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Abstract 

Networked systems usually face different random uncertainties that make the performance of the 
least-squares (LS) linear filter decline significantly. For this reason, great attention has been paid to the 
search for other kinds of suboptimal estimators. Among them, the LS quadratic estimation approach 
has attracted considerable interest in the scientific community for its balance between computational 
complexity and estimation accuracy. When it comes to stochastic systems subject to different random 

uncertainties and deception attacks, the quadratic estimator design has not been deeply studied. In this 
paper, using covariance information, the LS quadratic filtering and fixed-point smoothing problems are 
addressed under the assumption that the measurements are perturbed by a time-correlated additive noise, 
as well as affected by random parameter matrices and exposed to random deception attacks. The use 
of random parameter matrices covers a wide range of common uncertainties and random failures, thus 
better reflecting the engineering reality. The signal and observation vectors are augmented by stacking 
the original vectors with their second-order Kronecker powers; then, the linear estimator of the original 
signal based on the augmented observations provides the required quadratic estimator. A simulation 
example illustrates the superiority of the proposed quadratic estimators over the conventional linear 
ones and the effect of the deception attacks on the estimation performance. 
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. Introduction 

Sensor networks are becoming increasingly popular in a broad range of application fields,
ncluding health care, military, transportation, mining, agriculture, intelligent buildings and
mart cities, among others [1] . As a result, the fusion estimation problem in networked systems
s attracting tremendous research interest. 

However, it must be mentioned that communication networks usually suffer resource con-
traints and, consequently, some network-induced phenomena will inevitably emerge during
ignal measurement or transmission [2] . Some of the most common networked-induced phe-
omena occurring in different application disciplines –presence of multiplicative noise, miss-
ng observations, or fading measurements, among others– can be globally characterized by
ncorporating stochastic parameters in the measurement equations. Thus, the use of random
arameter matrices in the measurement equation allows us to model the randomness in the
easurements and to account for different uncertainties in many real-life scenarios –e.g., radar

ystems, wireless communication, sensor networks or environmental monitoring– where such
ncertainties can occur. As a result, research on the estimation problem in systems with ran-
om parameter matrices has grown in popularity during the past few years. See, for example,
3–9] and the references therein for some sample contributions. 

The traditional Kalman-type filtering problem is usually based on the assumption that the
easurement additive noise is either white or finite-step correlated. In practice, however,

nfinite-step correlated measurement noises can be found in a wide variety of engineering
pplications, where the sampling frequency is typically high enough to cause measurement
oises to be significantly correlated over two or more consecutive sampling periods. Over the
ast decade, numerous papers have addressed the estimation problem under the assumption
hat the infinite-step time-correlated channel noise is the output of a linear system model with
hite noise. The state augmentation method –which is simple and direct but computationally

xpensive– and the measurement differencing method –which avoids increasing dimensions,
ut requires two consecutive measurements to compute the difference– are the most popular
ethods for dealing with this type of noise correlation (see, e.g., [10–14] ). More recently,

lternative non-augmentation methods that do not require the availability of consecutive mea-
urements have been proposed to address the state estimation problem in linear systems with
ime-correlated additive noises and random packet dropouts in [15] and [16] . 

When dealing with the estimation problem in networked systems, security is an important
opic that should not be overlooked. The possibility of suffering cyber attacks is one of the

ost common weaknesses (see, e.g., [17] and [18] ) and, particularly, the estimation problem in
etworked systems subject to deception attacks have inspired many significant research studies.
enerally speaking, the major goal of deception attackers is altering the data integrity by
aliciously falsifying their information in a random way. The centralized security-guaranteed
ltering problem is studied for linear time-invariant stochastic systems with multirate-sensor
usion under deception attacks in [19] . The H ∞ 

-consensus filtering problem for discrete-time
ystems with multiplicative noises and deception attacks is investigated in [20] and the chance-
onstrained H ∞ 

state estimation problem is investigated for a class of time-varying neural
etworks subject to measurements degradation and randomly occurring deception attacks in
21] . The distributed estimation problem in sensor networks with a specific topology structure
as been studied in [22] –under false data injection attacks– and in [23–26] –under deception
ttacks. 
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It is unquestionable that the LS estimation problem of random signals from noisy measure-
ents has played a key role over the past decades. The well-known Kalman filter provides

he LS signal estimator for linear systems subject to Gaussian, mutually independent initial
ignal and noise processes. However, in the presence of non-Gaussian disturbances, only the
S linear estimator is provided and the optimal estimator is, in general, computationally ex-
ensive. Besides, due to the network-induced random uncertainties described in the previous
aragraphs, networked systems are generally non-Gaussian and the practical computation of
he LS estimator usually involves a significant complexity. For this reason, a great deal of
ttention has been devoted to the design of simpler suboptimal estimators with satisfactory
ccuracy, being the design of LS linear estimation algorithms the most popular approach. A
ore effective scheme to address the estimation problem in non-Gaussian systems is the LS

uadratic approach, due to its usual outperformance over the LS linear one and its adequate
alance between computational burden and estimation accuracy. In linear discrete-time non-
aussian systems, the input noise quadratic estimation problem is addressed in [27] and a

ecursive quadratic estimation algorithm for the system state is proposed in [28] under the
resence of random parameter matrices. A feedback quadratic filtering algorithm, that re-
uces the estimation error with respect to the plain quadratic filter, is proposed in [29] . The
uadratic estimation problem has also been addressed in discrete-time systems with measure-
ent delays and packet dropouts [30] and under the presence of multiplicative noises and

uantization effects [31] . Recently, recursive quadratic estimation algorithms are proposed in
32] –for linear systems over time-correlated fading channels– and [33] –for nonlinear sys-
ems with energy-harvesting sensors. However, to the best of the authors’ knowledge, there
ave been scarce studies on the quadratic estimation problem in linear systems with random
arameter matrices and time-correlated additive noise, let alone the scenario where random
ttacks are also involved. 

Inspired by the discussion made so far, our aim is to address the LS quadratic filtering and
xed-point smoothing estimation problems for a class of stochastic systems in the presence of
andom parameter matrices, time-correlated additive noise and random deception attacks. The
ollowing are the key difficulties we are dealing with: (1) Analysis of the statistical properties
f the augmented noises produced by the original time-correlated additive noises and their
ronecker products. (2) Development of an effective quadratic estimation method in the
resence of random parameter matrices, time-correlated additive noise and random deception
ttacks. (3) Evaluation of the impact of deception attacks on estimation performance. 

The main contributions of this paper are summarized as follows: (a) The class of systems
nvestigated in this paper is quite comprehensive, as the use of random parameter matrices
mbraces a wide range of common uncertainties and random failures, thus better reflecting the
echnical reality. (b) The original observation vectors are augmented with their second-order
ronecker powers, so the quadratic estimation problem is reformulated as a linear estimation
roblem from the augmented observations and recursive formulas for the estimation error
ovariances are also proposed. (c) A covariance-based estimation approach is used, so the
volution model of the signal to be estimated does not need to be known. (d) The direct
stimation of the time-correlated additive noise avoids the use of the differencing method.
e) The proposed LS quadratic filtering and fixed-point smoothing estimators outperform the
onventional linear ones. 

The paper is organized as follows. The characteristics of the observation model under
onsideration are described in Section 2 . The LS quadratic estimation problem is formulated
n Section 3 , where the augmented vectors are defined. The study of the dynamics of the
11143 
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ugmented vectors ( Section 3.1 ) and their second-order statistical properties ( Section 3.2 ) will
e the key to obtain a new observation model, from which the recursive quadratic estimation
lgorithms are derived in Section 4 . A simulation study, in Section 5 , shows the effectiveness
f the proposed filtering and fixed-point smoothing estimators, as well as their superiority
ver the conventional linear ones. Finally, some conclusions are given in Section 6 , which
s followed by three appendices that provide the mathematical proofs of the main theoretical
esults. 

Notation. As far as possible, standard mathematical notation will be used throughout the
aper. If not explicitly stated, the dimension of all vectors and matrices is assumed to be
ompatible with algebraic operations. 

 

n Set of n-dimensional real vectors 

k,h Kronecker delta function 
 

T and M 

−1 Transpose and inverse of matrix M
 

(a) T and M 

(a) −1 Shorthand for (M 

(a) ) T and (M 

(a) ) −1 

(M 1 | . . . | M k ) Partitioned matrix whose blocks are the submatrices M 1 , . . . , M k 

iag(N 1 , . . . , N m ) Block diagonal matrix with main-diagonal blocks N 1 , . . . , N m 

 Zero scalar or matrix of compatible dimension 
Kronecker product of matrices 

 n 2 n 2 × n 2 matrix such that K n 2 (z � v) = v � z + z � v, ∀ z, v ∈ R 

n 

 

[2] = M � M Second-order Kronecker power of vector or matrix M
ec(� ) vec operator 
[ a] = a Mathematical expectation of a random vector or matrix a
 k = G k,k Function G k,h , depending on time instants k and h, when h = k
ab 
k,s Covariance of random vectors a k and b s ( �a 

k,s = �aa 
k,s ) 

�ab 
k,s = Cov[ a k , b s ] = E 

[(
a k − a k 

)(
b s − b s 

)
T 
]
, Cov[ a k ] = �a 

k 
  k/s Optimal quadratic estimator of the vector a k based on 

{
y 1 , . . . , y s 

}

. Observation model 

Consider a random signal, x k ∈ R 

n x , to be estimated and assume that the actual measure-
ents, z k ∈ R 

n z , are described by 

 k = H k x k + v k , k ≥ 1 , (1)

here H k are random parameter matrices and v k is a time-correlated additive noise, satisfying

 k = D k−1 v k−1 + u k−1 , k ≥ 1 , (2)

n which D k are known, non-singular, time-varying matrices and u k is a white noise. 

emark 1. Usually, in physical electronic systems, white noise becomes time-correlated when
t passes through bandlimited channels. When the noise has a correlation time that is signif-
cantly shorter than the relevant time intervals of interest, it is generally regarded as white
oise, and its colored nature is typically disregarded. However, if the correlation time is not
egligible, the system may encounter significant interference from the colored noise. Model
q. (2) is appropriate to simulate, for example, the signal strength colored noise in Global Po-
itioning System (GPS) receivers or the GPS positioning noise due to carrier phase multipath
rrors (see [34] and references therein). 
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Let us assume that deception attacks are launched by an adversary, who injects a false
ignal modeled by 

˘ k = −z k + w k , k ≥ 1 . (3)

At each sampling time k, the attack can randomly succeed or fail and this fact is described
y a Bernoulli random variable, λk , whose values –one or zero– represent a successful or failed
ttack, respectively. Therefore, the available observations, y k , that will be used to estimate the
ignal, are given by y k = z k + λk ̆z k or, equivalently, using Eq. (3) , 

 k = (1 − λk ) z k + λk w k , k ≥ 1 . (4)

emark 2. According to Eq. (3) , the false data injected by the attackers, z̆ k = −z k + w k ,
re assumed to be divided mathematically into two components: a neutralizing one, −z k ,
hat will cancel the original measurement and a noise component, w k , that represents the
lurred deceptive information added by the attacker. Hence, at each instant of time, the
ompromised measurement Eq. (4) can be the actual measurement (if the attack fails) or
nly noise (if the attack succeeds). Another interesting kind of deception signal could be, for
xample, z̆ k = w k , which involves adding random noise to the received measurement. This
ind of deception attacks aims to degrade the measurement quality by introducing unwanted
oise. Unlike Eq. (4) , under this model, the resulting compromised measurements are given
y y k = z k + λk w k , thus always containing the actual measurement (with or without noise,
epending on whether the attack is successful or not, respectively). A complete survey of
ifferent kinds of attacks can be seen, for example, in [17] . 

emark 3. The mathematical model of the compromised measurements Eq. (4) looks similar
o the packet loss model. The main difference between both models lies in the noise com-
onent, w k , that represents the blurred deceptive information added by the attacker. In the
andom packet loss scenario, at each time instant, the processing center can receive the actual
easurement (if there is no loss) or nothing (if the actual packet is lost), in which case it is

sually compensated with either the most recently received packet or the prediction estimate
f the lost measurement, thus always providing valuable information for the signal estimation.
owever, the possibility of random deception attacks means that, at each time instant, the
rocessing center can receive the actual measurement (if the attack fails) or only noise (if
he attack succeeds). Hence, in addition to neutralizing the original measurement, what could
e mathematically similar to a packet dropout, the deception attack degrades the quality of
he measurements by introducing unwanted noise, thus adding further difficulties in obtaining
ccurate estimation algorithms. 

Taking into account the difficulty in obtaining the least-squares (LS) optimal estimator in
he presence of random uncertainties in the measurements, most studies are focused on the
S linear estimation problem. As it is well-known, when the random processes involved in

he observation model have finite second-order moments, the LS linear estimator of x k given
he observations y 1 , . . . , y L is the orthogonal projection of x k on the space of n x -dimensional
andom vectors produced as linear transformations of such observations. Nonetheless, some
fforts have also been directed towards the search for estimation algorithms that keep the
dvantages of the linear ones –recursivity and computational simplicity– and provide more
recise estimates. Specifically, our aim is to design recursive algorithms to obtain LS quadratic
stimators of the signal x k given the observations y 1 , . . . , y L ; such estimators are given by
he orthogonal projection of the vector x k onto the linear space generated by the observations
11145 
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 1 , . . . , y L and their second-order Kronecker powers y [2] 
1 , . . . , y [2] 

L . Therefore, to address the LS
uadratic estimation problem, it is necessary that the second-order moments of the Kronecker
owers y [2] 

1 , . . . , y [2] 
L exist, for which all the random processes involved must be fourth-order

rocesses and we will assume them to have known finite second, third and fourth moments. 
To simplify the statement of the subsequent assumptions and properties of the processes in-

olved, we introduce the following notations for the covariance and cross-covariance functions
f a stochastic process 

{
a k 

}
k≥1 and its second-order Kronecker powers: 

�a 
k,s = Cov[ a k , a s ] , �a (2) 

k,s = Cov[ a 

[2] 
k , a 

[2] 
s ] , �a (12) 

k,s = Cov[ a k , a 

[2] 
s ] , �a (21) 

k,s = �a (12) T 

s,k . 

�a 
k = Cov[ a k ] , �a (2) 

k = Cov[ a 

[2] 
k ] , �a (12) 

k = Cov[ a k , a 

[2] 
k ] , �a (21) 

k = �a (12) T 

k . 

The following assumptions are made: 

(H1) The signal process 
{
x k 

}
k≥1 has zero mean and its covariance function, �x 

k,s , as well as

the covariance function of its second-order powers, �x (2) 

k,s , can be factorized as follows: 

�x 
k,s = A k B 

T 
s , �x (2) 

k,s = Ă k B̆ 

T 
s , s ≤ k, 

where the n x × M 1 matrices A k , B s and the n 

2 
x × M 2 matrices Ă k , B̆ s are known for all

k, s ≥ 1 . Also, the cross-covariance function of the signal and its second-order powers,
�x (12) 

k,s , can be expressed as: 

�x (12) 

k,s = 

{ 

A 1 ,k B 

T 
1 ,s , s ≤ k, 

B 2,k A 

T 
2,s , k ≤ s, 

where, for all k, s ≥ 1 , A 1 ,k , B 1 ,s , B 2,k and A 2,k are n x × P 1 , n 

2 
x × P 1 , n x × P 2 and n 

2 
x × P 2

known matrices, respectively. 
(H2) 

{
H k 

}
k≥1 is a sequence of independent random parameter matrices with known mean

matrices H k . The covariances and cross-covariances between the entries of the matrices
H k and H 

[2] 
k , are also assumed to be known. 

(H3) v 0 is a zero-mean random vector whose moments up to the fourth-order one are known.
(H4) The noise processes { u k } k≥0 and { w k } k≥1 are zero-mean white sequences with known

moments, up to the fourth-order ones. 
(H5) 

{
λk 

}
k≥1 , is a sequence of independent Bernoulli random variables with known proba-

bilities P 

(
λk = 1 

) = λk , k ≥ 1 . 

(H6) The signal process { x k } k≥1 , the vector v 0 and the processes { H k } k≥1 , { u k } k≥0 , { w k } k≥1

and { λk } k≥1 are mutually independent. 

emark 4. The derivation of the proposed quadratic estimation algorithms will not require the
volution model of the signal; instead, we will use a covariance-based estimation approach.
n this approach, although the signal evolution model is not necessary, a zero-mean signal is
equired and the covariance and cross-covariance functions of the signal and its second-order
owers are to be expressed in a separable form. It should be noted that these assumptions,
mposed in (H1), are met under the most commonly used signal evolution models. For in-
tance, let us consider a zero-mean non-stationary signal obeying a linear evolution model
 k = φk−1 x k−1 + ε k−1 , k ≥ 1 , with non-singular transition matrices, φk , and the following
ssumptions: 
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◦ x 0 is a zero-mean random vector whose moments, up to the fourth-order one, are known.
◦ { ε k } k≥0 is a zero-mean white process with known moments, up to the fourth-order ones. 

The covariance and cross-covariance functions of the signal and their second-order powers
re given by 

x 
k,s = φk,s �

x 
s , �x (2) 

k,s = φ
[2] 
k,s �

x (2) 

s , s ≤ k; �x (12) 

k,s = 

{ 

φk,s �
x (12) 

s , s ≤ k, 

�x (12) 

k φ
[2] T 
s,k , k ≤ s, 

here φk,s = φk−1 · · · φs , φ
[2] 
k,s = φ

[2] 
k−1 · · · φ[2] 

s and the functions �x 
s , �

x (12) 

s and �x (2) 

s are recur-
ively obtained by 

�x 
s = φs−1 �

x 
s−1 φ

T 
s−1 + �ε 

s−1 , s ≥ 1 , 

�x (12) 

s = φs−1 �
x (12) 

s−1 φ
[2] T 
s−1 + �ε (12) 

s−1 , s ≥ 1 , 

�x (2) 

s = φ
[2] 
s−1 �

x (2) 

s−1 φ
[2] T 
s−1 + K n 2 x 

(
φs−1 �

x 
s−1 φ

T 
s−1 � �ε 

s−1 

)
K n 2 x 

+ �ε (2) 

s−1 , s ≥ 1 . 

learly, according to assumption (H1), these covariance functions can be expressed in a
eparable form taking, for example, the following functions: 

A k = φk, 0 , B 

T 
s = φ−1 

s, 0 �
x 
s ; Ă k = φ

[2] 
k, 0 , B̆ 

T 
s = (φ

[2] 
s, 0 ) 

−1 �x (2) 

k ;
A 1 ,k = φk, 0 , B 

T 
1 ,s = φ−1 

s, 0 �
x (12) 

s ; B 2,k = �x (12) 

k (φ
[2] T 
k, 0 ) −1 , A 

T 
2,s = φ

[2] T 
s, 0 . 

n analogous reasoning can be carried out for a stationary signal, as it will be shown in
ection 5 ; hence, the separability assumptions on the signal required in (H1) covers different

ypes of stationary and non-stationary signals and the estimation based on such hypotheses,
nstead of the state-space model, provides a unifying context to obtain general algorithms
hich are applicable to a large number of practical situations. 

emark 5. As already indicated in the Introduction, in order to deal with the time-correlated
oise, we will not use the measurement differencing method, but we will instead address
he direct estimation of the noise. Since the derivation of the estimation algorithms will be
arried out under a covariance-based approach, it is necessary to express the noise covariance
unction in a separable form. 

From Eq. (2) and assumptions (H3) and (H4), we have that the covariance function �v 
k,s

f the time-correlated noise, v k , is factorized in a separable form �v 
k,s = D k F 

T 
s , in which

 k = D k, 0 , F 

T 
s = D 

−1 
s, 0 �

v 
s , where D k, 0 = D k−1 · · · D 0 and �v 

s is recursively computed by 

v 
s = D s−1 �

v 
s−1 D 

T 
s−1 + �u 

s−1 , s ≥ 1 . 

. Least-squares quadratic estimation 

Given the observation model Eqs. (1) –(4) , under hypotheses (H1)-(H6), our aim is finding
he LS quadratic estimator, ̂ x k/L , of the signal, x k , with knowledge of the observation history
p to the Lth sampling time, y 1 , . . . , y L . More specifically, our goal is to construct recursive
lgorithms for the filter ̂ x k/k and the smoother ̂ x k/L , at the arbitrary fixed point k, for any
 > k. 

The filtering algorithm provides estimators of the current signal, x k , based on the measure-
ents up to the present time, y 1 , . . . , y k . At each time step k, the filtering estimator, ̂ x k/k , is

pdated based on the new measurement, y k , and the previous estimator, ̂ x k −1 /k −1 . 
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The fixed-point smoothing algorithm allows us to obtain the estimator of the signal at
 fixed time, given an increasing number of posterior available measurements; that is, the
xed-point smoother is used to estimate the signal, x k , at the fixed point k, not only based on
easurements up to that time, but also using measurements taken beyond it, k + 1 , k + 2, · · · .

As already indicated, the quadratic estimator is the orthogonal projection of the vector
 k onto the linear space generated by the observations y 1 , . . . , y L and the Kronecker powers
 

[2] 
1 , . . . , y [2] 

L . The model hypotheses ensure the existence of the second-order moments of
hese Kronecker powers and, consequently, the existence of the quadratic estimators ̂ x k/L is
uaranteed. By combining the original vectors and their second-order powers, the following
ugmented vectors are defined to derive such estimators: 

 k = 

( 

x k 

x [2] 
k 

) 

, Z k = 

( 

z k 

z [2] 
k 

) 

, V k = 

( 

v k 

v [2] 
k 

) 

, Y k = 

( 

y k 

y [2] 
k 

) 

, W k = 

( 

w k 

w 

[2] 
k 

) 

. 

Noting that the space of n x -dimensional linear transformations of y 1 , . . . , y L and
 

[2] 
1 , . . . , y [2] 

L is identical to that of linear transformations of Y 1 , . . . , Y L , it is obvious that
he LS quadratic estimator of x k based on y 1 , . . . , y L is the LS linear estimator of x k based on
 1 , . . . , Y L . To obtain this linear estimator, firstly, an observation model for the vectors Y L will
e created by studying the dynamics of the augmented vectors and, secondly, the second-order
tatistical characteristics of the processes included in this new model are examined. 

.1. Dynamics of the augmented vectors 

By using Eq. (1) and the Kronecker product properties, the following expression for z [2]
k 

s obtained: 

 

[2] 
k = H 

[2] 
k x [2] 

k + K n 2 z 

(
H k x k � v k 

) + v [2] 
k , k ≥ 1 . 

ence, the augmented measurement vectors Z k clearly satisfy 

 k = H k X k + V k + V 

∗
k , k ≥ 1 , (5)

n which 

 k = 

( 

H k 0 

0 H 

[2] 
k 

) 

, V 

∗
k = 

( 

0 

K n 2 z 

(
H k x k � v k 

)) 

. 

In order to obtain the evolution model for the augmented noise V k in this equation, let us
bserve that, from Eq. (2) , it is clear that 

 

[2] 
k = D 

[2] 
k−1 v 

[2] 
k−1 + K n 2 z 

(
D k−1 v k−1 � u k−1 

) + u 

[2] 
k−1 , k ≥ 1 . 

ence, the augmented noise V k is time-correlated and the following equation holds: 

 k = D k−1 V k−1 + U k−1 , k ≥ 1 . (6)

n which 

 k = 

( 

D k 0 

0 D 

[2] 
k 

) 

, U k = 

( 

u k 

K n 2 z 

(
D k v k � u k 

) + u 

[2] 
k 

) 

. 

Finally, using Eq. (4) and taking into account that λk (1 − λk ) = 0, the augmented obser-
ation vectors Y k can be expressed as 

 k = (1 − λk ) Z k + λk W k , k ≥ 1 . (7)
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Note that the augmented vectors in this new model have non-zero mean. For simplicity
n both the study of the statistical properties of the augmented vectors and the derivation
f estimation algorithms, the quadratic estimation problem will be addressed by defining the
entered vectors: 

 k = X k − X k , z k = Z k − Z k , v k = V k − V k , 

 k = Y k − Y k , w k = W k − W k , u k = U k − U k . 

Clearly, the LS linear estimator of x k based on Y k , . . . , Y L is equal to the one based on
 1 , . . . , y L . Theorem 1 summarizes the dynamics of the centered augmented vectors (hereafter
imply referred to as augmented vectors). 

heorem 1. The dynamics of the augmented vectors are specified as follows: 

(a) The augmented measurements { z k } k≥1 obey the following equation 

z k = H k x k + v 

∗
k + v 

∗∗
k , k ≥ 1 , (8)

where 

v 

∗
k = v k + 

( 

0 

K n 2 z 

(
H k x k � v k 

)) 

, 

v 

∗∗
k = 

( 

0 ˜ H 

[2] 
k vec(A k B 

T 
k ) + K n 2 z 

(˜ H k x k � v k 
)) 

, 

in which ˜ H k = H k − H k , ˜ H 

[2] 
k = H 

[2] 
k − E 

[
H 

[2] 
k 

]
and { v k } k≥0 is a time-correlated noise, satisfying 

v k = D k−1 v k−1 + u k−1 , k ≥ 1 . (9)

(b) The following equation holds for the augmented observation process { y k } k≥1 : 

y k = (1 − λk ) z k + λk w k − (λk − λk ) g k , k ≥ 1 , (10)

where g k = 

(
0 

H 

[2] 
k vec(A k B 

T 
k ) + vec(D k F 

T 
k ) − vec(�w 

k ) 

)
. 

roof. See Appendix A . �

.2. Second-order statistical properties of the augmented processes 

The second-order statistical properties of the augmented processes involved in Eqs. (8) –(10)
re set out in the following propositions. 

roposition 1. Under hypotheses (H1)–(H6), the processes involved in Eq. (8) satisfy the
ollowing properties: 
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(a) The augmented signal process { x k } k≥1 has zero mean and its covariance function admits
the following factorization: 

�x 
k,s = A k B 

T 
s , s ≤ k, (11)

where 

A k = 

( 

A k A 1 ,k 0 0 

0 0 A 2,k Ă k 

) 

, B k = 

( 

B k 0 B 2,k 0 

0 B 1 ,k 0 B̆ k 

) 

. 

Also, the expectations E [ x k x 

T 
s ] are factorized as follows: 

E [ x k x 

T 
s ] = 

{ 

Ă k B 

T 
s , s ≤ k, 

B̆ k A 

T 
s , k ≤ s, 

(12)

where 

Ă k = 

(
A k | A 1 ,k | 0 | 0 

)
, B̆ k = 

(
B k | 0 | B 2,k | 0 

)
. 

(b) The noise process { v 

∗
k } k≥1 is a sequence of zero-mean random vectors and its covariance

function �v ∗
k,s can be factorized as follows: 

�v ∗
k,s = �k ϒ

T 
s , s ≤ k, (13)

with �k = ( C k | D k ) , ϒk = ( E k | F k ) , k ≥ 1 , in which 

C k = 

( 

0 

K n 2 z 

(
H k A k � D k 

)) 

, D k = D k, 0 , 

E k = 

( 

0 

K n 2 z 

(
H k B k � F k 

)) 

, F k = �vT 
k D 

−1 T 
k, 0 , 

where D k, 0 = D k−1 · · ·D 0 and �v 
s is recursively computed as follows: 

�v 
s = D s−1 �

v 
s−1 D 

T 
s−1 + �u 

s−1 , s ≥ 1 ; �v 
0 = 

( 

�v 
0 �v (12) 

0 

�v (21) 

0 �v (2) 

0 

) 

. 

(c) The noise process { v 

∗∗
k } k≥1 is a sequence of zero-mean mutually uncorrelated random

vectors with covariance 

�v ∗∗
k = 

( 

0 0 

0 

(
�v ∗∗

k 

)
22 

) 

, 

in which (
�v ∗∗

k 

)
22 = E 

[˜ H 

[2] 
k v ec(A k B 

T 
k ) v ec T (A k B 

T 
k ) ̃

 H 

[2] T 
k 

] + K n 2 z 

(
E 

[˜ H k A k B 

T 
k 
˜ H k 

]
� D k F 

T 
k 

)
K n 2 z 

. (14)

roof. See Appendix B . �
roposition 2. Under hypotheses (H1)-(H6), the noise processes { u k } k≥0 and { w k } k≥1 , involved

n Eqs. (9) and (10) , respectively, are sequences of zero-mean mutually uncorrelated random
ectors with covariance matrices given by 

w 

k = 

( 

�w 

k �w 

(12) 

k 

�w 

(21) 

k �w 

(2) 

k 

) 

, k ≥ 1 ; �u 
k = 

( 

�u 
k �u (12) 

k 

�u (21) 

k 

(
�u 

k 

)
22 

) 

, k ≥ 0, 
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(  

e  

o  

a  

s

T  

�

x̂  

�  

i

e  

T  

w

μ  

T

�  

a


  

w
 

m  

c

x̂  
n which 

(
�u 

k 

)
22 = K n 2 z 

(
D k vec(D k F 

T 
k ) D 

T 
k � �u 

k 

)
K n 2 z 

+ �u [2] 

k . 

Moreover, the stochastic processes { x k } k≥1 , { u k } k≥0 , { w k } k≥1 , { v 

∗
k } k≥1 and { v 

∗∗
k } k≥1 are

ncorrelated to each other. 

roof. The proof is omitted, as it is easily deduced from the model hypotheses. �
emark 6. From Eqs. (8) and (10) , together with the properties established in
ropositions 1 and 2 , it is immediately deduced that 

�z 
k = E [ H k A k B 

T 
k H 

T 
k ] + �k ϒ

T 
k + �v̈ 

k , k ≥ 1 , 
y 
k = (1 − λk )�

z 
k + λk �

w 

k + λk (1 − λk ) g k g 

T 
k , k ≥ 1 . (15)

. Quadratic estimation algorithms 

The above statistical properties ensure that the augmented processes involved in Eqs. (8) –
10) all have finite second-order moments. Consequently, the existence of the LS quadratic
stimator of x k based on the original observations (or, equivalently, the LS linear estimator
f x k based on the augmented observations y 1 , . . . , y L ) is guaranteed. Using an innovation
pproach, the following recursive algorithm for the quadratic filtering ( L = k) and fixed-point
moothing ( L = k + N, N ≥ 1 ) estimators is deduced. 

heorem 2. The LS quadratic filtering estimators, ̂ x k/k , and the error covariance matrices,̂ k/k = E [(x k −̂ x k/k )(x k −̂ x k/k ) 
T ] , are recursively obtained by 

  k/k = ( ̆A k | 0) e k , k ≥ 1 , (16)

̂ k/k = A k B 

T 
k − ( ̆A k | 0) T k ( ̆A k | 0) T , k ≥ 1 , (17)

n which the vectors e k and the matrices T k satisfy the following recurrence relations 

 k = e k−1 + �k 

−1 
k μk , k ≥ 1 ; e 0 = 0, (18)

 k = T k−1 + �k 

−1 
k �T 

k , k ≥ 1 ; T 0 = 0, (19)

here the innovation μk is calculated by 

k = y k − (1 − λk ) 
(
H k A k | �k 

)
e k−1 , k ≥ 1 . (20)

he matrices �k are given by the following expression 

k = (1 − λk ) 
((
H k B k | ϒk 

) − (
H k A k | �k 

)
T k−1 

)
T , k ≥ 1 , (21)

nd the innovation covariance matrices, 
k , are calculated by 

k = �
y 
k − (1 − λk ) 

2 
(
H k A k | �k 

)
T k−1 

(
H k A k | �k 

)T 
, k ≥ 1 , (22)

here �y 
k is obtained by Eq. (15) . 

At any fixed sampling time k ≥ 1 , by starting from the filter and its error covariance
atrix as initial conditions, the LS quadratic fixed-point smoothers, ̂ x k /k + N , and their error

ovariances, ̂ �k /k + N , admit the following recursive relations 

  k /k + N = ̂  x k /k + N−1 + S̆ 

x 
k ,k + N 


−1 
k+ N μk+ N , N ≥ 1 , (23)
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̂ k /k + N = 

̂ �k /k + N−1 − S̆ 

x 
k ,k + N 


−1 
k+ N S̆ 

xT 
k ,k + N , N ≥ 1 , (24)

here 

˘
 

x 
k ,k + N = (1 − λk+ N ) 

((
B̆ k | 0 

) − M k ,k + N−1 

)(
H k+ N A k+ N | �k+ N 

)T 
, N ≥ 1 , (25)

nd 

M k ,k + N = M k ,k + N−1 + S̆ 

x 
k ,k + N 


−1 
k+ N �

T 
k+ N , N ≥ 1 , 

M k = ( ̆A k | 0) T k , k ≥ 1 . (26)

roof. See Appendix C . �

.1. Computational procedure 

Next, the computational procedure of the proposed quadratic filtering and fixed-point
moothing algorithms is summarized. 

1) Covariance matrices of the augmented processes. 
1a) The covariance matrices �x 

k,s , �v ∗
k,s , �v ∗∗

k , �w 

k and �u 
k of the augmented sig-

nal and noise processes are obtained by using the expressions established in
Propositions 1 and 2 . 

1b) From the matrices obtained in 1a) , the covariance matrices �z 
k and �

y 
k are computed

by Eq. (15) . 
All these covariance matrices only depend on the system model information, so they
can be calculated offline, before the observations are available. 

2) LS quadratic filtering recursive algorithm. At the sampling time k, starting with the
prior knowledge of the (k − 1) th iteration (consequently, �k−1 , 
k−1 , T k−1 μk−1 and
e k−1 are known), the proposed quadratic filtering algorithm operates as follows: 

2a) Filtering error covariance matrices. Compute �k by Eq. (21) and, from it and with
�

y 
k obtained in 1a) , the innovation covariance matrix 
k is provided by Eq. (22) .

Then T k is obtained by Eq. (19) and, from it, the filtering error covariance matrices,̂ �k/k , are obtained by Eq. (17) . It should be noted that theses matrices do not depend
on the measurements, thus providing a measure of the filter performance even before
we get any observed data. 

2b) Quadratic filtering estimators. When the new measurement y k is available, the inno-
vation μk is computed by Eq. (20) , and, from it, e k is obtained by Eq. (18) . Then,
the quadratic filtering estimators, ̂ x k/k are computed by Eq. (16) . 

3) LS quadratic fixed-point smoothing recursive algorithm. At any fixed sampling time
k ≥ 1 , once the filter, ̂ x k/k , and the filtering error covariance matrix, ̂ �k/k are available,
the proposed quadratic smoothing estimators and the corresponding error covariance
matrix are obtained as follows: 
For N = k + 1 , k + 2, . . . , compute the matrices M k ,k + N−1 using Eq. (26) and, from
these matrices, S̆ 

x 
k ,k + N is derived by Eq. (25) ; then, the smoothers ̂  x k /k + N and their error

covariance matrices ̂ � are obtained from Eqs. (23) and (24) , respectively. 
k /k + N 
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. Simulation study 

In this section, a simulation numerical example is considered to analyze the implementation
nd performance of the proposed quadratic filtering and fixed-point smoothing algorithm. 

AR(1) scalar signal. Consider a scalar signal process { x k } k≥1 generated by the following
rst-order autoregressive model: 

 k = 0. 95 x k−1 + ε k−1 , k ≥ 1 , 

here the initial signal x 0 is a zero-mean Gaussian variable with variance �x 
0 = 0. 1 , and

 ε k } k≥0 is a zero-mean white Gaussian noise with variance �ε 
k = 0. 1 , ∀ k ≥ 0. 

Assuming that x 0 and the sequence { ε k } k≥0 are mutually independent and taking into ac-
ount that the third and fourth-order moments of a zero-mean Gaussian variable with variance
2 are 0 and 3 σ 4 , respectively, the covariance and cross-covariance functions of this signal
nd their second-order powers are given by 

x 
k,s = 0. 95 

k−s �x 
s , �x (2) 

k,s = 0. 95 

2(k−s) �x (2) 

s , s ≤ k; �x (12) 

k,s = 0, ∀ k, s, 

here the functions �x 
s and �x (2) 

s are recursively obtained by 

x 
s = 0. 9025 �x 

s−1 + 0. 1 , s ≥ 1 , 

x (2) 

s = 0. 8145 �x (2) 

s−1 + 0. 361 �x 
s−1 + 0. 02, s ≥ 1 . 

ccording to assumption (H1), it is clear that these covariance functions can be expressed in
 separable form defining, for example, the following functions: 

A k = 0. 95 

k , B k = 0. 95 

−k �x 
k ; Ă k = 0. 95 

2k , B̆ k = 0. 95 

−2k �x (2) 

k ;
 1 ,k = B 1 ,k = 0; A 2,k = B 2,k = 0. 

ctual measurements. Assume that the real measurements of the signal, z k , are described by
q. (1) with the following parameters: 

◦ H k = 0. 9 θk , in which { θk } k≥1 is a sequence of independent identically distributed Bernoulli
random variables with probability P (θk = 1) = θ . These variables model whether the signal
is present ( θk = 1 ) or not ( θk = 0) in the actual measurements and, therefore, θ is the
probability that the observations contain the signal to be estimated. 

◦ The noise process { v k } k≥0 is generated by Eq. (2) where D k = 0. 75 , { u k } k≥0 is a zero-mean
white Gaussian noise with �u 

k = 0. 01 , ∀ k ≥ 0, and v 0 is a zero-mean Gaussian variable
with �v 

0 = 0. 1 ; hence, 

�v (12) 

0 = �u (12) 

k = 0, �v (2) 

0 = 0. 02, �u (2) 

k = 0. 0002. 

According to the theoretical model, let us suppose that the measurements are subject to
eception attacks and the signal injected by the adversaries is given by Eq. (3) . The false
ata injection attack noise { w k } k≥1 is a white non-Gaussian sequence with distribution 

 (w k = −8) = 1 / 8 , P (w k = 8 / 7) = 7 / 8 , ∀ k ≥ 1 ;
ence, 

 [ w k ] = 0, �w 

k = 9 . 1429 , �w 

(12) 

k = −62. 6939 , �w 

(2) 

k = 429 . 9009 . 
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Fig. 1. Estimation error variance comparison of the linear and quadratic filtering and smoothing estimators when 
θ = λ = 0. 5 . 
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vailable observations. Finally, again in line with our theoretical study, we suppose that the
vailable observations for the estimation are given by Eq. (4) , where the white sequence of
ernoulli random variables { λk } k≥1 , modeling whether the deception attacks actually succeed
r not, are identically distributed with probabilities P (λk = 1) = λ. 

Our goal with this example is threefold. First, we aim at showing the feasibility and effec-
iveness of the proposed quadratic estimators, illustrating their performance and the superiority
f the quadratic estimators over the linear ones (the linear filtering and fixed point smoothing
lgorithms are given in Appendix D ). Second, we intend to show how the probability θ that
he signal is present in the actual measurements influence the performance of the estimators.
hird, we attempt to show the effect of the successful deception attack probability λ over the
erformance of the estimators. 

For this purpose, a MATLAB program has been developed to obtain the linear and quadratic
stimators and, in order to quantify the estimation accuracy, the corresponding estimation error
ariances were calculated for different values of the probabilities θ and λ. 

Performance of the quadratic filtering and fixed-point smoothing estimators. Considering
he same fixed value 0.5 for the probabilities θ and λ, the error variances of the linear and
uadratic estimators are calculated to compare the performance of both filtering and fixed-
oint smoothing estimators. The results of this comparison are displayed in Fig. 1 , which
hows, on the one hand, that the quadratic estimators present lower error variances than the
inear ones, thus confirming the superiority of the former over the latter. On the other hand, it
s gathered that, for both linear and quadratic estimators, the smoothing error variances are less
han the corresponding filtering ones and, also, that as the number of available observations
ncreases, the fixed-point smoothers become more accurate. Furthermore, it is observed that
he values of the fixed-point smoothing error variance decrease with increasing N , although
his decrease becomes almost negligible for N ≥ 9 . 
11154 



R. Caballero-Águila and J. Linares-Pérez Journal of the Franklin Institute 360 (2023) 11141–11164 

Fig. 2. Simulated signal, linear and quadratic filtering and fixed-point smoothing estimates when θ = λ = 0. 5 . 

Fig. 3. Linear and quadratic filtering and smoothing error variances versus θ , when λ = 0. 5 . 
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Fig. 4. Linear and quadratic filtering and smoothing error variances versus λ, when θ = 0. 5 . 
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Fig. 2 displays a simulated signal trajectory and their corresponding linear and quadratic
ltering and smoothing estimates. Agreeing with the comments made about Fig. 1 , it is
bserved that the quadratic filtering and smoothing estimates track the signal evolution better
han the linear ones. It is also noticed that the accuracy of the quadratic smoothing estimate
s higher than that of the quadratic filtering estimate. 

Influence of the probability θ . Assuming, as in the above figures, that the attack probability
s λ = 0. 5 , now we compare the performance of the estimators considering different values of
he probability, θ , that the signal is present in the actual measurements. Since, from k = 50
nwards the estimation error variances show a similar behaviour, only the variances at a
pecific iteration k = 100 are considered. To illustrate the influence of the probability θ ,
ig. 3 depicts the comparative results between the filtering and smoothing error variances for
oth linear and quadratic estimators, considering several values of the probability θ (namely,
= 0. 1 to 0.9). This figure shows that θ – the probability that the observations contain

he signal– or, equivalently, the probability 1 − θ that the signal is missing in the actual
easurements, indeed influence the performance of the estimators. Actually, as expected,

oth linear and quadratic estimation error variances decrease as θ increases and, consequently,
he filtering and smoothing estimators perform better when the probability that the signal is

issing in the actual measurements, 1 − θ , decreases. As in Fig. 1 , this figure also shows
hat, for all the values of θ , the quadratic estimation error variances are smaller than the linear
nes; besides, it is observed that the smoothing estimation error variances, for both the linear
nd quadratic estimators, are lower than those of the filters, and that the smoother performs
etter as the number of available observations increases. It is also inferred that, as the values
f the probability θ increase, a higher reduction in the estimation error variances is yielded
y the quadratic filtering and smoothing estimators over the linear ones. 
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Effect of the attack probability λ. Assuming again, as in Fig. 1 , that θ = 0. 5 , we examine
he impact of the deception attacks on the estimation accuracy. More precisely, we compare
he performance of the estimators considering several values of the successful deception attack
robability λ = 0. 1 to 0.9. As λ increases, the number of successful attack is expected to be
reater and, consequently, a higher number of available measurements used for estimation
ill be only noise; so, worse estimations will be obtained and, hence, the error variances

re expected to be higher. Fig. 4 confirms this fact, showing that the filtering and smoothing
rror variances at k = 100, of both linear and quadratic estimators, become smaller as the
uccessful deception attack probability λ decreases. This figure also shows that, in the case of
uadratic estimators, similar increments in the values of the probability λ produce essentially
he same increase of the estimation error variances. However, in the linear estimation problem,
uch increase is more significant for small values of λ. 

. Conclusion 

Recursive algorithms for the LS quadratic filtering and fixed-point smoothing estimation
roblems are proposed from measurements perturbed by random parameter matrices, time-
orrelated additive noises and random deception attacks. Unlike most studies on quadratic
stimation, in which the linear estimator of the augmented signal is calculated and, from it,
he estimator of the original signal is extracted, we deal with the direct estimation of the
riginal signal based on the augmented observations. Some numerical results are used to
xamine the accuracy of the quadratic estimators, which reveal that the proposed estimators
utperform the linear ones and illustrate how the theoretical system model under consideration
overs the missing measurements phenomenon as a specific example. In addition, the effect
f missing measurement and deception attack success probabilities on the estimation accuracy
re analyzed in the context of the numerical simulation study. 

Future research topics would include extending the proposed framework to deal with more
ophisticated attack models, such as the important-data-based attack model used in [35] . It
ould also be interesting to consider the distributed estimation problem in the scenario of
etworked systems whose sensor nodes are spatially distributed and connected according to
 predetermined topology (see [36] ). 
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ppendix A. Proof of Theorem 1 

(a) Taking into account that E [ H k x k � v k ] = 0, it is clear that V 

∗
k = 0; then, taking expec-

tations in Eq. (5) , we have that Z k = H k X k + V k , k ≥ 1 . Hence, again from Eq. (5) ,
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by adding and subtracting H k X k , we obtain 

z k = H k x k + (H k − H k ) X k + v k + V 

∗
k − νk + νk , k ≥ 1 , 

where νk = 

(
0 

K n 2 z 

(
H k x k ) � v k 

)). 

Clearly, v 

∗
k = v k + νk and, taking into account that 

(H k − H k ) X k = 

( 

0 (
H 

[2] 
k − H 

[2] 
k 

)
vec(A k B 

T 
k ) 

) 

it is obvious that v 

∗∗
k = (H k − H k ) X k + V 

∗
k − νk ; so, Eq. (8) is directly obtained. 

Finally, taking expectations in Eq. (6) , we have V k = D k−1 V k−1 + U k−1 , k ≥ 1 , and
Eq. (9) is straightforward. 

(b) Taking expectations in Eq. (7) , it is clear that Y k = (1 − λk ) Z k + λk W k , k ≥ 1 , and
hence 

y k = (1 − λk ) Z k − (1 − λk ) Z k + λk W k − λk W k , k ≥ 1 . 

Now, by adding and subtracting both λk W k and (1 − λk ) Z k , we obtain 

y k = (1 − λk ) z k + λk w k − (λk − λk ) 
(
Z k − W k 

)
, k ≥ 1 , 

and denoting 

g k = Z k − W k = 

(
0 

H 

[2] 
k vec(A k B 

T 
k ) + vec(D k F 

T 
k ) 

)
−

(
0 

vec(�w 

k ) 

)
, 

Eq. (10) holds. 

ppendix B. Proof of Proposition 1 

(a) Eq. (11) for �x 
k,s is obtained taking into account that, from hypothesis (H1), 

�x 
k,s = 

( 

A k B 

T 
s A 1 ,k B 

T 
1 ,s 

A 2,k B 

T 
2,s Ă k B̆ 

T 
s 

) 

, s ≤ k. 

Eq. (12) for the expectations E [ x k x 

T 
s ] is immediately deduced using that, again from

hypothesis (H1), 

E [ x k x 

T 
s ] = 

{ (
A k B 

T 
s | A 1 ,k B 

T 
1 ,s 

)
, s ≤ k, (

B k A 

T 
s | B 2,k B 

T 
2,s 

)
, k ≤ s. 

(b) We write v 

∗
k = v k + νk , where νk = 

(
0 

K n 2 z 

(
H k x k ) � v k 

)). 

Since, from the independence hypotheses on the model, the signal x k and the noise
v s are uncorrelated, it is clear that v k and νs are also uncorrelated and, hence, �v ∗

k,s =
�v 

k,s + �ν
k,s . Next, these covariance matrices are obtained: 

• From Eq. (9) and assumptions (H3) and (H4), the covariance function �v 
k,s is factor-

ized in a separable form, �v 
k,s = D k F 

T 
s , s ≤ k, in which D k = D k, 0 and F 

T 
s = D 

−1 
s, 0 �

v 
s ,

with D k, 0 = D k−1 · · ·D 0 . Again, from Eq. (9) and the model hypotheses, starting from
�v 

0 , the matrices �v 
s are recursively computed by �v 

s = D s−1 �
v 
s−1 D 

T 
s−1 + �u 

s−1 , s ≥
1 . 
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ŷ  

S  

v̂  

E

x̂  

•

S

• Taking into account that, from (H1), E [ x k x T s ] = A k B 

T 
s , s ≤ k, and, from Remark 5,

E [ v k v T s ] = D k F 

T 
s , s ≤ k, the Kronecker product properties lead us to 

E 

[(
H k x k � v k 

)(
H s x s � v s 

)T ] = 

(
H k A k B 

T 
s H 

T 
s 

)
� D k F 

T 
s 

= 

(
( H k A k ) � D k 

)(
( H s B s ) � F s 

)
T , s ≤ k. 

So, it is clear that �ν
k,s is factorized as �ν

k,s = C k E 

T 
s , s ≤ k. 

The above two items guarantee that �v ∗
k,s = D k F 

T 
s + C k E 

T 
s , s ≤ k, so Eq. (13) for �v ∗

k,s
is immediately obtained. 

(c) Clearly, E 

[
v 

∗∗
k 

] = 0. Next, using again the independence hypotheses on the model and
the Kronecker product properties, we have: 
• E 

[(˜ H 

[2] 
k v ec(A k B 

T 
k ) 

)(˜ H 

[2] 
s v ec(A s B 

T 
s ) 

)
T 
] = E 

[˜ H 

[2] 
k v ec(A k B 

T 
k ) v ec T (A k B 

T 
k ) ̃

 H 

[2] T 
k 

]
δk,s . 

• E 

[(˜ H 

[2] 
k vec(A k B 

T 
k ) 

)(˜ H s x s � v s 
)

T 
] = 0. 

• E 

[ (
( ̃  H k x k ) � v k 

)(˜ H s x s � v s 
)

T 
] 

= E 

[˜ H k E [ x k x T k ] ̃  H k 
]
δk,s � E [ v k v T s ] 

)
= 

(
E 

[˜ H k A k B 

T 
k 
˜ H k 

]
� D k F 

T 
k 

)
δk,s . 

From the above items, we conclude that, for k 	 = s, E 

[
v 

∗∗
k v 

∗∗T 
s 

] = 0; so, the uncorrelation
of the vectors is proven. Also, Eq. (14) for 

(
�v ∗∗

k 

)
22 , the (2, 2) -block of the matrix �v ∗∗

k ,
is straightforward. 

ppendix C. Proof of Theorem 2 

Since the quadratic estimator, ̂  x k/L , of the signal x k based on the observations y 1 , . . . , y L is
qual to the linear estimator of x k based on the augmented observations y 1 , . . . , y L , according
o the innovation approach it can be expressed as a linear combination of the innovations

1 , . . . , μL ; namely, 

  k/L = 

L ∑ 

h=1 

S̆ 

x 
k,h 


−1 
h μh , k, L ≥ 1 , (C.1)

here S̆ 

x 
k,h = E [ x k μT 

h ] , μh = y h −̂ y h/h−1 and 
h = E [ μh μ
T 
h ] . To begin with, we are going

o derive a proper expression for the one-stage observation predictors ̂ y h/h−1 , that allows
s to calculate the innovations μh and, from them, the coefficients S̆ 

x 
k,h and the innovation

ovariance matrices 
h involved in the general expression of the estimators Eq. (C.1) . 
Taking into account Eqs. (8) and (10) , together with the incorrelation properties established

n Proposition 2 and the Orthogonal Projection Lemma (OPL), it is clear that 

 

 k /k −1 = (1 − λk ) 
(
H k ̂  x k /k −1 + ̂

 v 

∗
k /k −1 

)
, k ≥ 1 . (C.2)

o, the one-stage predictor of both the augmented signal, ̂ x k /k −1 , and the augmented noise,
 

 

∗
k /k −1 , must be calculated. Similarly to Eq. (C.1) , denoting S 

x 
k,h = E [ x k μ

T 
h ] and S 

v ∗
k,h =

 [ v 

∗
k μ

T 
h ] , these estimators can be obtained by the following general expressions: 

 

 k/L = 

L ∑ 

h=1 

S 

x 
k,h 


−1 
h μh , ̂ v 

∗
k/L = 

L ∑ 

h=1 

S 

v ∗
k,h 


−1 
h μh ; k, L ≥ 1 . (C.3)

One-stage predictor and filter of the signal: ̂ x k/s , s ≤ k. 
From Eq. (C.2) , it is straightforward to see that 

˘
 

x 
k,h = E 

[
x k y 

T 
h 

] − (1 − λh ) 
(

E 

[
x k ̂  x 

T 
h/h−1 

]
H 

T 
h + E 

[
x k ̂  v 

∗T 
h/h−1 

])
, 1 ≤ h ≤ k. 
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N

E

a

E

C

S

H

�  

w

e  

a

x̂  

•  

v̂
 

f

x̂  

S

F

E

a

E

A

S

ow, taking into account Proposition 1 (a) and Proposition 2 , it is clear that 

 

[
x k y 

T 
h 

] = (1 − λh ) ̆A k B 

T 
h H 

T 
h , 1 ≤ h ≤ k, 

nd, using Eq. (C.3) , we can write 

 

[
x k ̂  x 

T 
h/h−1 

] = 

h−1 ∑ 

j=1 

S̆ 

x 
k, j 


−1 
j S 

xT 
h, j , E 

[
x k ̂  v 

∗T 
h/h−1 

] = 

h−1 ∑ 

j=1 

S̆ 

x 
k, j 


−1 
j S 

v ∗T 
h, j , h ≥ 2. 

onsequently, 

˘
 

x 
k,h = (1 − λh ) 

[ 
Ă k B 

T 
h H 

T 
h − (1 − δh, 1 ) 

h−1 ∑ 

j=1 

S̆ 

x 
k, j 


−1 
j 

(
H h S 

x 
h, j + S 

v ∗
h, j 

)
T 
] 
, h ≥ 1 . 

ence, if we define 

x 
h = (1 − λh ) 

[ 
B 

T 
h H 

T 
h − (1 − δh, 1 ) 

h−1 ∑ 

j=1 

�x 
j 


−1 
j 

(
H h S 

x 
h, j + S 

v ∗
h, j 

)
T 
] 
, h ≥ 1 , (C.4)

e can write S̆ 

x 
k,h = Ă k �

x 
h , h ≤ k. So, denoting 

 

x 
k = 

k ∑ 

h=1 

�x 
h 


−1 
h μh , k ≥ 1 ; e x 0 = 0, (C.5)

nd using Eq. (C.1) , we conclude that 

  k/s = Ă k e 
x 
s , 1 ≤ s ≤ k. (C.6)

One-stage predictor and filter of the augmented signal and the augmented noise: ̂  x k/s and
 

 

∗
k/s , s ≤ k. 

Reasoning as above, it is proven that S 

x 
k,h = A k �

x 
h , h ≤ k, and the following expression

or the augmented signal estimators is obtained: 

 

 k/s = A k e 
x 
s , 1 ≤ s ≤ k. (C.7)

Now, by using Eq. (C.2) , the coefficients S 

v ∗
k,h = E [ v 

∗
k μ

T 
h ] can be expressed as 

 

v ∗
k,h = E 

[
v 

∗
k y 

T 
h 

] − (1 − λh ) 
(

E 

[
v 

∗
k ̂  x 

T 
h/h−1 

]
H 

T 
h + E 

[
v 

∗
k ̂  v 

∗T 
h/h−1 

])
, 1 ≤ h ≤ k. 

rom Proposition 1 (b) and Proposition 2 , it is clear that 

 

[
v 

∗
k y 

T 
h 

] = (1 − λh )�k ϒ
T 
h , 1 ≤ h ≤ k, 

nd, in view of Eq. (C.3) , we can write 

 

[
v 

∗
k ̂  x 

T 
h/h−1 

] = 

h−1 ∑ 

j=1 

S 

v ∗
k, j 


−1 
j S 

xT 
h, j , E 

[
v 

∗
k ̂  v 

∗T 
h/h−1 

] = 

h−1 ∑ 

j=1 

S 

v ∗
k, j 


−1 
j S 

v ∗T 
h, j , h ≥ 2. 

s a consequence, 

 

v ∗
k,h = (1 − λh ) 

[ 
�k ϒ

T 
h − (1 − δh, 1 ) 

h−1 ∑ 

j=1 

S 

v ∗
k, j 


−1 
j 

(
H h S 

x 
h, j + S 

v ∗
h, j 

)
T 
] 
, h ≥ 1 , 
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s

�  

H

e  

a

v̂  

•

e

f  

fi  

d
 

u

ŷ  

w  


  

a
 

a

�

a

 

(  

o

S
l

E

o, we can write S 

v ∗
k,h = �k �

v ∗
h , h ≤ k, in which �v ∗

h is a function satisfying 

v ∗
h = (1 − λh ) 

[ 
ϒT 

h − (1 − δh, 1 ) 

h−1 ∑ 

j=1 

�v ∗
j 


−1 
j 

(
H h S 

x 
h, j + S 

v ∗
h, j 

)
T 
] 
, h ≥ 1 . (C.8)

ence, if we define 

 

v ∗
k = 

k ∑ 

h=1 

�v ∗
h 


−1 
h μh , k ≥ 1 ; e v 

∗
0 = 0, (C.9)

nd we use Eq. (C.3) , it is concluded that 

 

 

∗
k/s = �k e 

v ∗
s , 1 ≤ s ≤ k. (C.10)

Derivation of the filtering formulas: Eqs. (16) –(22) . 
In what follows, for the sake of simplicity, we will denote: 

 k = 

( 

e x k 

e v 
∗

k 

) 

, k ≥ 0; �k = 

( 

�x 
k 

�v ∗
k 

) 

, k ≥ 1 , 

rom which Eq. (16) for the filter is immediate, just using Eq. (C.6) . Using the OPL, the
ltering error covariances are expressed as ̂ �k/k = E [ x k x T k ] − E [ ̂  x k/k ̂  x T k/k ] ; so, using (H1) and
efining T k = E [ e k e T k ] , Eq. (17) is directly obtained. 

The recursive relation Eq. (18) for e k is easily derived from Eqs. (C.5) and (C.9) . Then,
sing that e k−1 is orthogonal to μk , the recursion Eq. (19) for T k is straightforward. 

In view of Eqs. (C.2) , (C.7) and (C.10) , it is clear that 

 

 k /k −1 = (1 − λk ) 
(
H k A k | �k 

)
e k−1 , k ≥ 1 , (C.11)

hich yields Eq. (20) for the innovation μk = y k −̂ y k /k −1 . To obtain its covariance matrix,
k = E [ μk μ

T 
k ] , we just observe that the OPL guarantees that 
k = �

y 
k − E [ ̂  y k /k −1 ̂  y 

T 
k /k −1 ] ,

nd using Eq. (C.11) , Eq. (22) for 
k is easily proven. 
Eq. (21) is derived just by combining Eqs. (C.4) and (C.8) , using in them that S 

x 
h, j = A h �

x
j 

nd S 

v ∗
h, j = �h �

v ∗
j to obtain 

k = (1 − λk ) 
((
H k B k | ϒk 

) − (
H k A k | �k 

)k−1 ∑ 

h=1 

�h 

−1 
h �T 

h 

)
T , k ≥ 1 , 

nd taking into account that T k = E [ e k e T k ] = 

k ∑ 

h=1 

�h 

−1 
h �T 

h , k ≥ 1 . 

• Derivation of the fixed-point smoothing formulas: Eqs. (23) –(26) . 
The recursive relation Eq. (23) for the fixed-point smoothers yields directly from Eq.

C.1) and, from it, the recursion for the error covariance matrices Eq. (24) is immediately
btained using the OPL. 

In order to calculate the coefficients 

˘
 

x 
k ,k + N = E [ x k μ

T 
k+ N ] = E 

[
x k y 

T 
k+ N 

] − E 

[
x k ̂  y 

T 
k + N/k + N−1 

]
, 

et us note that, from Proposition 1 (b) and Proposition 2 , 

 

[
x k y 

T 
k+ N 

] = (1 − λk+ N ) ̆B k A 

T 
k+ N H 

T 
k+ N 
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sing Eq. (C.11) and denoting M k ,k + N = E [ x k e T k+ N ] , N ≥ 0, it is clear that 

 

[
x k ̂  y 

T 
k + N/k + N−1 

] = (1 − λk+ N ) M k ,k + N−1 
(
H k+ N A k+ N | �k+ N 

)T 

nd, combining both expressions, Eq. (25) is straightforward. 
Finally, using the recursive relation Eq. (18) for e k+ N , Eq. (26) for the matrices M k ,k + N is

irectly obtained; its initial condition is also easily derived by observing that, from the OPL,
 k = E [ ̂  x k/k e T k ] and using Eq. (16) . 

ppendix D. Linear estimation algorithms 

In this appendix, we present a recursive algorithm to obtain the linear filter and fixed-point
moother; its derivation, via an innovation approach, is analogous to that of Theorem 2 . 

The LS linear filter, ̂ x L k/k , and the error covariance matrices, ̂ �L 
k/k , are obtained by 

̂ x L k/k = (A k | 0) e L k , k ≥ 1 , ̂ 

L 
k/k = A k B 

T 
k − (A k | 0) T 

L 
k (A k | 0) T , k ≥ 1 , 

here the vectors e L k and the matrices T 

L 
k satisfy 

e L k = e L k−1 + �L 
k �

−1 
k ηk , k ≥ 1 ; e L 0 = 0, 

 

L 
k = T 

L 
k−1 + �L 

k �
−1 
k (�L 

k ) 
T , k ≥ 1 ; T 

L 
0 = 0, 

n which the matrices �L 
k are calculated from 

L 
k = (1 − λk ) 

((
H k B k | F k 

) − (
H k A k | D k 

)
T 

L 
k−1 

)
T , k ≥ 1 . 

he innovations ηk and their covariance matrices, �k , are calculated by 

ηk = y k − (1 − λk ) 
(
H k A k | D k 

)
e L k−1 , k ≥ 1 . 

k = �
y 
k − (1 − λk ) 

2 (H k A k | D k 
)
T 

L 
k−1 

(
H k A k | D k 

)T 
, k ≥ 1 , 

here �y 
k = (1 − λk ) 

(
E [ H k A k B 

T 
k H 

T 
k ] + D k F 

T 
k 

) + λk �
w 

k , k ≥ 1 . 
The LS linear fixed-point smoothers, ̂ x L k /k + N , and their error covariances, ̂ �L 

k /k + N , are
ecursively obtained by 

̂ x L k /k + N = ̂  x L k /k + N−1 + S 

L 
k ,k + N �

−1 
k+ N ηk+ N , N ≥ 1 , ̂ 

L 
k /k + N = 

̂ �L 
k /k + N−1 − S 

L 
k ,k + N �

−1 
k+ N (S 

L 
k ,k + N ) 

T , N ≥ 1 , 

here 

 

L 
k ,k + N = (1 − λk+ N ) 

((
B k | 0 

) − M 

L 
k ,k + N−1 

)(
H k+ N A k+ N | D k+ N 

)T 
, N ≥ 1 , 

ith 

M 

L 
k ,k + N = M 

L 
k ,k + N−1 + S 

L 
k ,k + N �

−1 
k+ N (�

L 
k+ N ) 

T , N ≥ 1 ;
M 

L = (A | 0) T 

L , k ≥ 1 . 
k k k 
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