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Abstract

Networked systems usually face different random uncertainties that make the performance of the
least-squares (LS) linear filter decline significantly. For this reason, great attention has been paid to the
search for other kinds of suboptimal estimators. Among them, the LS quadratic estimation approach
has attracted considerable interest in the scientific community for its balance between computational
complexity and estimation accuracy. When it comes to stochastic systems subject to different random
uncertainties and deception attacks, the quadratic estimator design has not been deeply studied. In this
paper, using covariance information, the LS quadratic filtering and fixed-point smoothing problems are
addressed under the assumption that the measurements are perturbed by a time-correlated additive noise,
as well as affected by random parameter matrices and exposed to random deception attacks. The use
of random parameter matrices covers a wide range of common uncertainties and random failures, thus
better reflecting the engineering reality. The signal and observation vectors are augmented by stacking
the original vectors with their second-order Kronecker powers; then, the linear estimator of the original
signal based on the augmented observations provides the required quadratic estimator. A simulation
example illustrates the superiority of the proposed quadratic estimators over the conventional linear
ones and the effect of the deception attacks on the estimation performance.
© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Franklin Institute.
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1. Introduction

Sensor networks are becoming increasingly popular in a broad range of application fields,
including health care, military, transportation, mining, agriculture, intelligent buildings and
smart cities, among others [1]. As a result, the fusion estimation problem in networked systems
is attracting tremendous research interest.

However, it must be mentioned that communication networks usually suffer resource con-
straints and, consequently, some network-induced phenomena will inevitably emerge during
signal measurement or transmission [2]. Some of the most common networked-induced phe-
nomena occurring in different application disciplines —presence of multiplicative noise, miss-
ing observations, or fading measurements, among others— can be globally characterized by
incorporating stochastic parameters in the measurement equations. Thus, the use of random
parameter matrices in the measurement equation allows us to model the randomness in the
measurements and to account for different uncertainties in many real-life scenarios —e.g., radar
systems, wireless communication, sensor networks or environmental monitoring— where such
uncertainties can occur. As a result, research on the estimation problem in systems with ran-
dom parameter matrices has grown in popularity during the past few years. See, for example,
[3-9] and the references therein for some sample contributions.

The traditional Kalman-type filtering problem is usually based on the assumption that the
measurement additive noise is either white or finite-step correlated. In practice, however,
infinite-step correlated measurement noises can be found in a wide variety of engineering
applications, where the sampling frequency is typically high enough to cause measurement
noises to be significantly correlated over two or more consecutive sampling periods. Over the
last decade, numerous papers have addressed the estimation problem under the assumption
that the infinite-step time-correlated channel noise is the output of a linear system model with
white noise. The state augmentation method —which is simple and direct but computationally
expensive— and the measurement differencing method —which avoids increasing dimensions,
but requires two consecutive measurements to compute the difference— are the most popular
methods for dealing with this type of noise correlation (see, e.g., [10—14]). More recently,
alternative non-augmentation methods that do not require the availability of consecutive mea-
surements have been proposed to address the state estimation problem in linear systems with
time-correlated additive noises and random packet dropouts in [15] and [16].

When dealing with the estimation problem in networked systems, security is an important
topic that should not be overlooked. The possibility of suffering cyber attacks is one of the
most common weaknesses (see, e.g., [17] and [18]) and, particularly, the estimation problem in
networked systems subject to deception attacks have inspired many significant research studies.
Generally speaking, the major goal of deception attackers is altering the data integrity by
maliciously falsifying their information in a random way. The centralized security-guaranteed
filtering problem is studied for linear time-invariant stochastic systems with multirate-sensor
fusion under deception attacks in [19]. The H,-consensus filtering problem for discrete-time
systems with multiplicative noises and deception attacks is investigated in [20] and the chance-
constrained Hy, state estimation problem is investigated for a class of time-varying neural
networks subject to measurements degradation and randomly occurring deception attacks in
[21]. The distributed estimation problem in sensor networks with a specific topology structure
has been studied in [22] —under false data injection attacks— and in [23-26] —under deception
attacks.
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It is unquestionable that the LS estimation problem of random signals from noisy measure-
ments has played a key role over the past decades. The well-known Kalman filter provides
the LS signal estimator for linear systems subject to Gaussian, mutually independent initial
signal and noise processes. However, in the presence of non-Gaussian disturbances, only the
LS linear estimator is provided and the optimal estimator is, in general, computationally ex-
pensive. Besides, due to the network-induced random uncertainties described in the previous
paragraphs, networked systems are generally non-Gaussian and the practical computation of
the LS estimator usually involves a significant complexity. For this reason, a great deal of
attention has been devoted to the design of simpler suboptimal estimators with satisfactory
accuracy, being the design of LS linear estimation algorithms the most popular approach. A
more effective scheme to address the estimation problem in non-Gaussian systems is the LS
quadratic approach, due to its usual outperformance over the LS linear one and its adequate
balance between computational burden and estimation accuracy. In linear discrete-time non-
Gaussian systems, the input noise quadratic estimation problem is addressed in [27] and a
recursive quadratic estimation algorithm for the system state is proposed in [28] under the
presence of random parameter matrices. A feedback quadratic filtering algorithm, that re-
duces the estimation error with respect to the plain quadratic filter, is proposed in [29]. The
quadratic estimation problem has also been addressed in discrete-time systems with measure-
ment delays and packet dropouts [30] and under the presence of multiplicative noises and
quantization effects [31]. Recently, recursive quadratic estimation algorithms are proposed in
[32] —for linear systems over time-correlated fading channels— and [33] —for nonlinear sys-
tems with energy-harvesting sensors. However, to the best of the authors’ knowledge, there
have been scarce studies on the quadratic estimation problem in linear systems with random
parameter matrices and time-correlated additive noise, let alone the scenario where random
attacks are also involved.

Inspired by the discussion made so far, our aim is to address the LS quadratic filtering and
fixed-point smoothing estimation problems for a class of stochastic systems in the presence of
random parameter matrices, time-correlated additive noise and random deception attacks. The
following are the key difficulties we are dealing with: (/) Analysis of the statistical properties
of the augmented noises produced by the original time-correlated additive noises and their
Kronecker products. (2) Development of an effective quadratic estimation method in the
presence of random parameter matrices, time-correlated additive noise and random deception
attacks. (3) Evaluation of the impact of deception attacks on estimation performance.

The main contributions of this paper are summarized as follows: (a) The class of systems
investigated in this paper is quite comprehensive, as the use of random parameter matrices
embraces a wide range of common uncertainties and random failures, thus better reflecting the
technical reality. (b) The original observation vectors are augmented with their second-order
Kronecker powers, so the quadratic estimation problem is reformulated as a linear estimation
problem from the augmented observations and recursive formulas for the estimation error
covariances are also proposed. (¢) A covariance-based estimation approach is used, so the
evolution model of the signal to be estimated does not need to be known. (d) The direct
estimation of the time-correlated additive noise avoids the use of the differencing method.
(e) The proposed LS quadratic filtering and fixed-point smoothing estimators outperform the
conventional linear ones.

The paper is organized as follows. The characteristics of the observation model under
consideration are described in Section 2. The LS quadratic estimation problem is formulated
in Section 3, where the augmented vectors are defined. The study of the dynamics of the
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augmented vectors (Section 3.1) and their second-order statistical properties (Section 3.2) will
be the key to obtain a new observation model, from which the recursive quadratic estimation
algorithms are derived in Section 4. A simulation study, in Section 5, shows the effectiveness
of the proposed filtering and fixed-point smoothing estimators, as well as their superiority
over the conventional linear ones. Finally, some conclusions are given in Section 6, which
is followed by three appendices that provide the mathematical proofs of the main theoretical
results.

Notation. As far as possible, standard mathematical notation will be used throughout the
paper. If not explicitly stated, the dimension of all vectors and matrices is assumed to be
compatible with algebraic operations.

R" Set of n-dimensional real vectors
Sk.n Kronecker delta function
MT and M~! Transpose and inverse of matrix M
M@DT apnd M@-1 Shorthand for (M@)T and (M @)~!
My | ... | My) Partitioned matrix whose blocks are the submatrices My, ..., M;
Diag(Ny, ..., Ny) Block diagonal matrix with main-diagonal blocks Ny, ..., Ny
0 Zero scalar or matrix of compatible dimension
® Kronecker product of matrices
K,» n? x n? matrix such that Kpz®v)=v®z+2zQv,Vz,veR"
MP =pMeM Second-order Kronecker power of vector or matrix M
vec (%) vec operator
Elal=a Mathematical expectation of a random vector or matrix a
G = Gy Function Gy j, depending on time instants k and &, when h =k
Efﬁ Covariance of random vectors a; and by (E,‘j' s = 20
b = Covlay, bs] = E[(ax — @) (bs — bs)"]. Covigy] = =
ayys Optimal quadratic estimator of the vector a; based on {yl, ceey ys}

2. Observation model

Consider a random signal, x; € R™, to be estimated and assume that the actual measure-
ments, z; € R™, are described by

2 =Hixe +vi, k>1, ()

where H; are random parameter matrices and vy is a time-correlated additive noise, satisfying

Vi =D +ug—r, k> 1, 2
in which D; are known, non-singular, time-varying matrices and u; is a white noise.

Remark 1. Usually, in physical electronic systems, white noise becomes time-correlated when
it passes through bandlimited channels. When the noise has a correlation time that is signif-
icantly shorter than the relevant time intervals of interest, it is generally regarded as white
noise, and its colored nature is typically disregarded. However, if the correlation time is not
negligible, the system may encounter significant interference from the colored noise. Model
Eq. (2) is appropriate to simulate, for example, the signal strength colored noise in Global Po-
sitioning System (GPS) receivers or the GPS positioning noise due to carrier phase multipath
errors (see [34] and references therein).
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Let us assume that deception attacks are launched by an adversary, who injects a false
signal modeled by

k= —zk+wr, k=1 3)

At each sampling time k, the attack can randomly succeed or fail and this fact is described
by a Bernoulli random variable, A;, whose values —one or zero— represent a successful or failed
attack, respectively. Therefore, the available observations, yy, that will be used to estimate the
signal, are given by y, = zx + AxZx or, equivalently, using Eq. (3),

o= =2z + owe, k> 1 4)

Remark 2. According to Eq. (3), the false data injected by the attackers, 7y = —zx + Wi,
are assumed to be divided mathematically into two components: a neutralizing one, —z,
that will cancel the original measurement and a noise component, wy, that represents the
blurred deceptive information added by the attacker. Hence, at each instant of time, the
compromised measurement Eq. (4) can be the actual measurement (if the attack fails) or
only noise (if the attack succeeds). Another interesting kind of deception signal could be, for
example, 7y = wy, which involves adding random noise to the received measurement. This
kind of deception attacks aims to degrade the measurement quality by introducing unwanted
noise. Unlike Eq. (4), under this model, the resulting compromised measurements are given
by yr = zx + Aywy, thus always containing the actual measurement (with or without noise,
depending on whether the attack is successful or not, respectively). A complete survey of
different kinds of attacks can be seen, for example, in [17].

Remark 3. The mathematical model of the compromised measurements Eq. (4) looks similar
to the packet loss model. The main difference between both models lies in the noise com-
ponent, wy, that represents the blurred deceptive information added by the attacker. In the
random packet loss scenario, at each time instant, the processing center can receive the actual
measurement (if there is no loss) or nothing (if the actual packet is lost), in which case it is
usually compensated with either the most recently received packet or the prediction estimate
of the lost measurement, thus always providing valuable information for the signal estimation.
However, the possibility of random deception attacks means that, at each time instant, the
processing center can receive the actual measurement (if the attack fails) or only noise (if
the attack succeeds). Hence, in addition to neutralizing the original measurement, what could
be mathematically similar to a packet dropout, the deception attack degrades the quality of
the measurements by introducing unwanted noise, thus adding further difficulties in obtaining
accurate estimation algorithms.

Taking into account the difficulty in obtaining the least-squares (LS) optimal estimator in
the presence of random uncertainties in the measurements, most studies are focused on the
LS linear estimation problem. As it is well-known, when the random processes involved in
the observation model have finite second-order moments, the LS linear estimator of x; given
the observations yy, ..., yr is the orthogonal projection of x; on the space of n,-dimensional
random vectors produced as linear transformations of such observations. Nonetheless, some
efforts have also been directed towards the search for estimation algorithms that keep the
advantages of the linear ones —recursivity and computational simplicity— and provide more
precise estimates. Specifically, our aim is to design recursive algorithms to obtain LS quadratic
estimators of the signal x; given the observations yi, ..., yr; such estimators are given by
the orthogonal projection of the vector x; onto the linear space generated by the observations
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¥i, ..., yr and their second-order Kronecker powers y[lz], R y[L2]. Therefore, to address the LS

quadratic estimation problem, it is necessary that the second-order moments of the Kronecker
powers yEz], ey y[Lz] exist, for which all the random processes involved must be fourth-order
processes and we will assume them to have known finite second, third and fourth moments.

To simplify the statement of the subsequent assumptions and properties of the processes in-
volved, we introduce the following notations for the covariance and cross-covariance functions

of a stochastic process {ak}kzl and its second-order Kronecker powers:

) 2] 2 (12) 2 @n an)T
¢, =Covlar, a,l, =, =Covlay),d™, ¢ = Covlar,d™, =f, ==

2) 12) 21 12)T
3 = Covlar], T = Cov[d?], =" = Covlay, d?], ¢ = 5¢"".
The following assumptions are made:
(H1) The signal process {xk}kZ | has zero mean and its covariance function, X} ., as well as
the covariance function of its second-order powers, Z/f(?’ can be factorized as follows:
@ v
of, =ABT, B =ABT, s <k,

where the n, x M; matrices Ay, B; and the nf( x M> matrices A, By are known for all

k,s > 1. Also, the cross-covariance function of the signal and its second-order powers,
(12)

i, » can be expressed as:

l,s°

ByiAY,,  k<s,

T
12 Al,kB s < ks

k.s

where, for all k, s > 1, A1k, B1s, Boy and Ay are ny, x Py, nz x Py, ny x P, and nﬁ X Py
known matrices, respectively.

(H2) {Hk}kzl is a sequence of independent random parameter matrices with known mean
matrices H. The covariances and cross-covariances between the entries of the matrices
H; and HE], are also assumed to be known.

(H3) vy is a zero-mean random vector whose moments up to the fourth-order one are known.

(H4) The noise processes {ug}i>0 and {wy}i>; are zero-mean white sequences with known
moments, up to the fourth-order ones.

(HS) {kk}kzl, is a sequence of independent Bernoulli random variables with known proba-
bilities P(Ak = 1) =Ap k> 1.

(H6) The signal process {x;}x>1, the vector vy and the processes {Hi}i>1, {ur}i=0, {(Wikli>1
and {A;}r>) are mutually independent.

Remark 4. The derivation of the proposed quadratic estimation algorithms will not require the
evolution model of the signal; instead, we will use a covariance-based estimation approach.
In this approach, although the signal evolution model is not necessary, a zero-mean signal is
required and the covariance and cross-covariance functions of the signal and its second-order
powers are to be expressed in a separable form. It should be noted that these assumptions,
imposed in (H1), are met under the most commonly used signal evolution models. For in-
stance, let us consider a zero-mean non-stationary signal obeying a linear evolution model
X = Qr—1Xk—1 + €k—1, k > 1, with non-singular transition matrices, ¢, and the following
assumptions:

11146



R. Caballero-Aguila and J. Linares-Pérez Journal of the Franklin Institute 360 (2023) 11141-11164

o Xp is a zero-mean random vector whose moments, up to the fourth-order one, are known.
o {ex}x>0 is a zero-mean white process with known moments, up to the fourth-order ones.

The covariance and cross-covariance functions of the signal and their second-order powers
are given by

x(12)

<k
_ 2] «x@ . ) brsxg . S=k,
Ei,s - ¢k,sE§v 2:k s ¢ ZX s = kv El)cc,x - (12) [21r
¢)s k > k S S7
where ¢y s = 1 - - - Py, [2] ¢[2] -+~ ¢! and the functions ¥, ¥ 1 and g ¥ are recur-
sively obtained by
—¢v lzf 1¢S 1+2§_ , s=>1,
S a2 a2 12 T (12)
§<2> B (]5[;], E)(()l q?zl]rl orr 521, @
5% = ¢ 51 P L Ko (g 127 91, ® 3° VK + 227, 5> 1.

Clearly, according to assumption (H1), these covariance functions can be expressed in a
separable form taking, for example, the following functions:

- A 2] p 2]\ — @

Ac=dro, Bl =955 Ac=ofh Bl = 00D
H Iy 12 21T\ -1 21T
Ak = ¢r0, Bl,s = qb&OE;‘ ;0 Bax = EX (¢[ 1 ) Azs _ ¢[ I

An analogous reasoning can be carried out for a stationary signal, as it will be shown in
Section 5; hence, the separability assumptions on the signal required in (H1) covers different
types of stationary and non-stationary signals and the estimation based on such hypotheses,
instead of the state-space model, provides a unifying context to obtain general algorithms
which are applicable to a large number of practical situations.

Remark 5. As already indicated in the Introduction, in order to deal with the time-correlated
noise, we will not use the measurement differencing method, but we will instead address
the direct estimation of the noise. Since the derivation of the estimation algorithms will be
carried out under a covariance-based approach, it is necessary to express the noise covariance
function in a separable form.

From Eq. (2) and assumptions (H3) and (H4), we have that the covariance function X}
of the time-correlated noise, v, is factorized in a separable form ZV = DkF , in which
Dy = Dy, FI = =Dy, EV where Dy o = Dy_1---Dy and X} is recurswely computed by

PN =Ds—lzxv—1Dx X, s> L

3. Least-squares quadratic estimation

Given the observation model Eqgs. (1)—(4), under hypotheses (H1)-(H6), our aim is finding
the LS quadratic estimator, X; /L, of the signal, x;, with knowledge of the observation history
up to the Lth sampling time, yi, ..., y.. More specifically, our goal is to construct recursive
algorithms for the filter X, and the smoother X/, at the arbitrary fixed point k, for any
L >k

The filtering algorithm provides estimators of the current signal, x;, based on the measure-
ments up to the present time, yi, ..., yx. At each time step k, the filtering estimator, Xy, is
updated based on the new measurement, y;, and the previous estimator, X;_1 Jk—1-
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The fixed-point smoothing algorithm allows us to obtain the estimator of the signal at
a fixed time, given an increasing number of posterior available measurements; that is, the
fixed-point smoother is used to estimate the signal, xi, at the fixed point k, not only based on
measurements up to that time, but also using measurements taken beyond it, k + 1,k + 2, --- .
As already indicated, the quadratic estimator is the orthogonal projection of the vector

x; onto the linear space generated by the observations yj,...,y, and the Kronecker powers
y[lz], ...,y[L2]. The model hypotheses ensure the existence of the second-order moments of

these Kronecker powers and, consequently, the existence of the quadratic estimators X/, is
guaranteed. By combining the original vectors and their second-order powers, the following
augmented vectors are defined to derive such estimators:

Xk Zk Vi Yk Wi
Xk = 21 ] Zk = 21 ] Vk = 21 ]’ yk = 21 ]’ Wk = 211"
Xk i Vi Yk Wi

Noting that the space of n,-dimensional linear transformations of y;,...,y, and

y[lz], ...,y[Lz] is identical to that of linear transformations of ), ..., ), it is obvious that

the LS quadratic estimator of x; based on yi, ..., y. is the LS linear estimator of x; based on
V1, ..., V. To obtain this linear estimator, firstly, an observation model for the vectors ), will
be created by studying the dynamics of the augmented vectors and, secondly, the second-order
statistical characteristics of the processes included in this new model are examined.

3.1. Dynamics of the augmented vectors

By using Eq. (1) and the Kronecker product properties, the following expression for z}{zl

is obtained:

& = HPP 4 K (Hoo @ vie) +V7, k> 1

Hence, the augmented measurement vectors Z; clearly satisfy

Zry =Hee + Vi + VY, k=1, 5)

in which

Lo (B 0N 0
““\o mY) T \Ke(Hwoow))

In order to obtain the evolution model for the augmented noise Vj in this equation, let us
observe that, from Eq. (2), it is clear that

v,[(21 = D,Ezllvllczjl + Kng(Dk—lvk—l ® Mk—1) + M;[iJl k=1
Hence, the augmented noise V; is time-correlated and the following equation holds:
Vi = D1 Vi1t +Up—r, k> 1 (6)

in which

D Dk 0 U Uy
T 0 D][{Z] ' kT Kng (Dkvk ® Ltk) + M,EZ] .

Finally, using Eq. (4) and taking into account that A; (1 — X;) = 0, the augmented obser-
vation vectors ) can be expressed as

Ve=0=A)Z + MW, k> 1. @)
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Note that the augmented vectors in this new model have non-zero mean. For simplicity
in both the study of the statistical properties of the augmented vectors and the derivation
of estimation algorithms, the quadratic estimation problem will be addressed by defining the
centered vectors:

Xe = X — Xy, 7 = 2 — 24, vi = Vi — Vs,
Vi = Vi — Vi wp = Wi — W, w = Uy — Uy.

Clearly, the LS linear estimator of x; based on ), ..., Y, is equal to the one based on
Yi,-..,Yyo. Theorem 1 summarizes the dynamics of the centered augmented vectors (hereafter

simply referred to as augmented vectors).

Theorem 1. The dynamics of the augmented vectors are specified as follows:

(a) The augmented measurements {z;}r>1 obey the following equation
e =HixXe + v + v, k=1, 8)

where
. 0

VvV, = Vi + s
e K2 (Hix ® )

Vit = <~[21 T " 77 )
H,"vec(AB; ) + K2 (Hkxk ® vk)
in which
Hy=H,—H,, H” =H" —E[H™]
and {Vi}xso is a time-correlated noise, satisfying
Vi = DioiVi— + Wy, k> 1. 9
(b) The following equation holds for the augmented observation process {yi}i>1:

Vi = (1 = Az + ewi — (g — Ao)gr, k> 1, (10)

0
h —(_ .
vhere g (H,E”vec(AkB,{) + vec(DFT) — vec(z,;v)>

Proof. See Appendix A. O

3.2. Second-order statistical properties of the augmented processes

The second-order statistical properties of the augmented processes involved in Eqs. (8)—(10)
are set out in the following propositions.

Proposition 1. Under hypotheses (HI1)-(H6), the processes involved in Eq. (8) satisfy the
following properties:
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(a) The augmented signal process {Xi}x>1 has zero mean and its covariance function admits
the following factorization:

Iy, =ABLL s <k, (an

where

A = A Aix O f) B — By 0 By E) .
0 0 Ay Ag 0 Bix 0 By

Also, the expectations E[x;x!] are factorized as follows:

r ABI, s <k,
Elagxg]l=1. (12)
BeAT,  k<s,

where
Ak:(Ak|Al,k|0|O)’ ]Ekz(Bkl()'BZk'O)

(b) The noise process (V[ }r>1 is a sequence of zero-mean random vectors and its covariance
function Z,‘(’l can be factorized as follows:

Vo= A s <k, (13)
with Ay = (Cp | D), Yx = (B | Fr), k > 1, in which

0
C = S N ]D) == D 5
' <1< (Hidi @ Dk)) S

0
E, — - . F, =37
§ (an (HkBk ® Fk)> ¢ k TkO

where Dy.o = Dy—1--- Do and X} is recursively computed as follows:
v v T u v 25 28(]2)

Es = D3712S71D571 + Esfl’ s= 1 20 = NG o
o 2l

(c) The noise process {v;*}i>1 is a sequence of zero-mean mutually uncorrelated random
vectors with covariance

o (00
K = 0 (EZ**)ZZ s

in which
(=17). = E[H'vec(AuB] yvec” (AB)H" ] + K, (E [HiABLH] ® DkF,{)Kng. (14)

Proof. See Appendix B. U

Proposition 2. Under hypotheses (H1)-(H6), the noise processes {U;}k>0 and {Wi}i>1, involved
in Egs. (9) and (10), respectively, are sequences of zero-mean mutually uncorrelated random
vectors with covariance matrices given by

EW EW(IZ) Eu Eu(]z)
E,ﬁvz( DA B = D - T N =}
ZIL: (2;:)22
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u?)

in which (Z}),, = K, (Divec (D F)D] ® T{)K,2 + Tf
Moreover, the stochastic processes {Xi}i>1, {uk}k>0, {wk}k>1, {Vitk=1 and {v{*}i>1 are
uncorrelated to each other.

Proof. The proof is omitted, as it is easily deduced from the model hypotheses. []

Remark 6. From Egs. (8) and (10), together with the properties established in
Propositions 1 and 2, it is immediately deduced that

YE = E[HMABIH T + A0+ 2], k=1,
2= (1= )T+ I + (- homel, k> 1. (15)

4. Quadratic estimation algorithms

The above statistical properties ensure that the augmented processes involved in Eqs. (8)—
(10) all have finite second-order moments. Consequently, the existence of the LS quadratic
estimator of x; based on the original observations (or, equivalently, the LS linear estimator
of x; based on the augmented observations yi,...,Yy.) is guaranteed. Using an innovation
approach, the following recursive algorithm for the quadratic filtering (L = k) and fixed-point
smoothing (L =k + N, N > 1) estimators is deduced.

Theorem 2. The LS quadratic ﬁltermg estimators, Xy, and the error covariance matrices,
Zk/k =E[(x — xk/k)(xk — xk/k) 1, are recursively obtained by

D= Ay | O)e, k=1, (16)
S = ABf — (B | OTe(he | 0, k=1, (17
in which the vectors e, and the matrices Ty satisfy the following recurrence relations

=€ + W ', k>1; e =0, (18)
Te =T + W I, k>1; To=0, (19)

where the innovation |y is calculated by

pe = ye — (L= 2) (HiAe | Ac)er—r, k> 1. (20)
The matrices WV are given by the following expression

W= (=30 ((HeBi | 7o) = (ke | A)T)". k= 1, @
and the innovation covariance matrices, Iy, are calculated by

M = %7 — (1= %) (Hede | A)Tiey (A | Ak)T, k>1, (22)

where X3 is obtained by Eq. (15).

At any fixed sampling time k > 1, by starting from the filter and its error covariance
matrix as initial conditions, the LS quadratic fixed-point smoothers, Xk/k+n, and their error
covariances, Ek/k+N, admit the following recursive relations

Xk/ktN = Xkjktn—1 + S;f,k+NH,:+NMk+N, N=>1, (23)
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Ek/kJrN = /ik/kJerl - SE,HNH;JNS?;+N, N=>1, (24)
where

S/f,kﬂv = (1 _karN)((EBk | 0) — Mk,k+N—1)(ﬂk+NAk+N | Ak+N)T, N > 1, (25)
and

— ox -1 3T
Mk,k+N - Mk,k+N—1 +Sk,k+NHk+N‘I’k+N’ N = 17

M, = (& | T, k> 1. (26)

Proof. See Appendix C. [

4.1. Computational procedure

Next, the computational procedure of the proposed quadratic filtering and fixed-point
smoothing algorithms is summarized.

1) Covariance matrices of the augmented processes.

la) The covariance matrices E,’(‘,S, ZZ;, EZ**, %Y and X} of the augmented sig-
nal and noise processes are obtained by using the expressions established in
Propositions 1 and 2.

1b) From the matrices obtained in /a), the covariance matrices X} and E,{ are computed
by Eq. (15).

All these covariance matrices only depend on the system model information, so they

can be calculated offline, before the observations are available.

2) LS quadratic filtering recursive algorithm. At the sampling time k, starting with the
prior knowledge of the (k — 1)th iteration (consequently, W;_y, IT;_1, Tr—1 uir—1 and
e;—; are known), the proposed quadratic filtering algorithm operates as follows:

2a) Filtering error covariance matrices. Compute ¥, by Eq. (21) and, from it and with
%7 obtained in /a), the innovation covariance matrix IT; is provided by Eq. (22).
Then Ty is obtained by Eq. (19) and, from it, the filtering error covariance matrices,
fk/k, are obtained by Eq. (17). It should be noted that theses matrices do not depend
on the measurements, thus providing a measure of the filter performance even before
we get any observed data.

2b) Quadratic filtering estimators. When the new measurement Yy is available, the inno-
vation pu; is computed by Eq. (20), and, from it, e; is obtained by Eq. (18). Then,
the quadratic filtering estimators, X« are computed by Eq. (16).

3) LS quadratic fixed-point smoothing recursive algorithm. At any fixed sampling time
k > 1, once the filter, X /k» and the filtering error covariance matrix, fk sk are available,
the proposed quadratic smoothing estimators and the corresponding error covariance
matrix are obtained as follows:

For N=k+1,k+2,..., compute the matrices My x4n_1 using Eq. (26) and, from
these matrices, Sv',f -y 18 derived by Eq. (25); then, the smoothers Xk /k+n and their error
covariance matrices fk /k+n are obtained from Eqs. (23) and (24), respectively.
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5. Simulation study

In this section, a simulation numerical example is considered to analyze the implementation
and performance of the proposed quadratic filtering and fixed-point smoothing algorithm.

AR(1) scalar signal. Consider a scalar signal process {xi};>; generated by the following
first-order autoregressive model:

X =0.95x_1 + &k—1, k>1,

where the initial signal xp is a zero-mean Gaussian variable with variance ¥j = 0.1, and
{ex}k=0 is a zero-mean white Gaussian noise with variance X7 = 0.1, Vk > 0.

Assuming that xo and the sequence {&;};>0 are mutually independent and taking into ac-
count that the third and fourth-order moments of a zero-mean Gaussian variable with variance
o2 are 0 and 30*, respectively, the covariance and cross-covariance functions of this signal
and their second-order powers are given by

ks @ 2(k—s) <x@ . )
T, =0957%, w0 =098 s<k XY =0, Vk,s,
where the functions ¥} and Ef(z) are recursively obtained by

¥ =0.9025%% , +0.1, 5> I,

¥ = 0.8145 2% +0.361 =X | +0.02, s> I.
According to assumption (H1), it is clear that these covariance functions can be expressed in

a separable form defining, for example, the following functions:

Ap =095 B, =095*s) A, =0.95% B, =095%*x";
Alg =Bi1x=0; Ay =B =0.

Actual measurements. Assume that the real measurements of the signal, z;, are described by
Eq. (1) with the following parameters:

o Hy = 0.96,, in which {6;};>; is a sequence of independent identically distributed Bernoulli
random variables with probability P(6; = 1) = 6. These variables model whether the signal
is present (6; = 1) or not (6; = 0) in the actual measurements and, therefore, 6 is the
probability that the observations contain the signal to be estimated.

o The noise process {vi}k>0 is generated by Eq. (2) where Dy = 0.75, {ux}r>0 is a zero-mean
white Gaussian noise with X} = 0.01, Vk > 0, and vg is a zero-mean Gaussian variable
with X5 = 0.1; hence,

p(12) 412 e u®

=2 =0, mp” =002, = =0.0002.

According to the theoretical model, let us suppose that the measurements are subject to
deception attacks and the signal injected by the adversaries is given by Eq. (3). The false
data injection attack noise {wy};>; is a white non-Gaussian sequence with distribution

Pwy=-8)=1/8, Pw,=28/7)=717/8, Vk > 1;
hence,

(12)

Elw =0, Ty =09.1429, " =-62.6939, =" =429.9009.
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Fig. 1. Estimation error variance comparison of the linear and quadratic filtering and smoothing estimators when
0=1=025.

Available observations. Finally, again in line with our theoretical study, we suppose that the
available observations for the estimation are given by Eq. (4), where the white sequence of
Bernoulli random variables {A;};>1, modeling whether the deception attacks actually succeed
or not, are identically distributed with probabilities P(A; = 1) = A.

Our goal with this example is threefold. First, we aim at showing the feasibility and effec-
tiveness of the proposed quadratic estimators, illustrating their performance and the superiority
of the quadratic estimators over the linear ones (the linear filtering and fixed point smoothing
algorithms are given in Appendix D). Second, we intend to show how the probability 6 that
the signal is present in the actual measurements influence the performance of the estimators.
Third, we attempt to show the effect of the successful deception attack probability A over the
performance of the estimators.

For this purpose, a MATLAB program has been developed to obtain the linear and quadratic
estimators and, in order to quantify the estimation accuracy, the corresponding estimation error
variances were calculated for different values of the probabilities 6 and A.

Performance of the quadratic filtering and fixed-point smoothing estimators. Considering
the same fixed value 0.5 for the probabilities 0 and X, the error variances of the linear and
quadratic estimators are calculated to compare the performance of both filtering and fixed-
point smoothing estimators. The results of this comparison are displayed in Fig. I, which
shows, on the one hand, that the quadratic estimators present lower error variances than the
linear ones, thus confirming the superiority of the former over the latter. On the other hand, it
is gathered that, for both linear and quadratic estimators, the smoothing error variances are less
than the corresponding filtering ones and, also, that as the number of available observations
increases, the fixed-point smoothers become more accurate. Furthermore, it is observed that
the values of the fixed-point smoothing error variance decrease with increasing N, although
this decrease becomes almost negligible for N > 9.
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Fig. 3. Linear and quadratic filtering and smoothing error variances versus 6, when A = 0.5.
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Fig. 4. Linear and quadratic filtering and smoothing error variances versus A, when 6 = 0.5.

Fig. 2 displays a simulated signal trajectory and their corresponding linear and quadratic
filtering and smoothing estimates. Agreeing with the comments made about Fig. I, it is
observed that the quadratic filtering and smoothing estimates track the signal evolution better
than the linear ones. It is also noticed that the accuracy of the quadratic smoothing estimate
is higher than that of the quadratic filtering estimate.

Influence of the probability 6. Assuming, as in the above figures, that the attack probability
is A = 0.5, now we compare the performance of the estimators considering different values of
the probability, 6, that the signal is present in the actual measurements. Since, from k = 50
onwards the estimation error variances show a similar behaviour, only the variances at a
specific iteration k = 100 are considered. To illustrate the influence of the probability 6,
Fig. 3 depicts the comparative results between the filtering and smoothing error variances for
both linear and quadratic estimators, considering several values of the probability 6 (namely,
6 =0.1 to 0.9). This figure shows that & — the probability that the observations contain
the signal- or, equivalently, the probability 1 —@ that the signal is missing in the actual
measurements, indeed influence the performance of the estimators. Actually, as expected,
both linear and quadratic estimation error variances decrease as 6 increases and, consequently,
the filtering and smoothing estimators perform better when the probability that the signal is
missing in the actual measurements, 1 — 6, decreases. As in Fig. 1, this figure also shows
that, for all the values of 9, the quadratic estimation error variances are smaller than the linear
ones; besides, it is observed that the smoothing estimation error variances, for both the linear
and quadratic estimators, are lower than those of the filters, and that the smoother performs
better as the number of available observations increases. It is also inferred that, as the values
of the probability @ increase, a higher reduction in the estimation error variances is yielded
by the quadratic filtering and smoothing estimators over the linear ones.
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Effect of the attack probability A. Assuming again, as in Fig. 1, that & = 0.5, we examine
the impact of the deception attacks on the estimation accuracy. More precisely, we compare
the performance of the estimators considering several values of the successful deception attack
probability 2 = 0.1 to 0.9. As A increases, the number of successful attack is expected to be
greater and, consequently, a higher number of available measurements used for estimation
will be only noise; so, worse estimations will be obtained and, hence, the error variances
are expected to be higher. Fig. 4 confirms this fact, showing that the filtering and smoothing
error variances at k = 100, of both linear and quadratic estimators, become smaller as the
successful deception attack probability A decreases. This figure also shows that, in the case of
quadratic estimators, similar increments in the values of the probability A produce essentially
the same increase of the estimation error variances. However, in the linear estimation problem,
such increase is more significant for small values of A.

6. Conclusion

Recursive algorithms for the LS quadratic filtering and fixed-point smoothing estimation
problems are proposed from measurements perturbed by random parameter matrices, time-
correlated additive noises and random deception attacks. Unlike most studies on quadratic
estimation, in which the linear estimator of the augmented signal is calculated and, from it,
the estimator of the original signal is extracted, we deal with the direct estimation of the
original signal based on the augmented observations. Some numerical results are used to
examine the accuracy of the quadratic estimators, which reveal that the proposed estimators
outperform the linear ones and illustrate how the theoretical system model under consideration
covers the missing measurements phenomenon as a specific example. In addition, the effect
of missing measurement and deception attack success probabilities on the estimation accuracy
are analyzed in the context of the numerical simulation study.

Future research topics would include extending the proposed framework to deal with more
sophisticated attack models, such as the important-data-based attack model used in [35]. It
would also be interesting to consider the distributed estimation problem in the scenario of
networked systems whose sensor nodes are spatially distributed and connected according to
a predetermined topology (see [36]).
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Appendix A. Proof of Theorem 1

(a) Taking into account that E[Hx; ® Vil = 0_, it is_clear that V,t = 0; then, taking expec-
tations in Eq. (5), we have that Z; = H; X + Vi, k > 1. Hence, again from Eq. (5),
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by adding and subtracting #; X, we obtain
zr = Hixi + (Hie — HOX e+ Vi + Vi — v+ o, k> 1,

where v, = 0
k= an (Hkxk) ® vk) ’
Clearly, v; = v + v and, taking into account that

_ 0
(Hy — Hi) X = |
‘ N ((H,Ez] — H,[cz])vec(AkBZ))

it is obvious that v;* = (H; — H)X + Vi — v so, Eq. (8) is directly obtained.
Finally, taking expectations in Eq. (6), we have Vi = De Vi1 +Ui—1, k> 1, and
Eq. (9) is straightforward.

(b) Taking expectations in Eq. (7), it is clear that Y, = (1 — A ) Zx + Wi, k> 1, and
hence

Ve =1 =202 — (1 = ) Zk + Wi — MWy, k> 1.
Now, by adding and subtracting both Aka and (1 — Ak)zk, we obtain
Vi = (1= 20z + Wi — O — 1) (2 = Wh), k> 1,

and denoting

_ 0 0

=Z; - Wi=1— - ’
B =2k = W <H,[f]vec(AkB,{ ) + vec(DkF,f)) (vec(EkW))
Eq. (10) holds.

Appendix B. Proof of Proposition 1

(a) Eq. (11) for X is obtained taking into account that, from hypothesis (H1),
ABT A BT L
XX o= ! o), s<k.
b \AwBY,  ABT

Eq. (12) for the expectations E[x;x!] is immediately deduced using that, again from
hypothesis (H1),

ABT | A1BT ), s <k,
E[kayT] _ ( kD 1,k l,s)
’ (BkAAT | BZ,szT,S)’ k <s.
(b) We write v = v, + v, where v, = 0
TR £ K (Hixa) @ i) )

Since, from the independence hypotheses on the model, the signal x; and the noise
v, are uncorrelated, it is clear that v, and v, are also uncorrelated and, hence, E,Z; =
E,‘(’,s + E,‘:’S. Next, these covariance matrices are obtained:
+ From Eq. (9) and assumptions (H3) and (H4), the covariance function X  is factor-
ized in a separable form, X} = DFT, s <k, in which Dy = Dy and FT = D, %7,
with Dy g = Di_; - - - Dp. Again, from Eq. (9) and the model hypotheses, starting’from

%), the matrices XY are recursively computed by XY = D,_, E;’lesTf1 + X%, s>
1.
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« Taking into account that, from (H1), E[xx! ] = A¢B?, s <k, and, from Remark 5,
E[vkaT] = DkFST, s < k, the Kronecker product properties lead us to
E[(Hwx ® v)(Hex, ® v,)' | = (HiABTH, ) © DFT
= ((HxAv) ® Dy)((HBy) ® F,)", s <k.
So, it is clear that E,‘(”S is factorized as E,‘;S = (Ck]EST, s <k.
The above two items guarantee that EZ; = DFT + CLE!, s <k, so Eq. (13) for E,Z;
is immediately obtained.
(c) Clearly, [ ] = 0. Next, using again the independence hypotheses on the model and
the Kronecker product properties, we have:
o E[(HP'vec(ABD)) (HPvec(ABT))T| = E[H vec(AyB yvec” (AxBIYHP" 8y 5.
. E[(Ifllizlvec(AkB,{))(Flyxs ®v;)"]=0.

E[((ﬁkxk) ® vi) (Hox, ® V&)T] = E[AExad 17,5, ® E[vkv,T])
( [H.AB! H,] ® DiF! )5k ..

From the above items, we conclude that, for k # s, E [ vi'v j*T] = 0; so, the uncorrelation
of the vectors is proven. Also, Eq. (14) for (Z}"),,, the (2, 2)-block of the matrix X},

is straightforward.
Appendix C. Proof of Theorem 2

Since the quadratic estimator, X /L, of the signal x; based on the observations y, ...,y is
equal to the linear estimator of x; based on the augmented observations yy, ..., y., according
to the innovation approach it can be expressed as a linear combination of the innovations
Ui, ..., r; namely,

L
T =Y S0 e kL= 1, (C.1)
h=1
where ‘Sv‘,’(‘h = E[xipup ], n = Yo — Ynn—1 and I, = E[upu) 1. To begin with, we are going
to derive a proper expression for the one-stage observation predictors Yu/n—1, that allows

us to calculate the innovations u;, and, from them, the coefficients S/f , and the innovation
covariance matrices I1, involved in the general expression of the estimators Eq. (C.1).

Taking into account Egs. (8) and (10), together with the incorrelation properties established
in Proposition 2 and the Orthogonal Projection Lemma (OPL), it is clear that

Y1 = (1 _xk)(ﬂk/ik/k—l +/V7f/k_1), k>1. (C.2)
So, the one-stage predictor of both the augmented signal, Xi/x—;, and the augmented noise,
V1> must be calculated. Similarly to Eq. (C.1), denoting Sf, =E[xp)] and S, =
E[v; ,uh] these estimators can be obtained by the following general expressions:

L
R = Zs,;hn,;l,rh, Vo= SuM ws kL= 1 (C.3)
h=1 h=1

e One-stage predictor and filter of the signal: Xi5, s < k.
From Eq. (C.2), it is straightforward to see that

St =Efuyi] = (1 =T (B[R T, + E[u¥0 1), 1=h<k
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Now, taking into account Proposition 1(a) and Proposition 2, it is clear that

— ¥ —T
E[xy;] = 1= )ABH,, 1<h<k

and, using Eq. (C.3), we can write

xkxh/h 1] ZS;, j hj, xkvh/h ] ZS,fj N hj ,  h>2.
Consequently,
, h—1
Sth=(1- xh)[ ABIH, — (1= 8,0 8¢ T (S}, + s;,j)T], h>1.
=1

Hence, if we define

h—1
X 3 v X17— X v*
WX = (1 Ah)[ BIH, — (18,0 W (HiSE, +5,”)T], h>1, (C.4)
j=1
we can write Slfh = Ak\ll}l‘ h < k. So, denoting

k

h=1

and using Eq. (C.1), we conclude that
T = Are}, 1<s<k (C.6)

e One-stage predictor and filter of the augmented signal and the augmented noise: Xy;s and
<k
Vi § = k.

Reasoning as above, it is proven that &Y, = AyW), h <k, and the following expression
for the augmented signal estimators is obtained:

Xiss = Ael, 1<s<k (C.7)

Now, by using Eq. (C.2), the coefficients S,fh = E[v{u}] can be expressed as

St = EVivi ] = (= (B[Rt JH, + EviSih]), 1=h<k,
From Proposition 1(b) and Proposition 2, it is clear that

E[viyj]= A =a)AY), 1<h<k,

and, in view of Eq. (C.3), we can write

h—1

h—
* kT
kah/h 1] E Skj I’lj’ Vkvh/h 1] E :Skj h/ . h=2.

As a consequence,

h—1
Sy=(1- kh)[AkTh — (=80 S Sy + 81T ] h>1,

j=1
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SO, we can write S,(V;l = Ak\IJ,Z*, h <k, in which \Il,f* is a function satisfying
h—1

v = =T = (= 80X W T S+ S| Rz (C8)
j=1

Hence, if we define

k
D e 9
h=1

and we use Eq. (C.3), it is concluded that
1<s<k. (C.10)

e Derivation of the filtering formulas: Eqs. (16)—(22).
In what follows, for the sake of simplicity, we will denote:

eX PX
=[5 k=00 W= %) k=1,
ex vy

from which Eq. (16) for the filter is immediate, just using Eq. (C.6). Using the OPL, the
filtering error covariances are expressed as fk/k =F [xkx,{] —E [Fc\k/kf,{/k]; s0, using (HI) and
defining T, = E [eke,f], Eq. (17) is directly obtained.

The recursive relation Eq. (18) for e; is easily derived from Egs. (C.5) and (C.9). Then,
using that e;_; is orthogonal to py, the recursion Eq. (19) for Ty is straightforward.

In view of Egs. (C.2), (C.7) and (C.10), it is clear that

Vik—1 = (1 =) (HiAe | Ar)ex—r, k=1, (C.11)

which yields Eq. (20) for the innovation iy = yx — Yk/k—1. To obtain its covariance matrix,
Iy = E[ukpf ], we just observe that the OPL guarantees that Iy = X} — Erfk/k_1§z/k_l],
and using Eq. (C.11), Eq. (22) for I1; is easily proven.

Eq. (21) is derived just by combining Eqs. (C.4) and (C.8), using in them that Slf,j
and Sy, = AW} to obtain

v*
s

v =
Vk/s = Ake

= AV}

k—1
W= (1= 70 ((FeBi | ) = (ke | )Y 0T W1 )T, k=1,
h=1
k
and taking into account that Ty = E[eke,{] = Z‘I’hH;I\II,{, k>1.

h=1
e Derivation of the fixed-point smoothing formulas: Eqs. (23)—(26).

The recursive relation Eq. (23) for the fixed-point smoothers yields directly from Eg.
(C.1) and, from it, the recursion for the error covariance matrices Eq. (24) is immediately
obtained using the OPL.

In order to calculate the coefficients
St ran = Elvenin] = E[xyin] — E[xk’ﬁw/kw—l]’

let us note that, from Proposition 1(b) and Proposition 2,
- 2 =T
E[ayiy] = (1= ) Bel g v Hy
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Using Eq. (C.11) and denoting My iy = E[xce{ y], N >0, it is clear that

e - — T
E[xkylar]v/k“vfl] = (I = 2 )My vt (HaanAran | Aran)

and, combining both expressions, Eq. (25) is straightforward.

Finally, using the recursive relation Eq. (18) for eyyy, Eq. (26) for the matrices My x4y is
directly obtained; its initial condition is also easily derived by observing that, from the OPL,
M, = E[X;/xe} | and using Eq. (16).

Appendix D. Linear estimation algorithms

In this appendix, we present a recursive algorithm to obtain the linear filter and fixed-point
smoother; its derivation, via an innovation approach, is analogous to that of Theorem 2.
The LS linear filter, f,f/k, and the error covariance matrices, Z,f/k, are obtained by

}%/k = (Ax | 0)6%, k>1,

Shx = AB] — (A | OTEA | 0), k> 1,

where the vectors ef and the matrices Té satisfy

e =e | +WIE 'm, k>1; ef=0,

T =T, + ¥ E (¥, k>1; T;=0,

in which the matrices \Ilﬁ are calculated from

vl = (1 —Xk)(@kBk | F) — (HeAs | Dk)Ti_,>T, k> 1.
The innovations ny and their covariance matrices, Ey, are calculated by
me =y — (L — h) (HiAr | Di)er_y, k> 1.

- — 2 — T

Br = % — (1 = 2 (HiAr | DT (HiAr | Dy) k= 1,

where 37 = (1 — M) (E[HABLH 1+ DiFF) + Sy, k> 1.
The LS linear fixed-point smoothers, 55,%/,{ N and their error covariances, E,f/k LN are
recursively obtained by

~ A L ol
XetN = X peen—1 T Sian B Mens N =1,

fif/kﬂ\/ = /i/f/kﬂvq — Stiin E]:iN(Slik+N)Tv N=>1,

where

SFion = (=T (B 1 0) = ME ) (HisnAren | Degn)'s N = 1,
with

L ML L =1 gyl T .
M iy = My vt + Skan By Win) s N = 1

M; = (A | O)TY, k> 1.
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