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Parkinson's Disease (PD) is the second most prevalent neurodegenerative disorder among adults. Although its
triggers are still not clear, they may be due to a combination of di®erent types of biomarkers measured
through medical imaging, metabolomics, proteomics or genetics, among others. In this context, we have
proposed a Computer-Aided Diagnosis (CAD) system that combines structural and functional imaging data
from subjects in Parkinson's Progression Markers Initiative dataset by means of an Ensemble Learning
methodology trained to identify and penalize input sources with low classi¯cation rates and/or high-vari-
ability. This proposal improves results published in recent years and provides an accurate solution not only
from the point of view of image preprocessing (including a comparison between di®erent intensity preservation
techniques), but also in terms of dimensionality reduction methods (Isomap). In addition, we have also
introduced a bagging classi¯cation schema for scenarios with unbalanced data.

As shown by our results, the CAD proposal is able to detect PD with 96:48% of balanced accuracy, and
opens up the possibility of combining any number of input data sources relevant for PD.

Keywords: Ensemble learning; neuroimaging; Parkinson's disease; MRI; SPECT; computer-aided-diagnosis;
machine learning; image processing.

1. Introduction

Parkinson's Disease (PD) is a degenerative condition

of the brain that causes motor symptoms such as

rigidity and bradykinesia and a wide variety of non-

motor complications including limitations in speech,

lack of emotion expressiveness and cognitive im-

pairment.1,2 Although PD is the most prevalent

movement disorder among adults, there are other

movement disorders such as the Multiple System

Atrophy (MSA), the Progressive Supranuclear Palsy

(PSP) or the Corticobasal Degeneration (CD). Since

the symptoms of these pathologies are very similar to

those of PD, the accuracy of its diagnosis is some-

times limited especially in early stages.3–5

In clinical practice, PD is diagnosed through the

use of motor tests (such as the UPDRS) and the
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visual inspection of functional imaging to determine

the distribution of dopaminergic transporters in the

brain.6 Though some recent works have claimed that

PD can be diagnosed only recurring to structural

scans, the most reliable diagnostic tool remains to be

the FP-CIT SPECT imaging modality based on the

use of the I ½123�-Io°upane radioligand.7

Nowadays, there is a growing interest on research

combining structural and functional scans.8,9

Nevertheless, these proposals present some chal-

lenges. For example, if we want to compare two or

more acquisitions, it will be necessary to compare the

same anatomical positions between them. To solve

this, we have to spatially normalize the brain scans

by means of: (1) rigid transformations (including

translations, rotations, enlargements and cropping);

or (2) the combination of rigid and nonlinear trans-

formations which might alter the morphology of

some anatomical regions to get an accurate match

between voxels. Though it would be preferably to

only use a±ne transformations, specially in scenarios

analyzing the morphological distribution of intensi-

ties in the brain,10 when the equipment used to ob-

tain the brain scans is not the same (di®erent

cameras, calibration conditions, etc.) or when we

want to compare di®erent subjects voxel-by-voxel

(or even the same subject but at di®erent time

instants), then we have to rely on the nonlinear ap-

proach. But there is an additional issue to be taken

into account. After the warping process by a non-

linear registration, scans from patients with PD ex-

hibit larger changes in their shape.11 This alters the

intensity preservation during the spatial normaliza-

tion and increases (arti¯cially) the interclass sepa-

ration between control subjects and patients with

PD.12 Therefore, if we want to combine brain images

from di®erent modalities, it would be interesting to

study also the e®ect of intensity preservation on each

imaging modality and determine which approach

might be more convenient when di®erentiating

patients with potential PD.

Once these problems have been solved, it remains

to be seen how to perform the data analysis.13 In the

last years, the introduction of automated Computer-

Aided Diagnosis (CAD) systems based on Machine

Learning (ML) makes it possible to alleviate the lack

of trained specialists and allows researchers to

¯nd new ways in early detection of dementia.14,15

Moreover, these kind of tools allow us to identify

subtle patterns that help us to subtype better the

disease and understand its pathogenesis.7,16,17 In the

current literature about PD, most of the published

works refer to the study of brain imaging of an spe-

ci¯c modality (mainly FP-CIT SPECT).18 However,

from a scienti¯c point of view, it would be more in-

teresting to combine as much information from dif-

ferent data sources including (among others)

conventional medical imaging from both functional

and structural modalities, blood markers, genetic

testing, metabolomics and proteomics. In fact, it is

expected that their combination leads us to ¯nd

out what the triggers of PD are and how they

act.17,19–21

Ensemble learning refers to a methodology that

attempts to improve predictive performance by

combining predictions from multiple single models

that are learning from distinct data subsets.22,23 In

neuroimaging, the most popular ensemble learning

method for imaging classi¯cation is based on

Majority Voting (MV).24–35 Though this approach

helps to prevent potential over¯tting while reducing

the variance of input data, if there are many input

sources but they are not all reliable, this kind of

solutions tends to under¯t.36 In this sense, there is a

growing interest in ¯nding new proposals able to

solve some of their limitations.22 For example, Haque

et al.37 proposed the use of a genetic algorithm-based

search method to ¯nd the optimum combination of

classi¯ers to develop a heterogeneous ensemble. In

Liu et al.,38 the addition of fully-connected layers

(with sigmoid activation functions) models the

contribution of several input data sources. Authors

in Rondina et al.39 made use of Multiple Kernel

Learning to combine a set of ROIs from MRI, FDG

PET and rCBF SPECT for Alzheimer's. The

boosting schema described in Nanni et al. (2018)40

learns from a partitioned feature space during the

training phase and assigns di®erent classi¯ers to

features subsets in test samples to evaluate their

labels.

In this context, the work presented here aims to

combine the contributions of several previous works

to develop a CAD model for PD assessment using an

ensemble learning methodology to evaluate subjects

with potential PD. This includes, among others, the

classi¯cation schema based on a Weighted Majority

D. Castillo-Barnes et al.

2350041-2

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

23
.3

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
09

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Voting (WMV) schema with a nonlinear windowing

function that strongly penalizes the contributions of

non-reliable input data sources presented in Castillo–

Barnes et al.41; its improvement by penalizing data

sources with high variability36; the replacement of

traditional windowing functions by Merino's curve36;

the inclusion of a reference method for dimensional-

ity reduction of brain scans using a nonlinear de-

composition42; and ¯nally, the evaluation of di®erent

intensity preservation techniques during the spatial

normalization of input brain scans.11 Indeed, though

many other new features have also been included

(like the bagging of classi¯ers to alleviate the strong

imbalance of our reference database), our proposal

can be easily adapted to other analysis scenarios

for the evaluation of psychiatric and neurological

disorders.43–45

2. Materials & Methods

2.1. Parkinson's progression markers
initiative dataset

Data used in the preparation of this work were

obtained from the Parkinson's Progression Markers

Initiative (PPMI) database.a For up-to-date infor-

mation on the study, please visit https://www.ppmi-

info.org/.

PPMI is a public-private partnership funded by

the Fox Foundation for Parkinson's Research and

funding partners (including a consortium of industry

players, nonpro¯t organizations and private indivi-

duals) listed at https://www.ppmi-info.org/about-

ppmi/who-we-are/study-sponsors. The Institutional

Review Boards approved the PPMI program of each

participating site and all the participants have given

their written informed consent to participate in the

program.

For this work, we have used 337 subjects from

PPMI dataset including: Healthy Control (HC)

subjects and patients with de novo Parkinson's

Disease (PD). Demographics about these two groups

are summarized in Table 1.

As one of the main objectives of this work is to

exploit information from both structural and func-

tional brain imaging to evaluate patients with

potential Parkinson's Disease, we have evaluated

subjects from PPMI dataset whose structural

(MRI-T1) and functional (FP-CIT SPECT) imaging

acquisitions have been taken at the same time.

Unfortunately, only nine subjects were evaluated for

both imaging modalities at the same day. In this

context, it seems reasonable to us that the progres-

sion of neurodegeneration is negligible if the time

di®erence between acquisitions is small even if it is

not the same day. Thus, we have decided to extend

this margin to 21 days to obtain a sample size that,

although being small, will be enough to perform our

classi¯cation experiments (34 samples per class).

Although many other types of markers (genetic,

proteomic, etc.) could have been included, due to the

lack of data available in the PPMI repository for all

the input samples, the methodology developed for

this work had to be only evaluated using the afore-

mentioned imaging modalities.

2.2. Image preprocessing

In order to compare the same anatomical voxels from

MRI-T1 and FP-CIT SPECT imaging modalities,

we have to perform the spatial normalization of each

input brain scan to a common reference space.12 The

standard procedure for this consists of (1) applying

the spatial co-registration of all input FP-CIT

SPECT scans to a native space de¯ned by their re-

spective MRI imaging; and (2) if we want to perform

voxel-by-voxel analysis, computing the spatial nor-

malization of each MRI scan to a common reference

space (template) and applying this deformation to

its corresponding FP-CIT SPECT image.

A common tool to perform brain imaging spatial

transformations is the Statistical Parametric Map-

ping (SPM) framework (available at: https://www.

¯l.ion.ucl.ac.uk/spm/). For its latest version, it is

recommended that spatial normalization of any

functional scan makes use of a segmented version of

ahttps://www.ppmi-info.org/access-data-specimens/download-data.

Table 1. Demographics.

Male Female All

# Age # Age # Age

HC 25 62:9� 11:9 9 60:6� 8:2 34 62:3� 11:0
PD 196 63:1� 9:9 107 61:2� 8:3 303 62:4� 9:4

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease

2350041-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

23
.3

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

 D
E

 G
R

A
N

A
D

A
 o

n 
09

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



its respective MRI imaging.46,47 However, as both

structural and functional brain scans from the PPMI

dataset are rarely co-registered, this procedure has to

be carried out by minimizing the mean squared dif-

ference between a reference template and a warped

version of each input scan. In addition to this, since

many FP-CIT SPECT images in the PPMI reposi-

tory were cropped or included artifacts, some co-

registrations failed as the model did not converge or

the resulting image was totally erratic.

As input FP-CIT SPECT scans would be more

likely to be similar to each other than to a structural

template, we tried to perform this registration to a

reference template using the same imaging modali-

ty.12 Thus, following the procedures described by

Salas et al.,48 a functional template is generated and

then co-registered to the same position as the

structural Tissue Probabilistic Map (TPM) included

in SPM12 for MRI-T1 scans.49 Once generated, ¯nal

co-registrations between both functional and struc-

tural brain scans are calculated by means of their

spatial registration to our new functional template

(in case of FP-CIT SPECT scans) or straightfor-

wardly to the TPM template (MRI).

MRI-T1 scans from PPMI dataset have been

segmented using SPM12. However, since only Grey

Matter (GM) and White Matter (WM) tissues might

be relevant for PD diagnosis,8,50–52 any other tissue

generated is discarded.53,54 During this process,

SPM12 has to redistribute the intensities of some

brain regions to compensate for the deformation

needed to ¯t each sample to our reference space. As

explained in SPM12 guidelines,47 this can be per-

formed in two ways: (1) by weighting the average of

the signal under an smoothed kernel (intensity

preservation of the concentration); or (2) by pre-

serving the total amount of signal for each region so

intensities from those areas which are most expanded

during the warping are reduced (intensity preserva-

tion of the amount). Figure 2 shows the di®erences

between these two alternatives when applying some

spatial deformations to the intensity map on the left.

Preprocessing of FP-CIT SPECT modality

requires some additional steps. First, we had to

identify and discard samples with errors including

cropped images, very noisy samples, acquisitions

with artifacts, etc.55 At this point, when using

SPM12 to perform the spatial registration of func-

tional brain scans, we realized that due to di®erences

Fig. 1. Top row: axial views of an intermediate slice
showing the structural template (left), the functional
template (center) and their overlap (right). Bottom row:
3D montage showing the overlap between the structural
and functional templates.

Fig. 2. Example showing the e®ects of the two intensity
preservation methods included in SPM12 when applying
some spatial deformations to the intensity map on the left.
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in intensity ranges (in some cases by several orders of

magnitude), the ¯t between the samples and our

reference template failed many times. To solve this

problem, we proposed to standardize all input scans

based on the procedure described by expression (1).

In this, terms TemplateMIN;MAX refer to the mini-

mum or maximum intensity values of our reference

template, whereas SubjectMIN;MAX
i represent the

minimum or maximum intensity values from the ith

input sample. The transformation helps us not only

to improve the nonlinear spatial normalization and

reduce the negative e®ects due to artifacts and

background noise.

� ¼ TemplateMAX � TemplateMIN

SubjectMAX
i � SubjectMIN

i

:

Subjecti ¼ �ðSubjecti � SubjectMIN
i Þ þ TemplateMIN:

ð1Þ
Once applied the spatial normalization, by means of

either intensity preservation of the concentration or

intensity preservation of the amount, the next step

will be to apply an intensity normalization approach.

To this end, and following the recommendations

given in Brahim et al.,56 where the authors compared

several intensity normalization methods during the

classi¯cation of FP-CIT SPECT images from HC

subjects and patients with PD, we decided to include

in our pipeline the intensity normalization procedure

using alpha-stable distributions.57,58 This method

assumes that the intensity values of the FP-CIT

SPECT acquisitions follow �-stable distributions

with parameters � (stability), � (skewness), � (scale)

and � (location). Together, f�i; �i; �i; �ig, these four

parameters determine the shape of the intensity

distributions of FP-CIT SPECT scans. Thus, if we

apply the linear transformation in expression (2), the

original intensities from the ith sample, Xi, will be

transformed into a new intensity map, Yi, whose

range is comparable to any other transformed

sample.

Yi ¼
PN

i¼1 �i
�

Xi þ
PN

i¼1 �i
�

�
PN

i¼1 �i
�

�i: ð2Þ

Figure 3 includes an arrangement showing the in-

tensity distribution of several FP-CIT SPECT scans

randomly selected from PPMI dataset before/after

their normalization. As we can observe, intensity

ranges after normalization are comparable, and it is

easier to distinguish between samples with a profuse

loss of dopaminergic transporters especially at stri-

atum region.

2.3. Ensemble learning

Our ensemble learning proposal is based on a

weighting of the predictions obtained by means of

simple classi¯ers focused on particular data sources

and/or data subsets.22

2.3.1. Majority voting

The simplest form of weighted ensemble is Majority

Voting (MV) where the ¯nal decision on instance x

depends only on how many classi¯ers decided that x

belongs to the jth class (cj). Applying (3), the pre-

dicted class of the ensemble for sample x is computed

from the labels predicted by the kth classi¯er,

Fig. 3. Comparison of eight randomly selected FP-CIT SPECT brain scans from the PPMI repository before (top row) and
after (bottom row) their preprocessing.

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease
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ypred
k ðxÞ, restricted to the function gðy; cÞ in (4).

ypred
MV ðxÞ ¼ argmax

cj2domainðyÞ

X
k

gðypred
k ðxÞ; cjÞ

 !
; ð3Þ

gðy; cÞ ¼ 1; y ¼ c;

0; y 6¼ c0:

�
ð4Þ

2.3.2. Weighted majority voting

Though MV achieves great classi¯cation results

while reducing potential over¯tting, these solutions

tend to under¯t when combining a large amount of

input data sources that do not generalize well.41 One

way to alleviate this problem is to penalize the con-

tribution of weak classi¯cations through a Weighted

Majority Voting (WMV) approach including a factor

wk 2 ½0; 1� that modulates the contribution of the kth

input data source to our ¯nal decision.59 Since this

term usually represents the result of a classi¯cation

metric (e.g. accuracy or balanced accuracy), its value

is determined using an internal Cross-Validation

(CV) loop ¯tted to the training data.

ypred
WMVðxÞ ¼ argmax

cj2domainðyÞ

X
k

wk � gðypred
k ðxÞ; cjÞ

 !
:

ð5Þ

2.3.3. Nonlinear windowing

Although to a lesser extent, if we try to classify a large

amount of input data sources that do not generalize

well, then proposals based on WMV will also be af-

fected by the under¯t. Tomitigate this problem, some

proposals have emerged over the last few years. In

Castillo–Barnes et al.,41 authors introduced two

restrictions. First, setting to zero the contribution

(vote) of input sources with rates lower than 50%.

Second, since simple learning models trained on data

resulting in classi¯cation rates slightly above 50%

should not have a large impact on the ¯nal ensemble

decision, any of the functions �ðwkÞ 2 ½0; 1� in (6)

modulate the contribution of each input source non-

linearly. The e®ect of this term on the ¯nal ensemble is

to drastically reduce WVM dependence on sources

with poor but > 50% classi¯cation rates.

�ðwkÞ ¼
Quadratic 4w2

k � 4wk þ 1;

Exponential e0:9624�wk � 1:6180:

�
ð6Þ

Later, the windowing function in (7) (also called

Merino's Curve) was introduced in Castillo–Barnes

et al.,36 As shown in Fig. 4 this proposal is more

robust to small variations in ¯nal classi¯cation.

�ðwkÞ ¼
wk

0:3015
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10

w 20
k

q : ð7Þ

Regardless of the chosen windowing function,

output predictions using a WMV with NonLinear

Windowing (NLW) model remains as follows in (8):

ypred
NLWðxÞ ¼ argmax

cj2domainðyÞ

X
k

�ðwkÞ � gðypred
k ðxÞ; cjÞ

 !
:

ð8Þ

2.3.4. Penalizing the contribution of input data
sources with high-variability

In this work, we have introduced a novel method to

penalize the contribution of input data sources with

a high-variability. Though this technique is similar

to the one presented in Castillo–Barnes et al.,36

where contribution from each source was divided by

its variability, here we have opted for the �ðwkÞ term
in (9) as a way to reduce the impact of sources with

low classi¯cation rates but reduced variability. In

this expression, W Internal
k refers to a vector contain-

ing all the classi¯cation metrics computed within the

fold of the kth internal CV loopb.

�ðwkÞ ¼
log10ðstdðW Internal

k ÞÞ
10

����
����: ð9Þ

As mentioned by a reviewer, if the standard devia-

tion of any input tends to zero, �ðwkÞ term will tend

bW Internal
k ¼ ½w1;w2; . . . ;w10� when using a 10-fold CV schema.

0% 20% 40% 60% 80% 100%
Performance (wk)

0

0.2

0.4

0.6

0.8

1

W
ei

gh
t

Classic WMV
Linear windowing
Quadratic windowing
Exponential windowing
Merino's windowing

Fig. 4. Windowing functions for the WMV.

D. Castillo-Barnes et al.
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to inf. To avoid that input sources with very small

standard deviation results but poor classi¯cation

rates will not result in a huge impact on ¯nal deci-

sion, it has been proposed to establish a minimum

standard deviation value of �1% to limit that �ðwkÞ
term will not become larger.

If we combine the expressions (8) and (9), the

ensemble learning methodology proposed in this

work will result as follows:

ypred
NLWðxÞ ¼ argmax

cj2domainðyÞ

�
X
k

�ðwkÞ�ðwkÞ � gðypred
k ðxÞ; cjÞ

 !
:

ð10Þ

2.4. Classi¯cation schema

Figure 5 depicts the overall diagram of our classi¯-

cation model based on the ensemble learning

methodology explained above.

Starting with the preprocessing, we have bal-

anced our input dataset to prevent classi¯ers from

overestimating any of the input classes.60 However,

as shown in Table 1, as the number of HC subjects is

clearly lower than the number of patients with PD, it

would be interesting to repeat our classi¯cation

experiments several times (bagging of classi¯cations)

but subsampling randomly the most populated class.

After several repetitions, results obtained can be

averaged obtaining a more generalizable model that

also depends on many other samples that would have

been discarded otherwise.22,34

The classi¯cation procedure uses as many external

CV loops as the number of input data sources. Before

attempting to predict the labels of test samples (x)

using the kth input data source, it is always recom-

mended to ¯rst discard input features with zero-

variance and then standardize the remaining ones.

After preprocessing, each brain scan has a size of

121� 145� 121 voxels (more than two million of

input features). Since this number exceeds the

Fig. 5. General schema of the ensemble learning methodology.

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease
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number of input samples by six orders of magnitude,

it is imperative to implement some kind of feature

selection and/or dimensionality reduction method.

For that, we have made use of the Analysis of Var-

iance (ANOVA) to select only those features with

pvalue � 0:001.61,62 Although feature selection by

ANOVA considerably reduces the number of input

features, it may not be su±cient. Therefore, and

following the recommendations given in Simon–

Rodriguez et al.,42 we have reduced the dimension-

ality of training subsets by means of a nonlinear

decomposition using the Isometric Feature Mapping

(Isomap) algorithm.63 Although Isomap has some

disadvantages (such as being sensitive to noise and

sample size), in comparison to alternatives like the

Principal Component Analysis (PCA), it is capable

of discovering nonlinear degrees of freedom that

underlie complex patterns.64 Furthermore, Isomap

does not de¯ne an explained variance ratio term as

PCA. Instead, Tenenbaum et al.63 de¯ned a term

called residual variance that should not be compared

with PCA, so there is no method to estimate how

many components (number of coordinates for the

manifold) select. To solve this, we propose using the

same number of components as would be used in

PCA (as many as needed to explain the 90% of the

variance) for two reasons: (1) experimentally, either

this value (or a slightly lower one) always achieved

the same or even better classi¯cation results than

PCA; and (2) it is easier to compare both proposals.

In any case, if the number of components calculated

is greater than the number of input samples, its value

is limited to our input sample size.

Regarding to the classi¯ers, for this work, we have

made use of Support-Vector-Machines (SVM) with

Linear Kernel,65 As shown in Fig. 5 each input data

type makes use of two independent classi¯ers. On

one hand, we have a classi¯er within each internal

cross-validation loop to estimate the weights of each

input data type (wk). And on the other hand, an-

other classi¯er in the external validation loop to

obtain our predicted test data labels, ypred
k ðxÞ. Note

that, though more complex algorithms could also be

used (including the use of nonlinear Kernels such as

the RBF Kernel), since Isomap is able to reduce the

complexity of our training data, it was not expected

that a further nonlinear decomposition will be nec-

essary. Besides, linear classi¯ers are usually faster

and easier to train.

Once the classi¯ers have been trained, it only

remains to combine both predictions within the

external CV loop and weights obtained from the

internal CV loop. For that, we can apply (10) to

obtain the ¯nal decision of any new (unknown)

sample given to our CAD system model and evaluate

its robustness.

Table 2 exempli¯es how our ensemble learning

method works. Suppose we have a test sample that is

being evaluated. Once we calculate the ¯nal weights

after applying the nonlinear windowing,

�ðwkÞ�ðwkÞ, a ¯nal decision is given as the sum of

these weights by means of (10).

2.5. Experimental design

To evaluate our ensemble learning methodology we

have conducted two types of experiments. First,

from a clinical application point of view, we have

combined the learning of the four brain imaging

modalities mentioned in Sec. 2.2. Then, to con¯rm

that the classi¯cation results obtained were not de-

pendent on the input data, we have tested our model

using a large synthetic dataset. The following sub-

sections give more details on both experiments.

2.5.1. Neuroimaging data

The classi¯cation experiments with neuroimaging

data have been performed with the following

assumptions in mind:

(1) As mentioned before, PPMI dataset has a highly

unbalanced distribution of samples between HC

and PD classes (only 34 HC subjects versus 303

patients with PD). This presents a challenge for

training our model because it may focus too

heavily on the PD class and not adequately

represent the HC class. To mitigate this

Table 2. Example showing how our ensemble learning
proposal decides whether a sample should belong to Class0
(ypred

k ðxÞ ¼ 0) or Class1 (ypred
k ðxÞ ¼ 1).

Source1 Source2 Source3 Source4

ypred
k ðxÞ 1 0 0 1

wk 0:9 0:7 0:8 0:75
�ðwkÞ�ðwkÞ 0:3272 0:0207 0:0900 0:0443

ypred
NLWðxÞ ¼ ð10Þ 0:2608 � 0 ! ypred

NLWðxÞ ¼ 1

D. Castillo-Barnes et al.
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problem, and ensure that our model is not biased

towards the larger class, we employed a tech-

nique called subsampling.22 This method

involves randomly selecting a subset of samples

from the larger class to create a new, balanced

dataset with an equal number of samples in each

class. Thus, for each of these balanced datasets,

we trained a ML model to predict whether a

subject belonged to the HC or PD class. Once

training is completed, we can combine the results

of each model by averaging their predictions to

obtain a more generalizable solution that is less

dependent on the speci¯c set of samples used for

training.

(2) Neuropathologically, PD mainly a®ects regions

responsible for dopamine production.66,67 Based

on this, we have focused the evaluation of our

model on the striatum area and its surrounding

regions including: accumbens, amygdala, anteri-

or cingulate cortex, cingulate, substantia nigra

and thalamus. The parcellation of these struc-

tures has been performed by means of the

Automated Anatomical Labelling atlas v3

(AAL3) presented in.68 As the AAL3 atlas is

spatially in the same position as our MRI tem-

plate, the edges of each region perfectly match

the edges of our input samples. Figure 6 includes

a visual representation of the same axial slice

obtained from a random subject in our dataset,

referred to each imaging modality.

2.5.2. Synthetic data

To generate the synthetic dataset, we have made use

of the make classification function described in

Guyon et al.69 and implemented in Pedregosa et al.70

As explained by the authors, this tool generates a

synthetic dataset for a binary or multi-class classi¯-

cation problem using nsamples input samples

(examples) and nfeatures input features. Each input

sample is labeled with a class label that corresponds

to one of nclasses classes by means of an allocation

procedure that assigns to each class one or more

normally-distributed clusters of points, resulting is a

random n-class classi¯cation problem. Along this

process, the function creates ninformative informative

features (they contribute to the relationship between

the input variables and the target) for each class.

These informative features are generated by drawing

random values from a normal distribution for each

class separately, and scaling them by a random ma-

trix. But they are not the only features that we could

add to our resulting dataset. For example, we can

incorporate to our model nredundant redundant fea-

tures for each class. These features are linear com-

binations of the informative features, so they

increase the di±culty of the classi¯cation problem in

a similar way to what happens with the nrepeated

duplicate features (i.e. exact copies of some of the

informative or redundant features). In addition to

the samples and features, the make classification

function also allows us to control the separation be-

tween the classes. For that, the function introduces a

parameter, CSep, that speci¯es the distance between

the means of the informative features for each class.

A higher value of this parameter leads to a larger

separation between the classes, making the classi¯-

cation problem easier. The function can also intro-

duce noise into the dataset by randomly °ipping the

labels of a fraction of the examples (flip y param-

eter) and create imbalanced datasets by means of a

weight parameter that speci¯es the proportion of

each class in the dataset. Table 3 summarizes the

arguments given to the function when generating six

subsets of synthetic data.

Table 3. Arguments given to make classification

function to generate the synthetic datasets.

Parameters Values

Input samples nsamples ¼ 10000

Balanced classes weight ¼ ð0:1; 0:9Þ
Input features nfeatures ðtotalÞ ¼ 1000

nredundant ¼ 500
ninformative ¼ 100
nrepeated ¼ 100

Class separation CSep ¼ ½0:01; 0:05; 0:1; 0:5; 0:9; 2:5�

Fig. 6. Axial view of an slice obtained from a random
subject in PPMI dataset. Green squares represent the
minimum cube that contains the boundaries of the Regions
Of Interest (ROIs).

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease
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3. Results

As mentioned before, the ensemble learning meth-

odology proposed in this work has been evaluated by

means of two experiments. First, a bagging of com-

parisons between HC subjects and patients with PD

in PPMI dataset. Then, by combining the learning

from several synthetic data, subsets generated

ad-hoc.

3.1. PPMI dataset

For the neuroimaging data, we have randomly sub-

sampled 25 times the samples from the PD class.

This gave us as many balanced subsets (34 samples

from patients with PD versus 34 samples from HC

subjects) to be classi¯ed (bagging of classi¯cations

described in Sec. 2.5.1). Thus, and following the

general diagram depicted in Fig. 5, we have evalu-

ated the performance of our ensemble learning

methodology taking into account the two methods

for intensity preservation explained in Sec. 2.2.

3.1.1. Classi¯cation results in the external CV loop

Figure 7 is referred to the intensity preservation of

the amount approach and it shows the classi¯cation

resultsc obtained for the original MRI-T1 modality

(67:00%); its segmented versions of GM (77:85%)

and WM (66:53%); and the functional FP-CIT

SPECT (94:31%).

Similarly, Fig. 8 depicts the performance obtained

for the intensity preservation of the concentration. In

this case, we had: original MRI-T1 (66:95%); GM

(77:97%); WM (67:78%); and FP-CIT SPECT

(96:48%).

3.1.2. ROC curves

To illustrate the trade-o® between sensitivity and

speci¯city parameters for every possible cut-o® using

our tests set, we have included in Figs. 9 and 10 the

resulting Receiver Operating Characteristic (ROC)

curves referred to each imaging modality.71 In both

cases, these curves were calculated by averaging the

results obtained from all the classi¯cations in our

bagging. Apart from the curves representation, we

also included the values of Area Under the Curve

(AUC) parameters, which help us to quantify how

Fig. 7. Classi¯cation results obtained when comparing
the HC and PD classes for the intensity preservation of the
amount approach.

c In terms of the balanced accuracy classi¯cation parameter.

Fig. 8. Classi¯cation results obtained when comparing
the HC and PD classes for the intensity preservation of the
concentration approach.

Fig. 9. ROC curves obtained for the intensity preserva-
tion of the amount.

D. Castillo-Barnes et al.
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well our classi¯ers are able to distinguish between

input classes.

3.1.3. Classi¯cation results using our ensemble
learning approach

The ensemble learning methodology proposed in this

work has been compared with other traditional

methods described in Sec. 2.3. This also includes the

MV and WMV approaches. In Figs. 11 and 12, we

depicted the classi¯cation results (in terms of bal-

anced accuracy) obtained using the three ensemble

learning methodologies (MV, WMV and WMV-

NLW) depending on the intensity preservation ap-

proach. In addition to these representations, we have

also included in Table 4 more details about other

classi¯cation parameters obtained when classifying

the acquisitions from the PPMI dataset.

3.2. Synthetic dataset

Regarding to the synthetic data, we performed the

same classi¯cation experiments as in neuroimaging.

3.2.1. Classi¯cation results in the external CV loop

Figure 13 shows the classi¯cation results (in terms of

the balanced accuracy parameter) obtained within

the external CV loop.

In addition to this, and trying to emulate the

behavior of our classi¯cations with neuroimaging

data, we have also classi¯ed our synthetic data by

means of several subsets with balanced classes.

Therefore, we have depicted in Fig. 14 the distribu-

tions of our classi¯cation results using the synthetic

data sources.

3.2.2. ROC curves

ROC curves associated to classi¯cations in Fig. 13

were included in Fig. 15. As before, we have also

annotated the results of AUC parameters for each

input data source when joining all classi¯cations

from the bagging.

3.2.3. Classi¯cation results using our ensemble
learning approach

Similar to when we were analyzing the neuroimaging

data, we can ¯nd in Fig. 16 the results of

Fig. 10. ROC curves obtained for the intensity preser-
vation of the concentration.

Fig. 11. Classi¯cation results for the MV, WMV and
WMV-NLW proposals when adopting the intensity pres-
ervation of the amount strategy.

Fig. 12. Classi¯cation results for the MV, WMV and
WMV-NLW proposals when adopting the intensity pres-
ervation of the concentration strategy.

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease
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classi¯cations by the ensemble learning approach. It

is also worth mentioning here that since this repre-

sentation only includes information about the bal-

anced accuracy, more details about other

classi¯cation parameters (Accuracy, Sensitivity and

Speci¯city) were also included in Table 5.

4. Discussion

4.1. Neuroimaging data

MRI-T1 and FP-CIT SPECT brain scans provide us

comprehensive and accurate information about

structural and functional patterns in the brain as-

sociated with PD progression. For example, MRI-T1

images can be used to visualize subtle changes in the

volume or shape of certain brain structures, such as

the substantia nigra, that are associated with Par-

kinson's Disease. It is widely known that FP-CIT

SPECT imaging can give us much information about

regional cerebral blood °ow and metabolic activity.

In this context, the development of automatic CAD

systems based on ML, and focused on the analysis of

these two modalities, can be a valuable for clinicians

and radiologists as these tools can assist in the

Table 4. Details about our classi¯cation results using di®erent ensemble learning approaches when comparing HC and PD
classes.

Accuracy Sensitivity Speci¯city Bal. acc.

Intensity preservation of amount MV 81.78% � 3.60% 71.60% � 4.88% 92.46% � 3.47% 82.03% � 3.46%
WMV 89.84% � 2.35% 89.70% � 3.09% 90.46% � 3.26% 90.08% � 2.30%

WMV NLW 94.17% � 1.12% 94.20% � 0.43% 94.43% � 2.09% 94.31% � 1.11%

Intensity preservation of concent. MV 84.40% � 4.30% 74.16% � 6.90% 94.86% � 3.86% 84.51% � 4.32%
WMV 93.07% � 2.87% 92.60% � 3.90% 93.63% � 3.88% 93.11% � 2.97%

WMV NLW 96.34% � 0.90% 97.20% � 0.57% 95.76% � 1.82% 96.48% � 0.87%

Fig. 13. Classi¯cation results obtained for the synthetic
dataset.

Fig. 14. Histograms of classi¯cations obtained using the
synthetic dataset (results derived from the external CV
loop).

Fig. 15. Averaged ROC curves (left) and individual ROC curves (right) for the synthetic dataset.

D. Castillo-Barnes et al.
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interpretation of complex imaging data, provide

quantitative measures of structural and functional

changes in the brain, and improve the overall accu-

racy and e±ciency of the diagnostic process.72 This

can ultimately lead to earlier and more accurate di-

agnosis, which can in turn lead to earlier interven-

tions and improved outcomes for patients.7,66

Ensemble learning-based methods involve com-

bining multiple ML models to improve overall sys-

tem performance.22 For this work, this means

combining the classi¯cations from classi¯ers trained

with MRI-T1 and FP-CIT SPECT scans while re-

ducing the risk of over¯tting and increasing the

generalizability of the system. But to reach this so-

lution, we will ¯rst have to take into account some

previous steps that allow us to take full advantage of

our system's performance.

The ¯rst point is related to the spatial registration

of the MRI-T1 and FP-CIT SPECT scans in PPMI

dataset. As our model performs voxel-wise compar-

isons, an accurate match between all our input

samples results mandatory.12 In our context, this

translates as the spatial registration of all brain scans

should be made to a common reference space like the

MNI. During this process, selecting an appropriate

intensity preservation approach can help us to re-

duce the impact of samples with worse intensity

distributions (generally from patients with PD) in

brain areas related to PD.11 As shown by our clas-

si¯cation results in Figs. 7 and 8, the intensity

preservation of the concentration approach is more

suitable when analyzing voxel-by-voxel intensities as

it outperforms (on average) the alternative intensity

preservation method by 2:17% in terms of the bal-

anced accuracy parameter.

Although we could have considered other meth-

ods for the intensity normalization of functional

scans, some previous works such as Brahim et al.

have suggested that the approach using �-stable

distributions is most appropriate when trying to

compare controls and patients with PD.56–58 Con-

sequently, we will not go into further detail on the

choice of this method or its comparison with other

alternatives.

After discussing all the results that are relevant to

the preprocessing of the input data, next step is to

address the impact of Isomap for dimensionality re-

duction to our ¯nal classi¯cation rates. In compari-

son to other alternatives such as PCA, Isomap got

worse classi¯cation resultsd in experiments involving

the segmented versions of MRI-T1 scans: �2:25%

(GM) and �1:74% (WM). On the contrary, when

referring to the other two imaging modalities, we

obtained an averaged improvement of: þ0:95%

(MRI-T1) and þ0:94% (FP-CIT), which is quite

similar to the results published in Simon-Rodriguez

et al.42

We can also perform a similar analysis to evaluate

the improvement that could be achieved by using a

Fig. 16. Classi¯cation results for the MV, WMV and
WMV-NLW proposals when classifying synthetic data.

Table 5. Details about our classi¯cation results obtained by di®erent ensemble learning approaches
when classifying the synthetic data sources.

Accuracy Sensitivity Speci¯city Bal. acc.

Synthetic MV 80.30% � 0.53% 70.71% � 0.93% 89.90% � 0.52% 80.30% � 0.53%
WMV 87.57% � 0.43% 85.56% � 0.70% 89.59% � 0.61% 87.57% � 0.42%

WMV NLW 97.44% � 0.10% 95.41% � 0.14% 99.48% � 0.16% 97.44% � 0.11%

dGiven in terms of the balanced accuracy classi¯cation parameter.

Nonlinear Weighting Ensemble Learning Model to Diagnose Parkinson's Disease
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nonlinear classi¯er such as SVM with RBF (Radial

Basis Function) Kernel.73 In this case, the averaged

improvement of using Isomap and SVM with Linear

Kernel wase: �4:09% (GM); �3:44% (WM); �3:05%

(MRI-T1) and þ1:27% (FP-CIT). These results

seem to be quite interesting since they highlight that

nonlinear classi¯ers such as SVM with RBF Kernel

get a better ¯t to structural changes in the volume or

shape of some brain areas, whereas SMV classi¯ers

with Linear Kernel are more likely to model changes

related to cerebral blood °ow and/or metabolic

activity.

To complete this part of our analysis, we have in-

cluded in Fig. 17 the projections of Isomap only con-

sidering three-components for themanifold referred to

a random classi¯cation using SVMwith Linear Kernel

and Isomap. As it can be seen, the class separation

between the HC and PD groups was unclear for any

structural imaging modality. In contrast, when we

examine the FP-CIT SPECT modality, we observe

that PDandHC classes are completely separated even

despite the low dimension.

Regardless of the chosen method for dimension-

ality reduction or classi¯cation, it can be stated that

individual classi¯cations handling functional data far

outperform the results obtained by the structural

modality in any of its forms (original RM-T1 image

or its segmented versions of GM and WM). This is

consistent with the existing literature.8,18,74,75 In

fact, only a few models such as the one published in

Solana–Lavalle et al.50 reported classi¯cation rates of

96% when applying Voxel-Based-Morphometry in

scenarios with small sample sizes. In our case, none of

our experiments involving structural data resulted in

classi¯cation rates greater than the 77:97%� 4:15%

when classifying GM tissue referred to the intensity

preservation of the concentration approach using

Isomap and SVM with linear Kernel, or the 82:06�
3:97% for SVM with RBF Kernel. This also makes

clinical sense, as brain atrophy due to PD progres-

sion typically a®ects the region of the nigrostriatal

pathway where the largest concentration of dopa-

minergic neurons are located.76,77 Although it would

have also been interesting to compare the results

that could have been obtained with MRI-T3 struc-

tural imaging, it is worth mentioning the work by

Chakraborty et al.78 where the authors classi¯ed

samples of patients with PD with an accuracy of 95

:3% when using Convolutional Neural Networks

(CNN).

Regarding to our classi¯cation results when ana-

lyzing the FP-CIT SPECT modality, it is worth

mentioning that in most cases, they improve or equal

those achieved in many other previous works.72,79

This also makes sense since despite the limitations of

our database, Isomap is able to explain the under-

lying nature of the input data which facilitates the

work of SVM classi¯ers as explained in Simon-

Rodriguez et al.42

In relation to the ROC curves depicted in Figs. 9

and 10, with a total AUC of 0:97 for the intensity

preservation of the concentration when evaluating

the FP-CIT SPECT scans, these representations

con¯rm the ¯ndings in Castillo–Barnes et al.11 where

it was stated that due to the degree of deformation

after the spatial normalization was greater in case of

patients with PD, the intensity preservation of the

concentration tended to an arti¯cially increasing in

separability between HC and PD classes, which ul-

timately leads to better classi¯cation results.

Returning to our classi¯cation scheme in Fig. 5,

the main objective of this work was to develop a

Fig. 17. Example showing the separation between PD and HC classes using three components for Isomap.

eIn comparison to our results shown in Fig. 8.
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nonlinear WMV ensemble learning model that can

combine any number of input data sources and pe-

nalize the contribution of sources with poor signi¯-

cance and/or high variability. Owing to results in

Figs. 11 and 12 (whose parameters are summarized

in Table 4), we can observe that our proposal out-

performs the results (in terms of balanced accuracy)

achieved by other ensemble learning schemas such as

the traditional MV by 11:97% and the WMV by

3:37% for the intensity preservation of the con-

centrationf while reducing the variability of our

classi¯cations by one-third in the case of intensity

preservation of the amount, and one-¯fth in the case

of the intensity preservation of the concentration.

Although they look really promising, these results

are too identical to those obtained for the FP-CIT

SPECT modality. However, this may be explained

by the low contribution of structural imaging, which

hardly in°uences the overall classi¯cation.41,80

4.2. Synthetic data

The ensemble learning methodology proposed for

this work has also been tested on a synthetic dataset

for two main reasons. First, because synthetic data-

sets provide a controlled environment for testing the

performance of the classi¯cation model. This allows

for a more comprehensive evaluation of the model's

capabilities, as it can be tested under various con-

ditions and scenarios that may not be feasible or

practical to test with real clinical data (e.g. the

background noise, inaccuracies in the measurements

captured by the medical imaging, outliers, missing

data, etc). Second, because they can help us to

identify potential biases and limitations in our

model's performance. By comparing the results

obtained with synthetic datasets to those obtained

with clinical data, it is possible to determine if our

model is biased towards certain features or datasets,

which could have implications for the generalizabil-

ity and validity of the model. With this in mind, we

move on to discuss the results obtained when eval-

uating the synthetic data sets.

As stated for the neuroimaging data, our model

enhances the contribution of reliable input sources

by modifying nonlinearly the traditional schema of a

WMV approach regardless of the input data nature

(imaging, genetic tests, blood markers, etc). There-

fore, it is expected that the evaluation of any syn-

thetic dataset (as the one generated as explained in

Sec. 2.5.2) will lead us to the same conclusions that

we have already pointed out.

Considering the classi¯cation rates shown in

Fig. 13, one would expect that their combination

would be very similar to those obtained when only

evaluating the subset with the highest CSep (class

separation) parameter. Indeed, similar to what

happened with functional neuroimaging, since this

subset is less a®ected by the nonlinear weighting of

our ensemble, it becomes the predominant when

trying to predict the label of any new (unknown)

input data. As shown in Table 5, if our approach

were based on a simple MV schema, we would

obtained classi¯cation rates (measured by the bal-

anced accuracy parameter) of 80.3%. However, by

weighting the input data sources based on their

individual classi¯cations (WMV), this margin is in-

creased up to 87.57% or, when also including the

nonlinear windowing technique with variability

penalization, to 97.44%, which supposes a total in-

crease of 17.14%.

Though a further analysis might also be included,

we will focus only on few details:

. As shown in Fig. 16, the variability of MV and

WMV methods is quite longer than the one

achieved by the WMV-NLW. This was expected

because of �ðwkÞ term in (9) that enhances the

contribution of weights on input sources with

higher classi¯cation rates.22

. If we had only penalized for the e®ect of variability

by dividing the averaged classi¯cation rates by

their standard deviation, data sources with poor

classi¯cation rates but low variance could have

had a greater impact on the ¯nal decision. To

avoid this, it was decided to model this contribu-

tion by using the logarithm of the weight and

setting up a minimum standard deviation limit of

�1% when calculating the �ðwkÞ term in (9). In

this regard, it would have been interesting to

compare the e®ect of this term on ¯nal classi¯ca-

tion rates of many other related works.33,59,81,82

fWhen referred to intensity preservation of the amount, this increase was of 12:28% for MV and 4:23% for WMV.
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4.3. Limitations and future lines

One of the most important limitations of this work is

the small sample size of the classi¯cation experi-

ments using imaging data.83 Since the PPMI dataset

does not include many HC subjects who have had

both functional and structural imaging testing per-

formed at the same time (or at least, in the appro-

priate time range as explained in Sec. 2.1), it was

necessary to carry out multiple classi¯cation experi-

ments to obtain a more generalizable solution. In this

sense, it would be desirable that PPMI initiative

provide us more data from HC subjects to re-evalu-

ate our results. This means adding other types of

biomarkers such as genetics, proteomics, metabo-

lomics or even electroencephalography –among

others–;41,84–90 but also new imaging modalities like

the MRI-T3.78 In our view, this would not only help

us to create a more accurate model of PD, but also

allow us to better justify the use of ensemble learn-

ing-based solutions.

5. Conclusions

Accurate diagnosis of PD is essential to ensure that

patients receive the best possible care and treatment.

However, the growing number of patients with PD

and the lack of well-trained specialists is highlighting

the need to develop alternative methods for PD

identi¯cation that can reduce the time to diagnosis.

In this context, we have developed a weighted

ensemble learning methodology for PD diagnosis

that has several advantages over any other model

published to date, for several reasons:

(1) Because it is able to penalize in a nonlinear way

the contribution of those input data sources with

low signi¯cance and/or high variability.

(2) It comprises a detailed analysis about pre-

processing of the two most commonly used im-

aging modalities for Parkinson's assessment

(functional FP-CIT SPECT and structural MRI-

T1 imaging). This also includes the evaluation of

di®erent intensity preservation techniques, the

spatial registration of all imaging modalities to

the in MNI space, and the segmentation of MRI-

T1 scans so that we could quantify the in°uence

that WM and GM may have on ¯nal decision of

our CAD model.

(3) Its pipeline includes steps such ANOVA and

Isomap that reduce potential over¯tting.

(4) Because this model has also been evaluated using

several synthetic datasets, which help to justify

the classi¯cation results and allow us to compare

our proposal with any other existing model.

This proposal has been evaluated using the data

available in the PPMI repository. However, due to the

lack of input samples with both functional and

structural images acquired within a short period of

time (21 days) to overcome the progression of the

neurodegenerative process, it was necessary to im-

plement a bagging of classi¯cations to make our

model generalize as much as possible. Despite this,

classi¯cation results obtained demonstrate that our

CAD model is capable of identifying PD with a bal-

anced accuracy of 96:48% and opens the door to in-

corporating many other sources of information that

could help us to achieve evenmore accurate diagnosis.
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