAN-PN was made available for test use at www.cardiac-ml.com.

Discussion

This is the first description of an uncertainty-aware attention-based neural network. The

results presented demonstrate the UAN to have performance as good or better than traditional

benchmarks, as well as acceptable uncertainty calibration. The success of ML across many

industries has not translated to healthcare, as performance alone does not overcome clinicians’

lack of trust in black-box model predictions [24]. Key to developing clinician trust and use is

flexibility to incomplete data, interpretable predictions and uncertainty assessment. We have

demonstrated that the UAN provides all of these features.

Incomplete data

Healthcare data is often incomplete, which presents a problem for many models. LR, and their

derivative scoring tools, are only valid when the clinician has all variables at hand [11]. Exclud-

ing patient data with missing values or performing imputation is likely to introduce bias [25].

The UAN overcomes this problem by applying the attention function in a novel approach

allowing extremely flexible inference with 1 or more features available. In this work, we dem-

onstrated this capability by training the model on 41 features, however, the external validation

dataset only had 14 features from which to generate predictions. Importantly, in this setting,

the UAN is as good or better than imputing data before inference or training.

Model interpretability

For clinicians to trust a predictive model, the decision-making mechanism must be transpar-

ent. In LR, coefficients associated with each variable are interpretable as the importance the fit-

ted model ascribes to that variable [11]. Similarly, for EDT, methods exist to interpret the

importance the model weights for each feature. These are, however, global explanations and

do not provide transparency for a specific prediction [12]. Further explanatory methods can

Table 3. Uncertainty calibration on the MIMIC III dataset for 30 day mortality.

Model AUC High Confidence AUC Aleatoric AUC Epistemic Brier Score

LR 0.76 (0.00) 1.00 (0.00) 0.69 (0.01) 0.23 (0.01)

LR (simple imputation) 0.67 (0.01) 0.98 (0.00) 0.60 (0.01) 0.13 (0.00)

LR (MICE) 0.75 (0.00) 0.99 (0.00) 0.70 (0.01) 0.17 (0.00)

XGBoost 0.80 (0.06) 0.99 (0.01) 0.79 (0.15) 0.12 (0.07)

XGBoost (simple imputation) 0.54 (0.11) 0.99 (0.01) 0.59 (0.13) 0.20 (0.07)

XGBoost (MICE) 0.79 (0.01) 1.00 (0.00) 0.88 (0.05) 0.17 (0.04)

UAN (GVI) 0.82 (0.01) 1.00 (0.00) 0.57 (0.14) 0.22 (0.02)

UAN (PN) 0.82 (0.01) 1.00 (0.00) 0.64 (0.10) 0.22 (0.02)

https://doi.org/10.1371/journal.pone.0289930.t003
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be applied to trained models in order to provide individualized explanations [26]. This

approach is limited by needing to optimize another model based on the output of the trained

model, which can be inefficient or result in inaccurate explanations [26–28]. The UAN has

inherent interpretability by visualizing the attention paid to each variable, allowing for individ-

ualized prediction level explanations (Fig 2). In this way, the UAN provides individualized risk

Fig 2. Attention heat maps for 3 samples from the MIMIC III dataset with high, low and baseline population risk of a postoperative complication. These plots

provide a visual explanation for how the model is weighting each feature with respect to each of the outcomes. The patient in a) had a low probability of 30 day mortality of

0.10, and their characteristics were age 51, male, BMI 25.4, privately insured, no history of arrhythmia, diabetes, smoking, high cholesterol, hypertension, peripheral

vascular disease or heart failure, an isolated CABG, preoperative creatinine of 53 and ICU length of stay of 43 hours. The patient in b) had a baseline probability of 30 day

mortality of 0.5, and their characteristics were age 61, male, BMI 21.0, privately insured, no history of arrhythmia, smoking, diabetes, high cholesterol, hypertension,

peripheral vascular disease, a positive history for heart failure, an isolated CABG, preoperative creatinine of 61.9 and ICU length of stay of 146 hours. The patient in c) had

a high probability of 30 day mortality of 0.85, and their characteristics were age 86, male, BMI 23.0, insured under medicare, no history of smoking, diabetes, high

cholesterol, hypertension, peripheral vascular disease, or heart disease, a positive history for cardiac arrhythmia, a combined CABG and valve operation, a preoperative

creatinine of 106 and ICU length of stay of 317 hours.

https://doi.org/10.1371/journal.pone.0289930.g002

Fig 3. Univariate predicted probability plots for the outcome of 30 day mortality across the input range of 4 different continuous

variables. This plot demonstrates that the UAN is able to learn the appropriate non-linear risk for each variable in the univariate case, with

the risk decreasing with increasing eGFR, but increasing with age, preoperative creatinine and BMI.

https://doi.org/10.1371/journal.pone.0289930.g003
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profiles, which is the first deep-learning model to achieve this outside of using explanatory

modeling [29].

Interestingly, trust in the UAN can be furthered by visualizing certain unique characteris-

tics of the UAN. Plotting the univariate probability distribution across the input range of a fea-

ture (Fig 3) allows the clinician to know how the model maps a value to a predicted

probability. For each feature we interrogated with this strategy, the model learned a mapping

matching the expected trend and provided unique insight into the data. For example, the

model learned a non-linear distribution for age with a small peak at younger ages, a nadir at 40

years old, and gradual increase accelerating at 70 years old. This pattern correlates with the

fact that younger patients requiring cardiac surgery are generally suffering from trauma or

congenital disease that confers higher mortality than middle-aged patients undergoing coro-

nary bypass or valve surgery [30, 31]. This is in contrast to a logistic regression model, where

the coefficient associated with the feature is limited to a linear relationship [11].

Unique to the UAN model architecture is a feature-specific embedding that maps the fea-

ture value to a feature-specific space. By using t-SNE on these embeddings, it is possible to

view the clustered relationships between the features (Fig 4). Features that are similar are

mapped to a similar space and are therefore clustered. A clinician is able to use this plot to

ensure that the UAN learns to cluster features that have similar effects on the outcome. Using

both the clustering and univariate probability plots, a clinician can have increased confidence

that the model has learned appropriate relationships between the features and the outcome.

Computational efficiency

A further added benefit to the UAN model is that it is able to model multiple outcomes at the

same time. In this study, the model learned the relationship between the inputs and eight

Fig 4. A visualization in 3 dimensions using t-SNE clustering on the 16 dimensional feature vector

representations the UAN learned. Related variables tended to cluster in 3 dimensional space, for example, history of

heart failure clustered with being admitted with heart failure, and type of operation, operative urgency, and bypass

time were clustered together.

https://doi.org/10.1371/journal.pone.0289930.g004
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different clinically significant outcomes (see S4 of the supplemental materials). This is in con-

trast to traditional models, such as LR, where a separate model needs to be trained for each

outcome. At inference, the model will generate predictions for all outcomes at the same time

as well. The advantage here is the computational cost for training on large datasets for multiple

outcomes.

Limitations

The primary limitations of this study arose from the derivation and external validation data-

sets. Firstly, clinical variables available for input into a predictive model can be categorized as a

modifiable or non-modifiable variable. For example, the variable of age is non-modifiable,

whereas preoperative hemoglobin is modifiable by giving red blood cells. Ideally, a predictive

model would contain a large number of modifiable risk factors, which would allow the clini-

cian to better optimize patient care pre- or early post-operatively. The ANZSCTS Database

was primarily created for auditing surgical outcomes and does not contain a large number of

modifiable variables [13]. Future datasets should strive to incorporate more modifiable pre-

operative variables in order to develop models with more actionable insights. Secondly, there

were many differences with how the two databases defined variables. For example, the

ANZSCTS Database is updated stochastically with information from clinicians who are

directly responsible for patient care, whereas much of the data in the MIMIC III database is

derived from codes related to hospital billing [13, 14]. This explains the difference in comor-

bidity rates for some key variables, such as smoking (Table 1). While this may be a reason for

reduced performance on the MIMIC III dataset, these differences may in fact improve the

robustness of the external validation results by factoring in differences that healthcare net-

works across nations may have for defining these variables.

There were also some limitations inherent to the UAN model. The attention function

approximates a mixture model, where the output is a mixture of the vector representations of

the input variables [16]. This is a modeling assumption that may not accurately reflect the best

way to combine the input values.

Finally, although a PN approach to modeling epistemic uncertainty was more effective than

GVI, epistemic uncertainty was still poorly modeled compared to aleatoric uncertainty. Future

research will be needed to develop and deploy better methods of modeling epistemic

uncertainty.

Conclusion

The UAN is a novel, interpretable, and readily available tool for clinicians to assist in risk strat-

ification in cardiac surgery. The model outperforms current gold standards in important per-

formance benchmarks. Further research needs to be conducted in improving uncertainty

calibration and externally validating the model in new cohorts.
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