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Abbreviations 
pr: precipitation 
SFCEVP: surface evapotranspiration 
SMroot: root-zone soil moisture 
T2: near-surface air temperature 
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ABSTRACT  20 

 The surface evapotranspiration (SFCEVP) plays an essential role in climate, being the link between the 21 

hydrological and energy cycles. Therefore, how it is approximated and its implication in the regional climate are 22 

important aspects to understand the effects of climate change, especially over transitional zones such as the Iberian 23 

Peninsula (IP). This study aims to investigate the spatiotemporal patterns of the SFCEVP using a regional climate 24 

model (RCM), the Weather Research and Forecasting (WRF) model. With this purpose, a set of WRF simulations 25 

were completed using different driving data. On the first hand, a recent present (1980-2017) simulation driven by 26 

the ERA-Interim reanalysis was carried out to evaluate the suitability of the RCM performance. On the other hand, 27 

two global climate models (GCMs) from the CMIP5 initiative, the CCSM4 and the MPI-ESM-LR, were used as 28 

driving data to evaluate the GCM-RCM couplings, which is essential to climate change applications. Finally, 29 

projected changes were also investigated for a near-term future (2021-2050) paradigm. In general, the results 30 

pointed out the WRF model as a valuable tool to study the spatiotemporal patterns of the SFCEVP in the IP, 31 

showing an overall and acceptable ability at different spatial and temporal scales. Concerning projections, the 32 

results indicate that the IP is likely to undergo significant changes in the SFCEVP in the near future. These changes 33 

will be more apparent over the southernmost, and particularly during spring and summer, being in the latter season 34 

the SFCEVP fundamentally reduced. These results agree with projected changes in soil moisture, which is 35 

probably associated with changes in precipitation patterns. Additionally, the results reveal the major role of 36 

SFCEVP in modulating the climate over this region, which is involved in the complex land-atmosphere processes. 37 

Keywords: Surface evapotranspiration, land-surface processes, regional climate simulations, Weather Research 38 

and Forecasting, Iberian Peninsula. 39 
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1. Introduction 40 

Surface evapotranspiration (SFCEVP) is a key variable of the state of the soil as it links the energy, carbon, 41 

and water cycles (Fisher et al. 2017, Martens et al., 2017). The SFCEVP influences de climate (Dolman et al., 42 

2014) through the occurrence of land-atmosphere feedbacks. These modify precipitation, temperature, humidity, 43 

and cloud covers (Seneviratne et al., 2010), and leading to the exacerbation of extreme events such as heatwaves, 44 

(Miralles et al., 2014a), floods (Xue et al., 2001), and droughts (Quesada et al., 2012). This fact is particularly true 45 

over the so-called transitional zones, where the soil moisture largely controls the climate variability.  46 

Under anthropogenic climate change, the role played by the SFCEVP is even more essential. Increasing 47 

greenhouse gas (GHG) concentrations are expected to affect the magnitude of heat fluxes, and their effects will 48 

propagate through all the components of the energy and water cycles (Miralles et al., 2016). This fact makes that 49 

a better understanding of how this variable behaves under different GHG concentrations be of high relevance for 50 

adequately developing mitigation and adaptation strategies for the ongoing climate change. In spite of its 51 

recognized importance, the SFCEVP is one of the most uncertain components of the global hydrological balance 52 

(Dolman and de Jeu, 2010; Miralles et al., 2016). It is mainly because the current capacity to directly monitor the 53 

time course of this variable is unfortunately weak, with limited coverage in time and space of in situ measurements. 54 

In recent years, great efforts have been made to develop long-term global evaporative products, such as the 55 

Priestley-Taylor model datasets (Fisher et al., 2008), the Global Amsterdam Model datasets (Miralles et al., 2011) 56 

or the Global MODIS datasets (Mu et al., 2007). These are the result of applying different algorithms using satellite 57 

remote sensing observations such as radiation, precipitation, and soil moisture as input data.  58 

Additionally, climate simulations can be a valuable tool in this context, allowing to achieve long-term 59 

variables in a continuous spatiotemporal resolution that could help to understand how the SFCEVP interplays with 60 

the atmosphere in both current and future conditions. They provide an overall picture of the soil and atmosphere 61 

behaviors through a high number of variables predicted. In this framework, regional climate models (RCMs) were 62 

developed to overcome weakness derived from the coarse resolution of the global climate models (GCMs), 63 

providing regional climate information at an adequate resolution to study aspects of the climate that require finer-64 

resolution (e.g., land-surface interactions).  65 

In the last decades, RCMs have been widely used to study the spatiotemporal patterns of the current climate 66 
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(e.g., Alonso-González et al., 2018; Argüeso et al., 2012a; Politi et al., 2018) as well as to investigate the effects 67 

of increased GHGs (Argüeso et al 2012b; Gómez-Navarro et al., 2010; Nguvava et al., 2019). However, only a 68 

few studies focused on examining the RCMs performance in terms of variables related with the soil state, and how 69 

climate change will influence land-surface processes. In the latter context, Greve et al. (2013) showed the ability 70 

of a reanalysis-driven regional simulation to adequately reproduce the root-zone soil moisture over the European 71 

region. Knist et al. (2017) found that different RCMs in the framework of the EURO-CORDEX initiative can 72 

reproduce the annual cycles of surface fluxes such as the latent and sensible heat fluxes in different European 73 

climate zones. For the Spanish region, García-Valdecasas Ojeda et al. (2017) highlighted the capability of regional 74 

climate simulations to properly characterize drought spatiotemporal patterns, which are strongly related to land-75 

surface interactions. For the future, Jerez et al. (2012) evidenced the crucial role played by the land-surface models 76 

(LSMs) to adequately projecting the climate over the Iberian Peninsula (IP). In another recent study, van der 77 

Linden et al. (2019) pointed out the added value provided by an RCM with respect to its driving conditions in 78 

projecting soil drying and its potential driving factors in central-western Europe.  79 

This work aims to investigate the ability of a regional climate model, the Weather Research and 80 

Forecasting (WRF) model, to characterize the main spatiotemporal patterns of the SFCEVP, an important linking 81 

variable between land and atmosphere that has been poorly studied so far. This study was performed over the IP, 82 

a topographically complex region characterized by a high spatiotemporal climate variability; thus the use of a 83 

regional model is more adequate. To do this, current simulations were firstly generated using WRF in order to 84 

evaluate the model performance. How the regional model captures this variable is of high relevance in this region, 85 

a mostly transitional zone where land-surface processes largely influence the climate. Moreover, projections of 86 

the SFCEVP were also examined for a near future (2021-2050) paradigm using two GCMs from the CMIP5 87 

initiative as forcing data and under two representative concentration pathways (RCPs): a milder scenario (RCP4.5) 88 

and the most pessimistic one (RCP8.5). Table 1 shows the global temperature rise projected by the two GCMs 89 

used in this study, these being between 1°C and 1.5°C, allowing us to analyze the associated impacts with global 90 

warming according to the Paris Agreement (IPCC, 2018).The study was structured as follows: Section 2 describes 91 

the data and methodology used in both, the model evaluation and in the assessment of future projections. Section 92 

3 displays the main results achieved, and finally, Section 4 summarizes and discusses the main results of this study. 93 
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2. Data and Methods 94 

2.1. Regional Climate Simulations 95 

 The WRF-ARW model (Skamarock et al., 2008) version 3.6.1 was used to generate regional climate 96 

simulations over the IP. All runs were completed using the same configuration and they differ only in the data 97 

used to force the WRF model.  98 

 Firstly, to examine inherent errors associated with the RCM, a simulation driven by the ERA-Interim 99 

reanalysis (Dee et al., 2011) was carried out for the period 1979-2017. Additionally, two historical simulations 100 

were completed for the period 1979-2005 using as driving data two different GCMs; the bias-corrected CESM1 101 

(Monaghan et al., 2014), and the MPI-ESM-LR (Giorgetta et al., 2013). The latter was previously corrected in 102 

systematic bias following the Bruyère et al. (2015) approach, which is the same applied in the CESM1. In this 103 

regard, and because the historical simulations end in 2005, both historical simulations were completed until 2017 104 

with the runs driven by anthropogenic climate change under RCP8.5, since it proved to appropriately describe the 105 

current climate characteristics (Granier et al., 2011). Additionally, to investigate near-term future changes, regional 106 

projections using the above mentioned GCMs were completed from 2020 to 2050 under two RCPs (RCP4.5 and 107 

RCP8.5).  108 

 Regarding the spatial model configuration, it consisted of two one-way nested domains (Fig. 1): the finer 109 

domain (d02) spanning the IP at 0.088° (10 km approximately) of spatial resolution, and nested over a coarser 110 

domain (d01) that corresponds to the EURO-CORDEX region (Jacob et al., 2014) at 0.44° (50 km approximately) 111 

of spatial resolution. In the vertical, 41 levels were used with the top set to 10 hPa.  112 

 One of the most critical steps to adequately configure the WRF model is the selection of the best set of 113 

parameterizations for the study region (Argüeso et al., 2011; Jerez et al., 2013; Kotlarski et al., 2014). This is 114 

especially important in the case of topographically complex regions such as the IP, so, the parameterizations set 115 

was selected according to a previous sensitivity study (García-Valdecasas Ojeda et al., 2015). They are: the Betts-116 

Miller-Janjic (Betts and Miller, 1986; Janjić, 1994) for cumulus, the Convective Asymmetric Model version 2 117 

(Pleim, 2007) for planetary boundary layer, the WRF single-moment-three-class (Hong et al., 2004) for 118 

microphysics, and the Community Atmosphere Model 3.0 (Collins et al., 2004) for radiation (long-wave and short-119 

wave). This selected parameterization set has been successfully used to characterize drought patterns over the 120 
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Spanish region (García-Valdecasas Ojeda et al., 2017). 121 

 Land-surface related variables such as the SFCEVP are achieved by the land surface model (LSM) coupled 122 

to WRF. In this study, we used the unified Noah (Chen and Dudhia, 2001) as LSM coupled to WRF (hereinafter 123 

referred to as WRF-Noah), which proved to be adequate to simulate the regional climate worldwide. WRF-Noah 124 

makes use of different parameters established for the vegetation (e.g., stomatal resistance, leaf area index, etc.) 125 

and texture types (e.g., wilting point, field capacity, etc.), which largely control the predicted SFCEVP. In this 126 

regard, among the different options provided by WRF, the 21-category MODIS land use from the International 127 

Geosphere-Biosphere Programme (IGBP) at a resolution of 30 arc seconds was used, with the soil texture being 128 

the default 16-category FAO soil texture. 129 

2.2 Reference Data  130 

As reference data, the surface evapotranspiration from the Global Land-surface Evaporation Amsterdam 131 

Model (GLEAM) version 3.2a (Martens et al., 2017; Miralles et al., 2011) was used to evaluate the WRF model 132 

performance in terms of SFCEVP. GLEAM is a land surface model based on the Priestley and Taylor formulation 133 

(Priestley and Taylor, 1972) that provides land evaporation by using remote sensing observations. These data have 134 

proved to be noteworthy tools for studying climate variability and trends (Miralles et al., 2014b), but also, more 135 

recently, they have been used to evaluate different RCM outputs (González-Rojí et al., 2018; Knist et al., 2017). 136 

GLEAM in its version 3.2a is composed by a set of daily data that span the period from 1980 to 2017 in a 0.25º x 137 

0.25º regular grid covering the entire Earth’s globe.  138 

Spatiotemporal patterns of the SFCEVP are largely associated with variations in near-surface air 139 

temperature (T2) and precipitation (pr), so to gain more confidence in the WRF performance, these two well-140 

known atmospheric variables were also evaluated. To do this, observations from the E-OBS gridded dataset in its 141 

ensemble members version 19.0 (Cornes et al., 2018) at 0.1° of spatial resolution was used. E-OBS, created in the 142 

framework of the EU-FP6 project ENSEMBLE (Haylock et al., 2008), has proved to adequately represent the 143 

main European climate, and now is also available in an improved version resulted from the calculation of an 144 

ensemble with 100 members of each daily field.  145 

However, it is worth mentioning that the reference data are also affected by inherent errors, which can be 146 

occasionally large. Such errors are unavoidable, so it is essential to consider them as inaccuracies in observations 147 
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could lead to a misinterpretation in the WRF capability to capture climate behaviors. Concerning the evaporation 148 

product used in this study, Miralles et al. (2011) pointed out that GLEAM is highly sensitive to precipitation 149 

forcing (Miralles et al. 2011), so errors in the latter are expected to affect the GLEAM performance. In other study, 150 

McCabe et al. (2016) found that GLEAM tends to slightly underestimate the evaporation when it is compared with 151 

tower-based eddy-covariance observations. Moreover, note that although GLEAM is largely based on 152 

observations, it is not strictly observational datasets. Therefore, uncertainties in forcing data must be taken into 153 

account together with the sensitivity to parameters associated with the vegetation types, which are different from 154 

the WRF-Noah assumptions used in this work for the simulations.  155 

In the same way, uncertainties in observational gridded products can be of similar magnitude as the 156 

inherent RCM biases, even in regions where these products are based on dense networks (Gómez-Navarro et al., 157 

2012). Kotlarski et al. (2019) in an exercise of comparison between different gridded and RCM products, found 158 

that E-OBS typically underestimate the precipitation and temperature. Likewise, Prein and Gobiet et al. (2017) 159 

recognized problems of gridded products such as E-OBS to appropriately capture the amount of precipitation, 160 

which can be noteworthy over mountainous areas. This aspect is of high relevance over regions such as the IP, 161 

which is characterized by a strong altitudinal gradient (Fig. 1b). 162 

2.3. The Model Evaluation 163 

To evaluate the WRF ability to characterize land-surface processes, the SFCEVP, T2, and pr only from 164 

the inner domain (d02), and over land were analyzed. The analysis was based on comparing the WRF outputs 165 

concerning the reference data from GLEAM and E-OBS for the period 1980-2017. This period was selected in 166 

order to perform an evaluation for a climatologically robust period. 167 

Two spatial perspectives were used to evaluate WRF. Firstly, a region-by-region (regional perspective) 168 

study was performed. As previously mentioned, the accumulated amount of SFCEVP simulated by WRF depends 169 

largely on the vegetation types, so the land-use classification from WRF (Fig. 1S, in supplementary material) was 170 

used to select the different regions. In this regard, GLEAM uses a land-cover classification based on four main 171 

types (bare soil, short vegetation, tall vegetation, and open water), so with the purpose of performing a more 172 

adequate comparison, the land-uses contemplated by WRF were grouped into three main types: tall vegetation 173 

(corresponding to evergreen needleleaf forest, evergreen broadleaf forest, and mixed forest), short vegetation 174 
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(closed and open shrublands, woody savanna, savanna, grassland, and cropland), and urban region. This 175 

classification showed very similar spatial patterns to one achieved using a regionalization procedure (Argüeso et 176 

al., 2011) using daily values of SFCEVP from GLEAM (result not shown), suggesting that it is adequate to 177 

investigate the model performance from a regional perspective.  178 

The three selected regions were used to obtain the three spatially averaged time series on which the 179 

regional perspective was based on. Then, bias, mean absolute error (MAE), and normalized standard deviations 180 

(NormStd) were computed to examine the model performance. Also, the model capability to capture the annual 181 

cycle of the monthly values of the three variables was explored by regions. Additionally, different simulated 182 

percentiles vs. the reference ones through quantile-quantile (Q-Q) plots were represented. The latter analysis 183 

allows us to further investigate if WRF can reproduce the probability density functions from the daily reference 184 

data. For the daily accumulated pr, the analysis was performed taking into account only those values above 0.1 185 

mm day-1, following the methodology proposed by Argüeso et al. (2011).  186 

Secondly, a local perspective (i.e., grid-to-grid comparison) was also used to further explore if WRF 187 

reproduces the main spatiotemporal patterns of the SFCEVP, T2, and pr. To make the data spatially comparable, 188 

downscaled outputs were remapped onto the GLEAM and E-OBS grids using the nearest neighbor approach. As 189 

for the regional perspective, different temporal aggregations were used. Thus, annual and seasonal bias were 190 

computed to elucidate the mean deviation for each grid point. The latter time aggregation was also analyzed 191 

because authors such as Ruosteenoja et al. (2018) have recently highlighted the importance of studying land-192 

surface processes at seasonal scale as different processes take part along the year. Finally, the WRF ability to 193 

reproduce the probability density function of the daily amount of SFCEVP for each grid point was also explored 194 

through the Perkins Skill Score (PSS, Perkins et al., 2007). 195 

2.3. Analysis of the Projections in the SFCEVP 196 

Changes between the near-term future (2021-2050) and the historical period (1980-2005) for each grid 197 

point were examined through their differences expressed in relative terms (percentage). In the same way, changes 198 

in the root-zone soil moisture (SMroot; the upper 1 meter of the soil), was also investigated to further analyze the 199 

impacts on land-surface processes. To evaluate the significance of these changes, a circular block bootstrap method 200 

(Politis and Romano, 1992) are applied using 1000 samples to determine the 95% confidence interval. This method 201 
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allows taking into account the autocorrelation of the records (Kiktev et al. 2003) as it applies bootstrapping 202 

resampling for consecutive records with a given block length (L), instead of individual values. Thereby, significant 203 

changes for the future in relation to the historical period can be determined, even for auto-correlated and non-204 

Gaussian data. Here, the circular block resampling was applied following the procedure proposed by Turco and 205 

Llasat (2011) that determined L using the method detailed in Politis and White (2004). In this study, L was 206 

estimated for each period (annual, DJF, MAM, JJA, and SON) and variable, and the same value of L was used for 207 

all grid points. These values, which corresponded to the 90th percentile of all grid points analyzed, ranged from 3 208 

to 10, depending on the period and GCM-driven simulation.  209 

3. Results  210 

3.1 The Model Evaluation 211 

3.1.1. Region-by-Region Analysis 212 

 To know how the WRF model captures the main spatiotemporal patterns of the different variables, an 213 

analysis of monthly data was firstly performed for every region. Thus, the monthly values for each grid-point were 214 

computed, and then, the spatially averaged values for every region was obtained. Table 2 shows the statistic error 215 

measurements of the monthly accumulated amount of SFCEVP, monthly-mean T2, and accumulated pr for each 216 

region (tall vegetation, short vegetation, and urban). Such measurements were computed for the WRF simulation 217 

driven by ERA-Interim (WRFERA), the CESM1 model (WRFCCSM), and the MPI-ESM-LR (WRFCCSM) with 218 

respect to the reference data (GLEAM for SFCEVP and E-OBS for T2 and pr, respectively). Note that for the 219 

SFCEVP and pr, bias and MAE are expressed in relative terms (simulations minus reference data/reference data), 220 

meanwhile for T2, these metrics are expressed as absolute differences (simulations minus reference data). Both, 221 

bias and MAE indicate the averaged deviation in the model concerning the reference data, being the first one also 222 

a measure of over- or underestimation. NormStd, however, shows the model behavior in terms of variability. In 223 

this regard, positive values indicate that climate variability is overestimated, while negative values show the 224 

opposite behavior.  225 

Broadly speaking, WRF captures quite well all variables, except in the case of the SFCEVP over urban 226 

regions. In the latter region, all error measurements (bias, MAE, and NormStd) indicate a poor skill concerning 227 

GLEAM. For this reason, the results from the SFCEVP over urban regions will be represented hereafter, but these 228 
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will not be commented. For the other two regions, the SFCEVP shows overestimations, with bias ranging from 229 

0.58 to 17.41. The short vegetation presents lower bias than the tall vegetation, the WRFCCSM being the 230 

simulation with the best skill according to this parameter. However, when the WRF simulations are evaluated in 231 

terms of MAE and NormStd, the tall vegetation presents a better agreement with the reference data, particularly 232 

for the WRFERA simulation. This indicates that the simulations are probably affected by compensation errors, 233 

particularly in the case of the WRFCCSM for the short vegetation (bias around 0.6% vs. MAE around 21%). 234 

Unlike for SFCEVP, WRF tends to underestimate the temperature (bias of around -0 .5), except over urban 235 

regions. In the latter case, overestimations of around 1ºC appear in all WRF simulations. Additionally, the results 236 

indicate that GCM-driven simulations are probably more affected by compensation errors than WRFERA. That 237 

is, while the WRFERA presents values of similar magnitude for bias and MAE, the WRFCCSM and WRFMPI 238 

show higher differences between these two metrics. In terms of variability, however, all WRF simulations present 239 

a good skill, especially for the short vegetation, and greater for the WRERA and WRFCCSM simulations 240 

(NormStd close to 1).  241 

 The results also show that the precipitation is typically overestimated. This behavior is more apparent for 242 

the tall vegetation, and especially for the WRFMPI simulation (wet-bias of around 50%). Moreover, the higher 243 

the precipitation errors, the greater the deviations from the SFCEVP. Therefore, this evidences the relationship 244 

between the model performances in terms of these two variables. As shown in the NormStd, the precipitation 245 

variability is mostly overestimated by WRF, particularly over the tall vegetation. In this regard, note the number 246 

of grid-points representing each region, which is much less for the tall vegetation. 247 

 Fig. 2 shows the annual cycle of the monthly amount of SFCEVP, T2, and pr from reference data and for 248 

all WRF simulations (WRFERA, WRFCCSM, and WRFMPI). In general, WRF presents a good skill to capture 249 

the overall shape of the annual cycle of all variables analyzed in this study. The largest differences concerning the 250 

reference data are shown for the tall vegetation. For this region, and in terms of SFCEVP, the WRFERA presents 251 

a generalized overestimation, especially in winter (December-February) and the late summer (i.e., June-July). 252 

Concerning results from GCM-driven simulations, while the WRFCCSM behaves similarly to WRFERA 253 

(showing even a better agreement with GLEAM for June), the WRFMPI shows larger differences with respect to 254 

GLEAM, particularly during the second part of the year. 255 
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 For T2, however, all WRF simulations are very similar, being this variable overall underestimated, 256 

especially during summer. The behavior is probably associated with a large amount of precipitation simulated by 257 

WRF during the preceding months (see annual cycles for pr in spring). It leads to an overestimation in the soil 258 

water available to evapotranspiration, and subsequently the underestimation in the T2. Contrariwise, the T2 is 259 

systematically overestimated for the urban region, as indicated by Table 2. In terms of precipitation, the results 260 

present more discrepancies with the reference data. For the tall vegetation, the greatest precipitation deviations 261 

appear from October to May, when the highest precipitation occurs, these being again more apparent for the 262 

WRFMPI. Similar conclusions can be drawn for the short vegetation. In this region, underestimations for May-263 

June and September-October are shown, for the WRFERA and especially for the WRFCCSM. For the rest of the 264 

year, and for the WRFMPI, however, the SFCEVP is slightly overestimated, which again coincides with a 265 

generalized overestimation in the pr, and underestimation in the T2.  266 

Fig. 3 displays the simulated percentiles (25th, 50th, 75th, 80th, 85th, 90th, 95th, and 99th) of the daily SFCEVP, 267 

T2, and pr vs. the observed ones through a Q-Q representation. Gray line indicates a perfect agreement with the 268 

reference data, providing a division between overestimated and underestimated percentiles. In general, WRF is 269 

able to capture the daily probability distribution of the reference data for all variables. For the tall vegetation, the 270 

SFCEVP distribution is slightly overestimated, especially for the larger daily evapotranspiration rates, and higher 271 

for the WRFMPI. However, for the short vegetation, the overall agreement with GLEAM is really good, showing 272 

the WRFERA and WRFCCSM slight underestimations in the upper percentiles. However, the WRFMPI slightly 273 

overestimates all the percentiles except to the 95th and the 99th. Consistently, similar results between regions and 274 

simulations are shown in terms of T2, which is, in general, slightly underestimated, except for the urban regions. 275 

In terms of precipitation, and for the tall vegetation, the simulations present similar distributions, with the light 276 

precipitations being underestimated with respect to E-OBS. The WRFMPI, however, tends to show a higher 277 

precipitation amount than the reference data, especially in the upper-percentiles, showing thus, overestimations. 278 

For the short vegetation and urban regions, the precipitation is usually underestimated, except for the WRFMPI in 279 

the 99th percentile for the short vegetation. 280 

3.1.2. Grid-by-grid Analysis 281 

Fig. 4 displays the WRF SFCEVP deviations with respect to GLEAM for a grid-point perspective. Annual 282 
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(January-December), winter (December-February, DJF), spring (March-May, MAM), summer (June-August, 283 

JJA), and fall (September-November, SON) biases are displayed for the three WRF simulations (WRFERA, 284 

WRFCCSM, and WRFMPI), which are expressed in relative terms (%). Additionally, to determine the spatial 285 

agreement between the averaged patterns of the SFCEVP, pattern correlations (r), which are the spatial correlation 286 

between the observed and simulated mean values, are displayed in the bottom right corner of each panel. Due to 287 

the WRF anomalous behavior on urban grid-points, they are not represented in this analysis. 288 

 In general, WRF represents the spatial patterns of the annual amount of SFCEVP with admissible 289 

accuracy in most of the IP, showing pattern correlations up to 0.75 (Fig. 4). WRFERA broadly captures the main 290 

GLEAM climatological features, locating the highest SFCEVP (around 800 mm/year in both GLEAM and WRF) 291 

over the northernmost IP, and the lowest ones (below 250 mm/year) in the southeastern IP. However, slight 292 

overestimations are observed in some parts of the Northern Plateau, where positive deviations up to 75% are 293 

reached. Additionally, the model underestimates the annual SFCEVP over northern Portugal, showing negative 294 

differences up to 50% in all WRF simulations. Concerning differences between the simulations, and as shown in 295 

the regional perspective, the WRFCCSM achieves similar features to WRFERA, while WRFMPI overestimates 296 

the annual SFCEVP (large regions present biases up to 75%-100%). 297 

However, the model behaves differently throughout the year. Thus, during winter, when GLEAM shows 298 

the lowest amount of SFCEVP, (showing values below 100 mm, Fig. 2S), the WRF overestimations are 299 

generalized, reaching biases around 75% in a large part of the IP. In this regard, it is important to keep in mind 300 

that errors here are expressed in relative terms, so admissible values in absolute terms may lead to large differences 301 

in relative terms. Additionally, all WRF simulations show similar spatial patterns of bias, this being greater in 302 

magnitude for the WRFMPI. The largest overestimations appear over the Ebro River Basin, Balearic Islands, and 303 

some coastal regions (e.g., the Cantabrian coast), where differences with respect to GLEAM above 150% are 304 

reached. The latter behavior probably results from differences between the resolutions, being thus, the definition 305 

of the coastal borders different between the different data sets.  306 

During summer, GLEAM presents the most marked northwest-southeast gradient with SFCEVP ranging 307 

from 20 to 500 mm (Fig. 2S, first column, JJA). Thus, the highest evapotranspiration rate appears over the 308 

northernmost of the IP, where the soil water available is not limited, and thus, the temperature rise results in more 309 
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SFCEVP. Contrariwise, the rest of the IP presents a soil moisture-limited regime, meaning that the soil water 310 

available to evaporate is scarce during this season, and then, the SFCEVP is mainly constraint. In general, WRF 311 

reproduces quite well this feature, with patterns correlations being above 0.75 in all WRF simulations (Fig. 4, 312 

JJA). However, certain discrepancies appear in regions where GLEAM indicates really low SFCEVP values (Fig. 313 

2S, first column, JJA, southeastern IP), showing biases above 175%. Also, all WRF simulations present 314 

underestimations (e.g., western IP and Balearic Islands), reaching negative deviations of around 75-100%.  315 

The best agreement between GLEAM and WRF occurs in the intermediate seasons (Fig. 4, MAM and 316 

SON), showing differences with respect to GLEAM below 25% in most of the IP. Thus, spring SFCEVP is 317 

relatively high (Fig. 2S, first column, MAM), result from the increase in temperature in a season when the soil 318 

water is still enough. In this framework, WRF seems to show a remarkable ability to capture these features, 319 

especially for the reanalysis-driven simulation. For this season, the highest differences regarding GLEAM are 320 

presented in the Northern Plateau, these being of around 25-50% in all WRF simulations. By contrasts, 321 

underestimations occur over the Pyrenees, Balearic Islands, Portugal, and across some coastal regions. Again, very 322 

similar results to WRFERA are found for the WRFCCSM, presenting the WRFMPI a higher presence of 323 

overestimations (up to 50%), particularly over the Guadalquivir Basin. For fall, the evapotranspiration is low in 324 

practically all the IP (SFCEVP below 200 mm, Fig. 2S, first column, SON), being this behavior the best 325 

represented in the simulation driven by ERA, where pattern correlation of 0.78 is shown (Fig. 4). However, it is 326 

worth mentioning that WRF also presents some difficulties, showing both overestimations (e.g., the Cantabrian 327 

Coast) and underestimations (e.g., the northern Portugal and southern IP). For the WRFCCSM, broader areas than 328 

WRFERA present underestimations, showing most of Portugal deviations up to -75%. The WRFMPI, however, 329 

as for the other seasons, presents a generalized overestimation pattern (bias about 75-100%) in those areas where 330 

the other simulations broadly capture the SFCEVP from GLEAM.  331 

Annual and seasonal WRF T2 deviations with respect to E-OBS are shown in Fig. 5. All WRF simulations 332 

present a remarkable ability to represent the spatial patterns of T2 throughout the year (Fig. 2S, second column), 333 

showing all simulations pattern correlations of 0.97 (or higher) in all seasons (Fig. 5). At an annual scale, very 334 

similar results are found for all WRF simulations, showing a generalized cold-bias of around 1-1.5ºC. The 335 

underestimations are particularly marked at high altitudes, where differences with respect to E-OBS up to -2.5ºC 336 
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are reached over the Pyrenees. The cold-bias presented at annual scale remains throughout the year. In this regard, 337 

the highest deviations (cold-biases below -2.5ºC) appear over the Pyrenees during winter and spring, and along 338 

the Portuguese coasts in summer, the latter particularly shown in the WRFERA and WRFCCSM. The results also 339 

reveal that the WRFMPI presents a generalized underestimation in T2 during spring, fall, and especially in 340 

summer. In this season, biases below -1ºC occurs in practically all the IP. However, the WRFMPI presents a 341 

highlighted agreement with E-OBS during winter, being even better than those from the WRFERA and 342 

WRFCCSM. Certain overestimation is also found in the simulations, more apparent during summer when warm-343 

bias up to 2.5ºC appear in the northeastern and the southernmost IP. Also, a generalized overestimation occur over 344 

those grid-points that represent urban regions in agreement with the results from the regional perspective. 345 

Analogously, Fig. 6 displays the precipitation bias expressed in relative terms (%) at annual and seasonal 346 

time scales. Despite the broad WRF performance in terms of precipitation is quite good (pattern correlations above 347 

0.7), all WRF simulations consistently show overestimations with respect to E-OBS. These are especially 348 

highlighted at high altitude, and overall during winter. The spatial patterns of the precipitation bias present some 349 

similarities with those from the SFCEVP (Fig. 4), suggesting that inaccuracies in SFCEVP could be partly 350 

associated with errors in precipitation. For instance, overestimations are found over the Northern Plateau in 351 

practically all the periods analyzed (i.e., annual, DJF, MAM, JJA, and SON) and in all simulations, being this 352 

pattern also presented in the SFCEVP (Fig. 4). Similar conclusions can be drawn through the results in the fall 353 

biases and by the marked overestimations appeared in summer in the Sierra Nevada (Baetic System), in the south 354 

of the IP. Here, the highest summer overestimations appear, in both SFCEVP and pr. Moreover, both variables 355 

show the largest differences with respect to the reference data during winter as for SFCEVP.  356 

Finally, the ability of WRF simulations to represent the daily distribution of the SFCEVP was also 357 

examined using the PSS (Fig. 7). This was computed by grouping the daily SFCEVP using 19 bins according to 358 

the range of values of each grid-point from the GLEAM datasets. PSSs of 100% indicates a perfect fit between the 359 

WRF simulations and reference data, meaning a value of 0% that the modeled and reference data are totally 360 

different in their daily distributions. The PSS reaches the maximum values (above 90%) over the Guadalquivir 361 

and Guadiana River Basins, particularly for the WRFERA and WRFCCSM simulations. As already mentioned, 362 

coastal regions in all simulations show important discrepancies between WRF and GLEAM, with PSS values of 363 
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around 10%. Also, low PSS values appear over the eastern part of the IP in all simulations, reaching values of 364 

around 65%. However, in general terms, it can be seen as WRF simulations present a satisfactory agreement with 365 

GLEAM in terms of SFCEVP daily distribution. 366 

3.2. Near-term Changes in SFCEVP 367 

 Once the WRF capability to adequately characterize the main spatiotemporal patterns of the IP has been 368 

evidenced, this section is devoted to analyzing the near-term future predictions in the SFCEVP. Fig. 8 shows 369 

annual and seasonal SFCEVP changes projected for the period 2021-2050 with respect to the corresponding 370 

historical conditions (1980-2005), expressed in relative terms. In columns, the WRFCCSM (first and second 371 

columns) and the WRFMPI (third and fourth columns) simulations under the two RCPs (RCP4.5 and RCP8.5) 372 

were represented. Black dots indicate non-significant changes at the 95% confidence level. Also, the spatially 373 

averaged change for the whole IP is indicated in the bottom right corner of each panel. 374 

  Most of the IP is likely to undergo reductions in the annual SFCEVP, which could be, on average, of 375 

around 2% for the WRFCCSM, and about 5% and 8% for the WRFMPI under RCP4.5 and RCP8.5, respectively. 376 

The highest diminutions are projected by the WRFMPI simulations, where significant differences concerning the 377 

historical values are shown in large part of the IP. All WRF simulations consistently indicate that the most affected 378 

region will be the southern IP, where the SFCEVP could be reduced up to 15%. Additionally increases in 379 

evapotranspiration are also shown over high-altitude regions such as the Cantabrian Ranges and the Pyrenees, 380 

where the SFCEVP is projected to increase up to 5% and 15%, respectively. When these results are compared with 381 

the projections in precipitation (Fig. 3S in supplementary material), it can be seen the variations in SFCEVP are 382 

probably influenced by changes in pr, showing both very similar spatial patterns of changes. Additionally, a 383 

common spatial behavior of the SFCEVP changes with those from the T2 (Fig. 4S in supplementary material) is 384 

shown, also suggesting the relationship between the changes in both variables. That is, the greater the reductions 385 

in SFCEVP are, the stronger the temperature rise in general terms. The latter suggests that the IP could experience 386 

a major control of the soil moisture conditions via land-atmosphere feedbacks. An opposite behavior, however, is 387 

shown over regions such as the Pyrenees, where increases in both variables are projected.  388 

 The evapotranspiration over the IP presents marked differences throughout the year (Fig. 2S), so different 389 

implications of the rising GHG concentrations are expected at a seasonal time scale. During winter (Fig. 8, DJF), 390 
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significant positive deviations with respect to the historical conditions appear in different regions, with the 391 

maximum increases being in the southeastern coasts, and over high-altitude regions in the northernmost (e.g., the 392 

Cantabrian Range). Here, SFCEVP increases above 15% are reached in all simulations except for the WRFCCSM 393 

RCP4.5. Such increases occur together with an enhancement of the precipitation (Fig. 3S) except for the Pyrenees. 394 

Increases in SFCEVP over the Pyrenees appear stronger during spring (Fig. 8, MAM) when differences with 395 

respect to the historical period above 45% appear under RCP8.5. The latter coincides with a marked warming rate 396 

(Fig. 4S) together with non-significant changes in precipitation (Fig. 3S). Therefore, in this case, the temperature 397 

rise seems to be a driving factor of changes in evapotranspiration. Also, for this season, and over the northernmost 398 

IP, the WRFCCSM projects evapotranspiration increases (around 5%), while the WRFMPI shows some regions 399 

with a reduction of this variable under RCP4.5, which are greatly extended under RCP8.5. By contrast, reductions 400 

up to 15% are presented over the southernmost IP for all MAM projections. 401 

 The most dramatic reductions of SFCEVP are projected in summer (Fig. 8, JJA). For this season, the 402 

spatially averaged changes are around -9% for both WRFCCSM simulations and the WRFMPI RCP4.5, reaching 403 

-12% for the WRFMPI RCP8.5. Again, the southernmost IP is the most affected, where decreases regarding the 404 

historical period are up to 40% over the Guadalquivir Basin. By contrast, all WRF the simulations show SFCEVP 405 

increases up to 10% over the Pyrenees. For fall, the results are more uncertain, showing the simulations more 406 

differences in their patterns of change. That is, while the WRFCCSM indicates significant increases, especially 407 

over the Ebro River Valley, Balearic Islands and across the southeastern coasts, the WRFMPI reveals a generalized 408 

reduced SFCEVP, more apparent under RCP8.5. 409 

 To further investigate the SFCEVP changes behavior, changes in soil moisture have been also analyzed. 410 

Fig 9 shows the projections in the SMroot for the period 2021-2050 with respect to the historical one (1980-2005), 411 

expressed in relative terms (%). At annual scale, and consistently with the changes in the SFCEVP, the SMroot is 412 

likely to suffer significant decreases showing both similar spatial patterns of changes (spatially averaged 413 

diminutions between 2% and 3% for the WRFCCSM and about 3.5% and 7% for the WRFMPI under RCP4.5 and 414 

RCP8.5, respectively). During winter, SMroot increases appear in the southeastern coasts, showing increments up 415 

to 20% (Fig. 9, DJF). Also, the pr (Fig. 4S, DJF) is projected to increase over the same region, so the results are 416 

suggesting the latter as the cause of the increase in SFCEVP. By contrast, during spring, part of the regions where 417 
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the SFCEVP is increased (i.e., the northernmost IP, and especially the Pyrenees) shows a diminution in the SMroot 418 

(non-significant in many cases), indicating thus the SFCEVP as a potential soil-drying driver. For summer (Fig. 419 

9, JJA), reductions in SMroot are mostly generalized (values of around -15%). As for SFCEVP, more discrepancies 420 

are shown during fall, although a general soil trend appears with reductions of around 5%. 421 

4. Discussion and concluding remarks 422 

This work aims to investigate the WRF model performance in terms of surface evapotranspiration, an 423 

essential variable that has been poorly studied, mostly due to the lack of long-term data regular in space and time, 424 

and therefore, how the WRF model behaves in this sense remain uncertain. 425 

 Consistent with previous studies (Knist et al., 2017; Greve et al., 2013), the WRF model presents a good 426 

ability to represent land-surface processes, thus being, a valuable tool to achieve climate information to investigate 427 

spatiotemporal patterns of the SFCEVP. Exceptions are the urban grid-points, where WRF showed a poor skill to 428 

represent the SFCEVP. This feature agrees with previous studies (González-Rojí et al., 2018; Knist et al., 2017), 429 

and is probably related to an anomalous WRF behavior associated with the mismatch between the real land use 430 

and the simulated one. Therefore, and with the exception mentioned, the amount of SFCEVP has been satisfactory 431 

represented at all the time and spatial scales analyzed (from annual to daily time scales and from regional to local 432 

scale). This is especially good for intermediate seasons (i.e., spring and fall) when important biological processes 433 

occur, and therefore, its adequate representation is crucial. 434 

 However, some discrepancies with respect to GLEAM appear in our simulations, particularly for the 435 

WRFMPI simulation. In this regard, it is important to keep in mind that GLEAM is a model based on satellite 436 

forcing data and not a direct result from observations. Therefore, part of the differences here found may be due to 437 

differences in the vegetation types used by WRF and GLEAM, the different spatial resolutions, how both models 438 

represent the soil water availability, and the different parameters associated to the vegetation types (e.g., root 439 

depth), and soil texture (e.g., field capacity and wilting point).  440 

The model performance to correctly represent these variables is largely influenced by errors in other 441 

atmospheric variables and vice versa. In this regard, it is well-known that the SFCEVP is mostly influenced by 442 

precipitation and radiation (and therefore temperature). In this way, the results suggest that a part of the problems 443 

to simulate the amount of SFCEVP is associated with the model ability to capture precipitation patterns. That is, 444 
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WRF overestimates the precipitation where the simulated SFCEVP is also higher than in GLEAM, leading to 445 

greater soil water availability, and thus, more evapotranspiration. In this regard, the largest differences in terms of 446 

precipitation with respect to the reference data appeared during winter when the precipitations are largely 447 

controlled by the large-scale circulation patterns. The latter agree with the results found by Argüeso et al. (2012a), 448 

who indicated that part of the errors in the precipitation simulated by WRF are inherited from the driving data 449 

during this season. Additionally, it should be noted that the reference data are not error-free, so uncertainties in 450 

both, SFCEVP and pr, could be actually smaller due to the fact that the products used in this study to validate 451 

WRF are not fully observational. For instance, large overestimations in precipitation occur at high altitude. In this 452 

regions, the gridded product are typically affected by underestimations mainly because observational stations are 453 

scarce and the spatial heterogeneity is higher. The precipitation patterns here shown agree with other studies 454 

performed over the IP. For instance, Argüeso et al. (2012a) and Herrera et al. (2010) reported higher spreads in 455 

spring rainfall by simulating the climate over the Spanish territory climate using regional climate simulations. On 456 

the other hand, our findings for a regional perspective agree with those found by Jiménez-Guerrero et al. (2013), 457 

who found underestimations over the southernmost IP and along the Mediterranean coast, especially during fall 458 

using RCMs simulations driven by ERA-Interim.  459 

Also, the results indicate a generalized underestimation of the temperature, which agrees with other studies 460 

performed in the framework of the ESCENA and EURO-CORDEX initiative for our study region (Katragkou et 461 

al., 2015). Such a behavior is not just a characteristic of WRF but also of others RCMs (Jiménez-Guerrero et al., 462 

2013; Kotlarski et al., 2014), which in part could be attributable to the overestimated soil water available in this 463 

region (result not shown). Thus, under higher than “real” water availability, more latent heat fluxes, and then, less 464 

sensible heat fluxes occur, with the subsequent overestimation in temperature. The latter is corroborated by the 465 

results obtained over the urban grid-points, where T2 is overestimated at the different time scales analyzed. 466 

Therefore, this study could be evidencing the essential role of the SFCEVP on changes in the variability of T2. 467 

Actually, anomalous latent heat fluxes favor the enhancement of the sensible heat fluxes, which in turn, lead to 468 

more temperature.  469 

In the context of a global increase in the temperature of around 1 and 1.5ºC, changes in SFCEVP with 470 

respect to the historical period are shown from all simulations throughout the year. The results also show that 471 
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model uncertainties are higher than those from different scenarios, as evidenced by Hawkins and Sutton (2009) in 472 

their study of the potential uncertainties in climate predictions. In this regard, although differences between GCM-473 

driven simulations occur, common change trends in the SFCEVP appear for all WRF simulations. Thus, the IP is 474 

likely to undergo significant reductions in SFCEVP, generalized for nearly all the IP during summer, and over the 475 

southernmost in spring. This behavior could be the result of the ongoing soil drying, which seems to be mostly 476 

caused by changes in precipitation patterns. Furthermore, the results seem to indicate certain amplification in the 477 

temperature rise via positive temperature-soil moisture feedbacks. Over the northernmost, however, enhanced 478 

SFCEVPs during spring could compensate for the temperature rise (cooling effect), being thus a soil drying driver 479 

as shows the SMroot projections in this region. Interestingly, a common noteworthy increase of the SFCEVP is 480 

found over the Pyrenees, particularly apparent during spring and summer. Here, the soil water availability is likely 481 

to increase leading to more SFCEVP. This feature, probably caused, at least in part, by the snow-cover depletion 482 

(Rangwala and Miller, 2012), could further alter the interactions between land and atmosphere (Xu and Dirmeyer, 483 

2012). All these results evidence the major role of the changes in SFCEVP, which could alter the entire climate 484 

system over the IP, a transitional region with a climate largely controlled by the land-surface interactions. These 485 

changes could lead to important implications on several natural and social systems through alterations of the 486 

hydrological cycle.  487 
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Figure Captions 697 

Fig. 1 (a) Mean topographical features in the IP and (b) the studied region corresponding to a two nested domain: 698 

d01- the EURO-CORDEX region at 0.44º of spatial resolution and the d02 centered over the IP at 0.088º of spatial 699 

resolution. 700 

Fig. 2 Annual cycle of monthly amount of accumulated SFCEVP (first row), average T2 (second row), and 701 

accumulated precipitation (third row) for the different WRF simulations and the reference data for the period 1980-702 

2017 in the three study regions (tall and short vegetation, and urban region). 703 

Fig. 3 Percentiles (25th, 50th, 75th, 80th, 85th, 90th, 95th, and 99th) simulated by the different WRF simulations 704 

(WRFERA, WRFCCSM, and WRFMPI) of the daily distributions of the SFCEVP (first row), T2 (second row), 705 

and pr (third row) vs. those from reference data (GLEAM for SFCEVP and E-OBS for T2 and pr) for the period 706 

1980-2017. The columns comprise the different study regions (tall and short vegetation, and urban region). Gray 707 

line indicates a perfect agreement with the reference data. 708 

Fig. 4 Annual and seasonal relative bias of the amount of SFCEVP for the WRF simulations (WRFERA, 709 

WRFCCSM and WRFMPI) with respect to the reference data (GLEAM). Pattern correlation are indicated in the 710 

bottom right corner of each panel. 711 

Fig. 5 Annual and seasonal bias of T2 for the WRF simulations (WRFERA, WRFCCSM and WRFMPI) with 712 

respect to the observations from E-OBS. Pattern correlation are displayed in the bottom right corner of each panel. 713 

Fig. 6 As Fig. 4 but for the accumulated precipitation (pr). Bias is expressed in relative terms with respect to the 714 

observations. 715 

Fig. 7 Perkins Skill Score (PSS) expressed in percentage for the simulated (WRFERA, WRFCCSM, and 716 

WRFMPI) daily distribution of the amount of SFCEVP with respect to the reference data (GLEAM). 717 

Fig. 8 Near future-to-present changes of the amount of SFCEVP expressed as relative differences (future minus 718 

present/present) for the WRFCCSM and the WRFMPI simulations and under the two RCPs (RCP4.5 and RCP8.5). 719 

Non-significant changes at the 95% confidence level are marked with black dots. The spatial averaged change for 720 

the whole IP is indicated in the bottom right corner of each panel. 721 

Fig. 9 As Fig. 8 but for the root-zone soil moisture. 722 
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Table 1. Averaged global temperature rise (ºC) in the near future (2021-2050) period with 

respect to the historical one (1980-2005), previously linearly detrended (T), and the year at 

which the temperature rise is above 1.5ºC (+1.5ºC) from the bias-corrected outputs of the 

two GCMs (CESM1 and MPI-ESM-LR), and under both RCPs (RCP4.5 and RCP8.5).

 CCSM4 MPI-ESM-LR
RCP4.5 RCP8.5 RCP4.5 RCP8.5

T (ºC) 1.37 1.54 1.17 1.36
+1.5ºC 2039 2037 2044 2039



Table 1. Monthly error measurements (Bias, MAE, and NormStd) of SFCEVP, T2, and pr for each 

region (tall vegetation, short vegetation, and urban). Error metrics of simulated (WRFERA, 

WRFCCSM, and WRFMPI) data were calculated with respect to the reference ones (GLEAM for 

SFCEVP, and E-OBS for T2 and pr). For SFCEVP and pr, bias, and MAE are depicted in relation to 

the reference data, and expressed in percentage (%). For T2, bias and MAE are computed in absolute 

values, and expressed in ºC.

Bias
tall vegetation short vegetation urban

SFCEVP T2 pr SFCEVP T2 pr SFCEVP T2 pr
WRFERA 12.01 -0.67 33.56 1.89 -0.58 18.42 -96.85 1 2.33
WRFCCSM 10.91 -0.53 43.96 0.58 -0.46 17.94 -96.87 1.13 0.19
WRFMPI 17.41 -0.57 69.34 16.35 -0.64 54.20 -96.37 1.03 28.77

MAE
tall vegetation short vegetation urban

SFCEVP T2 pr SFCEVP T2 pr SFCEVP T2 pr
WRFERA 12.61 0.69 34.98 14.42 0.60 22.19 96.85 1.00 16.27
WRFCCSM 14.40 1.34 70.66 21.37 1.29 69.48 96.87 1.47 60.51
WRFMPI 19.43 1.47 88.89 25.03 1.47 90.73 96.37 1.48 73.03

NormStd 
tall vegetation short vegetation urban

SFCEVP T2 Pr SFCEVP T2 pr SFCEVP T2 pr
WRFERA 0.98 0.95 1.29 0.89 1.01 1.14 0.02 1 1.07
WRFCCSM 0.96 0.96 1.33 0.88 1.01 1.05 0.02 1.01 1
WRFMPI 0.98 0.92 1.54 0.93 0.96 1.44 0.03 0.97 1.28
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Supplementary figures

tall vegetation (14.04%)

short vegetation (83.34%)

urban (2.62%)

Fig. 1S Regions (tall vegetation, short vegetation, and urban) based on the WRF vegetation types.

The percentage of coverage is shown in brackets for each region.
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Fig. 2S Present-to-day annual (from January to December) and seasonal climatology of the accumu-

lated amount of SFCEVP from GLEAM (first column), averaged T2 from E-OBS (second column),

and accumulated pr from E-OBS (third column).
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Fig. 3S Near-future-to-present relative changes of accumulated pr (%) for the WRFCCSM and

WRFMPI simulations under the two RCPs (RCP4.5 and RCP8.5).Stippled areas indicate non-

significant changes at the 95% confidence level.
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Fig. 4S Near-future-to-present changes of average T2 (◦C) for the WRFCCSM and WRFMPI sim-

ulations under the two RCPs (RCP4.5 and RCP8.5). Stippled areas indicate non-significant changes

at the 95% confidence level. The spatial averaged change for the whole IP is indicated in the bottom

right corner of each panel.
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