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Objectives: Machine learning (ML) classification tools are known to accurately
predict many cardiac surgical outcomes. A novel approach, ML-based survival
analysis, remains unstudied for predicting mortality after cardiac surgery. We
aimed to benchmark performance, as measured by the concordance index
(C-index), of tree-based survival models against Cox proportional hazards (CPH)
modeling and explore risk factors using the best-performing model.
Methods: 144,536 patients with 147,301 surgery events from the Australian and New
Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) national database were
used to train and validate models. Univariate analysis was performed using Student’s
T-test for continuous variables, Chi-squared test for categorical variables, and
stratified Kaplan-Meier estimation of the survival function. Three ML models were
tested, a decision tree (DT), random forest (RF), and gradient boosting machine
(GBM). Hyperparameter tuning was performed using a Bayesian search strategy.
Performance was assessed using 2-fold cross-validation repeated 5 times.
Results: The highest performing model was the GBM with a C-index of 0.803
(0.002), followed by RF with 0.791 (0.003), DT with 0.729 (0.014), and finally CPH
with 0.596 (0.042). The 5 most predictive features were age, type of procedure,
length of hospital stay, drain output in the first 4 h (ml), and inotrope use greater
than 4 h postoperatively.
Conclusion: Tree-based learning for survival analysis is a non-parametric and
performant alternative to CPH modeling. GBMs offer interpretable modeling of
non-linear relationships, promising to expose the most relevant risk factors and
uncover new questions to guide future research.
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Introduction

The extraordinary physiologically stress of cardiac surgery carries a high risk of adverse

postoperative outcomes (1). An important component of surgical decision-making is

determining which patients will ultimately benefit after overcoming the initial insult of

surgery. Overall survival is an important, albeit complex, metric for understanding the
Abbreviations

ANZSCTS: Australia and New Zealand Society for Cardiac and Thoracic Surbery; C-index: Concordance
Index; CPH: Cox Proportional Hazards; DT: Decision Tree; GBM: Gradient Boosting Machine; HREC:
Human Research Ethics Committee; KM: Kaplan-Meier; ML: Machine Learning; NDI: National Death
Index; NHMRC: National Health and Medical Research Council; RF: Random Forest.
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overall benefit of a surgery (2, 3). It is a layered outcome that captures

the impact of peri-procedural complications and the new functional

baseline achieved after the operation (2, 3). Developing interpretable

tools that map a patient’s physiological, operative, and early

postoperative variables to their long term survival could provide

novel insights into who truly benefits most from cardiac surgery.

Previous ML research modeling survival converts time-to-event

to a binary outcome such as 5-year mortality, which sacrifices

potentially useful information (4). Survival data is typically studied

using linear models such as Cox proportional hazards (CPH)

regression (5, 6). It is increasingly recognized, however, that

surgical risk is non-linear (7). Novel machine learning (ML)

approaches continue to be developed for survival analysis with

potentially attractive non-linear properties (8, 9). Modeling

relationships between variables in this way could uncover unique

risk factors, assist decision-making, and improve the delivery of care.

Many important ML concepts have been translated into a

survival analysis domain including neural networks, support

vector machines, gradient boosting machines (GBM), and

random forests (RF) (8, 10). In the context of tabular datasets,

tree-based methods such as gradient boosting and RF

consistently outperform deep learning methods (11). Tree-based

methods tend to be more robust to uninformative features and

learn non-smooth functions (11). Survival analysis in healthcare

is a tabular dataset problem and therefore tree-based machine

learning may provide better model fit and feature explanations.

Tree-based learners are a class of models which expand on the

decision tree, whereby strong models are constructed from

ensembles of weak decision trees such as the random forest (8, 12).

Additionally, in gradient boosting, the optimization of the ensemble

model can be improved by minimizing a residual term using the

gradient of the error of the weak learner (9). Regardless of the tree-

based model, survival and hazard functions are then estimated using

non-parametric methods based on the data in the terminal nodes (13).
Aims and hypotheses

Firstly, we aimed to compare model fit of tree-based machine

learning to Cox proportional hazards modeling. Secondly, we

aimed to use the best-performing model to determine the key

predictor variables for long-term mortality. We hypothesized that

tree-based ML provides better model fit and explanations

compared with CPH modeling.
Methods

Study population

The Australian and New Zealand Society of Cardiac and Thoracic

Surgeons (ANZSCTS) Database registry recorded 153,944 cardiac

surgery events in 151,089 unique patients from April 2001 to

December 2019, captured at 42 centers in Australia (14). The

database is not publicly available as it stores sensitive patient

information. Inclusion in the database was for any patient undergoing
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cardiac surgery, other thoracic surgery using cardiopulmonary bypass,

and pericardiectomy for constrictive pericarditis, regardless of

cardiopulmonary bypass. The dataset includes a linkage with the

National Death Index (NDI), which is a national program recording

all deaths that have occurred since 1980 (15).
Outcome definitions

Long-term mortality was defined as any death that was

recorded after a procedure. Patients were followed from the date

of surgery to their death as recorded in either the database or the

NDI. The date of the last linkage with the NDI, the “follow-up

time”, was the 1st of August, 2019.
Variable selection, data preparation,
exploration, and statistical methodology

All perioperative variables in the database were considered for

inclusion. Any variables which were missing 90% or more data

were excluded from the analysis. Preliminary data analysis was

conducted by comparing the univariate distribution of each variable

between survivors and non-survivors at the last follow-up.

Hypothesis testing for distributional differences were performed

using a student’s T-test for continuous variables and a Chi-Squared

test for categorical variables. For fitting models, non-binary

categorical variables were converted to a set of dummy variables.

A Kaplan-Meier (KM) estimator was fitted to plot the survival

function in order to visualize the univariate effects of sex,

indigenous status, and type of operation on long-term survival.
Models

Time-to-event regression differs from standard regression as

for a subset of cases the time of an event occurring has not been

observed, and is thus censored. Rather than learning a direct

relationship between input variables and the time of an event,

survival analysis seeks to estimate the survival and cumulative

hazard functions based on input covariates.

Cox proportional hazards regression
One of the oldest and most widely used methods for regressing

censored data is the CPH model (6, 13). It uses a semi-parametric

approach to learn the effects of covariates on the hazard function

(6). The assumption of proportional hazards derives from the

relationship between the baseline hazard function and the

covariates and requires that the ratio between two patients

hazard function is constant across time (6). The potential of co-

linearity to degrade the performance of this model was addressed

by developing a pipeline that filtered the input dataset to remove

co-linearity. This was achieved by checking the correlation

coefficient between features and if the coefficient exceeded 0.6

then only the feature with the highest mutual information with

respect to mortality was included (16).
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Tree-based learners
Tree-based machine learning incorporates decision tree and

ensemble decision tree methods. These models are non-

parametric and make no proportional hazards assumptions.

Decision tree
Survival trees are simple models that learn decision rules derived

from input features, that is often represented as an expanding set

of branching paths (17). These models are non-parametric,

simple to understand, and computationally efficient (17).

Random forest
Random survival forests are ensembles of decision trees that are

trained on bootstrapped samples of training data and a random

subset of input variables (12, 13). Unlike decision trees, however,

RF models do not have a simple interpretation to explain their

predictions. Methods do exist, however, to determine the most

important features (18).

Gradient boosting machine
Similar to random forests, gradient boosting machines are an

ensemble of decision trees, however, the model fits an additional

term to minimize the residual error of the weak learner using the

gradient of the error (13). Survival and hazard functions are

estimated using non-parametric methods (13).
Training, benchmarking, and bias

For each candidate model, a hyper-parameter search was

conducted using a Bayesian search strategy (19). The parameters

and ranges searched are available in the supplementary materials.

Performance was measured using the Concordance index (C-

index) which is measured on a scale between 0.5 and 1.0, where

1.0 indicated perfect model fit and 0.5 indicates performance no

better than random chance. In order to benchmark the
FIGURE 1

Diagrammatic representation of cross-validation, data imputation, feature sele
on or using the training set, whereas processes in blue are with the test set.
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algorithms’ performance, a 2-fold cross-validation scheme repeated

5 times was used (20). Imbalanced data, where an extreme

minority of samples had very long-term outcomes recorded, was

handled with stratified minority class oversampling. Multiple

imputation with random forests was used to impute missing data.

Both imputation and oversampling were applied only to the

training set of each cross-validation fold to ensure no data leak

across the training and test sets. A schematic representation of

training and benchmarking is presented in Figure 1.

The assessment of machine learning bias was achieved by

stratifying the test set of each cross-validation fold by important

characteristics and measuring the performance on the stratified

subsets. Bias was assessed for the characteristics of sex and

indigenous status.
Feature importance

After benchmarking performance, the best-performing model

was used to assess which features were the most important for

predicting the hazard function for long-term mortality (18).
Ethics

This project was conducted in concordance with the National

Health and Medical Research Council (NHMRC) National

Statement on Ethical Conduct in Human Research, with approval

from the Monash University Human Research Ethics Committee

(HREC) approval number 2020-24850-45439.
Results

144,536 patients were included in the final analysis with

147,301 surgery events (Figure 2). A summary of patient
ction, and measuring performance. Processes in yellow represent actions
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FIGURE 2

Flow diagram depicting data processing and the final subset.
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characteristics, stratified by survival at follow-up, are reported in

Table 1. All patient characteristics included in the analysis are

reported in supplementary Tables S1 and S2. The average age

of the cohort was 65.6 years (SD 12.9), 26.8% of patients were

female, and 2.6% of the cohort was indigenous. Mortality events

represented 24.37% of the cohort with the longest recorded

mortality 17.9 years after the first operation, and the longest

survivor at follow-up was 18.2 years.
Kaplan meier analysis

Stratified survival functions as estimated by the Kaplan-Meier

estimator are shown in Figure 3. Women undergoing cardiac

surgery had worse long-term survival. Indigenous people

undergoing cardiac surgery had worse survival early after

surgery, however, this effect reversed with very long-term (>10

years) survival. The combination of a coronary artery bypass and

valve in the same operation conferred the worst long term

mortality.
Performance results

The best performing model was the GBM, with a C-index of

0.803 (0.002), compared with CPH modeling with 0.596 (0.042).
Frontiers in Cardiovascular Medicine 04
The performance of the GBM on female patients was 0.800

(0.004) and for indigenous patients was 0.773 (0.012). All

performance scores for each benchmarked model, including their

bias assessment are reported in Table 2.
Feature importance

As gradient boosting machines had the highest performance,

feature importance was extracted from its weights. Table 3

reports the top 15 most important variables along with their

feature importance score (higher is more significant). Age was

the most significant risk factor, followed by operation type,

length of hospital stay, and drain output in the first 4 h.
Discussion

This is the first study to investigate tree-based time-to-event

models to predict survival. It is also the first to study machine

learning bias in this context. Our results show that machine

learning outperforms the current gold standard in medical

research, the Cox proportional hazards model. Additionally, we

have shown that high performing machine learning approaches

can be used to determine the most important features for

predicting long-term mortality.
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TABLE 1 Patient characteristics.

Variable Survived
(n = 123,750):
Mean (SD) or
Count (%)

Mortality
(n = 30,194):
Mean (SD) or
Count (%)

p-value

Age 64.28 (12.87) 71.05 (11.48) <0.001

Sex
Male 91,839 (74.21%) 20,844 (69.03%) <0.001

Female 31,911 (25.79%) 9,350 (30.97%)

BMI 28.77 (8.03) 28.25 (9.67) <0.001

Indigenous
No 118,921 (96.10%) 29,206 (96.73%) <0.001

Yes 3,325 (2.69%) 665 (2.20%)

Smoking History
Yes 69,496 (56.16%) 18,646 (61.75%) <0.001

No 52,670 (42.56%) 11,258 (37.29%)

Diabetes
No 89,276 (72.14%) 19,552 (64.75%) <0.001

Yes 34,295 (27.71%) 10,557 (34.96%)

Preoperative Arrhythmia
No 104,539 (84.48%) 22,727 (75.27%) <0.001

Yes 19,013 (15.36%) 7,376 (24.43%)

Congestive Heart Failure
No 101,910 (82.35%) 19,511 (64.62%) <0.001

Yes 21,663 (17.51%) 10,602 (35.11%)

NYHA Class
I 48,427 (39.13%) 9,195 (30.45%) <0.001

II 43,970 (35.53%) 8,528 (28.24%)

III 23,351 (18.87%) 7,911 (26.20%)

IV 5,292 (4.28%) 3,236 (10.72%)

Ejection Fraction 56.19 (29.53) 51.19 (15.05) <0.001

Length of ICU Stay (Hours) 64.59 (91.89) 102.50 (186.05) <0.001

Length of Intubation (Hours) 19.30 (59.69) 42.75 (125.92) <0.001

Type of Procedure
Isolated CABG 67,880 (54.85%) 14,290 (47.33%) <0.001

Valve(s) only 25,429 (20.55%) 6,040 (20.00%)

Other 19,594 (15.83%) 4,996 (16.55%)

Valve(s) + CABG 10,690 (8.64%) 4,797 (15.89%)

Infective Endocarditis
No 120,143 (97.09%) 29,026 (96.13%) <0.001

Yes 3,420 (2.76%) 1,075 (3.56%)

Urgency
Elective 87,018 (70.32%) 18,707 (61.96%) <0.001

Urgent 31,667 (25.59%) 9,127 (30.23%)

Emergency 4,755 (3.84%) 2,033 (6.73%)

Salvage 226 (0.18%) 310 (1.03%)

Cross-clamp Time 76.46 (41.56) 84.29 (51.21) <0.001

Perfusion Time 107.17 (53.63) 123.61 (75.09) <0.001
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Interpretation of univariate analysis

The initial data exploration included a univariate analysis with a

Kaplan-Meier estimator, which indicated sex differences in long-term

mortality. The finding that there is an association between female sex

and higher long-term mortality has been previously identified (21).

Women who undergo cardiac surgery tend to be older, have greater

comorbities, and need emergency or urgent surgery (22, 23). The
Frontiers in Cardiovascular Medicine 05
existing literature on whether female sex is an independent risk

factor for long-term mortality is mixed with analyses usually

conducted using linear modeling (21, 24). Sex was not ranked as a

significant variable in the gradient boosting model, which adds

evidence to the argument that the sex difference is mostly explained

by other covariates associated with female sex.

Indigenous mortality is less studied, however, a recent analysis

of patients undergoing coronary artery bypass grafting found they

were younger but suffering from a higher prevalence of

comorbidities (25). As age is the most predictive feature for

mortality, the younger indigenous cohort could account for later

equalization and gain in survival for these patients.
Effectiveness of machine learning

Similar to the pre-existing literature of tree-based methods in

cardiac surgery, GBM are often as good or better than pre-

existing methods (4, 26). The effectiveness of these GBM and RF

models in healthcare has been shown across many domains and

forms the basis of many clinical support tools (27, 28). The basis

for the effectiveness of these models has recently been

empirically determined with several attractive inductive biases of

tree-based models. They are robust to uninformative features,

preserve dataset orientation, and capable of learning non-smooth

functions (11). This is in contrast to linear models, such as CPH,

that do not share these properties.

An important feature of any predictive model in healthcare is

explainability (29). We have demonstrated that a trained model

can provide global feature importance which provides insight

into risk factors that may have been previously overlooked. One

interesting predictive feature the GBM learned was clopidogrel

use within 7 days preoperatively. While recent evidence does not

find that clopidogrel use impacted short or long-term mortality,

this analysis was performed using CPH modeling (30). The

predictive importance of clopidogrel in this analysis is

interesting, however, it serves to underscore the importance of

novel ML methods for hypothesis-generating research.
Clinical impact of tree-based ML

The impact of ML in the clinical domain has been slow,

however, tree-based risk stratification tools and apps, such as

predictive optimal trees in emergency surgery (POTTER), have

introduced clinicians to their routine use (7). Further potential

exists for these models to provide automated feedback and risk

modeling in electronic medical systems. Tree-based survival

analysis could provide additional depth to modeling in both

clinician facing and automated systems.
Limitations

There are a number of limitations to our study. Firstly, we

made the assumption that data was either missing completely
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FIGURE 3

Stratified survival functions as defined by Kaplan-Meier estimators. Stratification by sex is depicted in (a), by race in (b), and by operation type in (c).

TABLE 2 Performance and bias Assessment.

Model C-index
(Standard
Deviation)

C-index for
Female
Patients
(Standard
Deviation)

C-index for
Indigenous
Patients
(Standard
Deviation)

Cox Proportion Hazards
Model

0.596 (0.042) 0.593 (0.039) 0.590 (0.044)

Decision Tree 0.729 (0.014) 0.721 (0.015) 0.677 (0.033)

Random Forest 0.791 (0.003) 0.789 (0.004) 0.774 (0.008)

Gradient Boosting
Machine

0.803 (0.002) 0.800 (0.004) 0.773 (0.012)

TABLE 3 Top 15 most important features. A higher value indicates a more
important feature for predicting time to mortality.

Feature Score
Age 0.43

Type of Procedure 0.15

Length of Stay 0.13

Drain output in first 4 h (ml) 0.03

Inotrope >4 h postoperatively 0.03

Clopidogrel within 7 days of surgery 0.02

Perfusion Time 0.02

Length of Intubation (Hours) 0.02

Cross-clamp Time 0.01

NYHA Classification Class I 0.01

Highest Postoperative Creatinine 0.01

Discharge Destination (Home) 0.01

Lowest Postoperative Haemaglobin 0.01

Length of ICU Stay (Hours) 0.01

Preoperative Creatinine 0.01
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at random, or missing at random. While we believe this is a

safe assumption, there may be instances where data is

missing not at random that biases our imputation approach.

Additionally, compared to CPH and decision tree methods,

RF and GBM were significantly more computationally

expensive. In settings with very large datasets and limited

computational resources they may not be appropriate choices.

The use of less computationally intensive algorithms, such as

light gradient boosting machine, could improve

computational performance however the gain in this analysis

would be marginal (31). Furthermore, feature importance

rankings derived from GBM or RF do not provide a

direction. In CPH models, the coefficients are easily

interpretable and provide a direction for the features effect.

Where this is important, alternative explanatory methods

should be considered. Finally, in our bias analysis, while

there was no difference in performance for female sex, there

was a noticeable but small drop in performance for the

indigenous patients. Where these models are used in clinical

settings, consideration should be made to ensure separate

machine learning models are trained for this important

cohort to address the potential for bias (32).
Frontiers in Cardiovascular Medicine 06
Conclusions

Tree-based learning for survival analysis is a non-parametric

and performant alternative to Cox proportional hazards

modeling. Within the tree-based learning methods, gradient

boosting machines perform the best as measured by the C-index.

These models can provide risk profiles to guide clinical reasoning

and uncover new questions for future research.
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