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ABSTRACT— The objective of this research was to develop
robust predictive models of the gains in working memory
(WM) and fluid intelligence (Gf) following executive atten-
tion training in children, using genetic markers, gender, and
age variables. We explore the influence of genetic variables
on individual differences in susceptibility to intervention.
Sixty-six children (males: 54.2%) aged 50.9–75.9 months
participated in a four-weeks computerized training pro-
gram. Information on genes involved in the regulation of
dopamine, serotonin, norepinephrine, and acetylcholine was
collected. The standardized pre- to post-training gains of two
dependent measures were considered: WM Span backwards
condition (WISC-III) and the IQ-f factor from the Kaufman
Brief Intelligence Test (K-BIT). A machine-learning method-
ology was implemented utilizing multilayer perceptron arti-
ficial neural networks (ANN) with a backpropagation algo-
rithm. Both ANN models reached high overall accuracy in
their predictive classification. Variations in genes involved
in dopamine and norepinephrine neurotransmission affect
children’s susceptibility to benefit from executive attention
training, a pattern that is consistent with previous studies.

1Department of Experimental Psychology and Center for Research on
Mind, Brain and Behavior (CIMCYC), Universidad de Granada
2Interdisciplinary Center for Research in Mathematical and Experi-
mental Psychology (CIIPME), National Council for Scientific and Tech-
nical Research (CONICET)
3Faculty of Health Sciences, Department of Psychology, UADE
4Faculty of Psychology and Educational Sciences, KU Leuven

Address correspondence to Mariel F. Musso, Department of Experi-
mental Psychology and Center for Research on Mind, Brain and Behav-
ior (CIMCYC), Universidad de Granada, C/Campus de la Cartuja S/N,
18011, Granada; e-mail: mariel.musso@ugr.es

Mariel F. Musso and Lina M. Cómbita shared first-authorship.
Eduardo C. Cascallar and M. Rosario Rueda shared supervision.

The field of cognitive training has had significant activity
in the last decade. Work in this area has involved a broad
range of executive functions, such as executive attention,
working memory (WM), reasoning, and shifting of atten-
tion during development (Kerns, Eso, & Thomson, 1999;
Rueda, Rothbart, McCandliss, Saccomanno, & Posner, 2005;
Thorell, Lindqvist, Nutley, Bohlin, & Klingberg, 2009).

According to Posner’s neurocognitive model, executive
attention is a functional network essential for the regulation
of thoughts, emotions, and action, and the effective man-
agement of conflict between different response options or
sources of stimulation (Posner & Petersen, 1990). The execu-
tive attention network involves the activation of two different
sets of structures in the brain: the so-called frontoparietal
control system and the cingulo-opercular system (Petersen
& Posner, 2012). Empirical evidence has shown that indi-
vidual differences in executive attention are related to very
important outcomes during childhood such as school com-
petence and socialization (Rueda, Checa, & Rothbart, 2010).
Executive attention is thought to be a core process enabling
superior cognitive skills such as fluid reasoning and the vol-
untary regulation of actions (Rueda, 2018). Thus, training of
executive attention often results in transfer to fluid reasoning
(Rueda et al., 2005; Pozuelos et al., 2019) as well as improved
performance of a range of executive processes involving
self-regulation (Rueda, Checa, & Cómbita, 2012). Further,
there seems to exist quite a degree of transfer of training
among different executive processes, such as attention, WM,
inhibitory control or cognitive flexibility, particularly in chil-
dren populations (Karbach & Kray, 2009; Thorell et al., 2009).

WM refers to a limited capacity system responsible
for the active maintenance and manipulation of informa-
tion available to the cognitive system (Conway, Kane, &
Al, 2005). WM is necessary for the performance of complex
cognitive processes such as learning, comprehension, and
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reasoning (Arteaga Díaz & Pimienta Jiménez, 2006), and
it is related to important cognitive abilities and outcomes
such as fluid intelligence (Gf) (Engle Laughlin, Tuholski, &
Conway, 1999; Kane et al., 2004; Shipstead, Harrison, &
Engle, 2016), math performance (Engle & Kane, 2003;
Musso, Kyndt, Cascallar, & Dochy, 2012; Musso, 2016),
and multitasking (Hambrick, Oswald, Darowski, Rench, &
Brou, 2010).

A broad set of evidence (Heitz, Unsworth, & Engle, 2005;
Kane et al., 2004; Kane, Conway, Hambrick, & Engle, 2007)
has shown that both executive attention and WM are highly
related to Gf, the capacity to find relations/patterns, and
to infer rules for novel problems (Horn & Cattell, 1966).
Moreover, the activation of brain areas associated with the
executive attention network highly overlap with those that
support general intelligence (Duncan & Owen, 2000). Even
though Gf works independently from acquired knowledge,
it has a key role for academic achievement (Alloway &
Alloway, 2010; Lynn, Meisenberg, Mikk, & Williams, 2007).

Given the importance of executive cognitive processes
for the development of children, an important field of
research has aimed at understanding the impact of cognitive
training on a variety of children’s outcomes. Regarding
executive attention training, several studies have found that
Gf improves after training executive attention either directly
on the targeted population (Karbach & Kray, 2009; Minear &
Shah, 2008; Rueda et al., 2012) or using a combination of
training children’s attention with a family-based intervention
aimed at improving parental regulatory skills for themselves
and the children (Neville et al., 2013). This generalization
to nontrained abilities has been found to be enhanced if the
training is provided along with a metacognitive scaffolding
designed to increase children’s metacognitive knowledge
and strategies for the tasks (Pozuelos et al., 2019). This far
transfer effect to Gf measures appears to be maintained
beyond the training period (2 months later) without further
training in preschool children (Rueda et al., 2012). In addi-
tion, executive attention training has also shown to positively
impact the functioning of the neural areas and networks
that underlie the trained cognitive processes, improving
both speed and efficiency of the executive attention network
(Rueda et al., 2005; Rueda et al., 2012).

As executive attention, WM and Gf also encompass a
set of interrelated functions and overlapping neural sub-
strates. The rationale behind cognitive training targeting
different executive functions is that improving executive
attention and/or WM should lead to better performance
not only in similar tasks (near transfer) but also to tasks
that tap cognitive skills that have not been directly trained
(far transfer) such as reasoning. In this regard, there is
some evidence showing that WM training could lead to
significant improvements of children’s WM performance
after training (Jaeggi, Buschkuehl, Jonides, & Shah, 2011;

Klingberg, 2010). However, the extent to which such effects
are transferred to other domains such as reasoning or
school performance is still controversial (Melby-Lervåg
& Hulme, 2012; Redick, 2015; Redick, Melby-Lervåg, &
Hulme, 2016; Shipstead, Redick, & Engle, 2012; Unsworth,
Redick, Heitz, Broadway, & Engle, 2009).

Researchers in the field of cognitive training have turned
their attention toward individual differences that could
explain these inconsistencies. One of the main questions is
whether participant’s skills prior to the implementation of a
training program influence the extent to which they can ben-
efit from the training. However, evidence in this regard is still
inconclusive. While some authors have found that people
with deficits in WM and/or Gf can benefit to a greater extent
from a cognitive training program (Diamond & Lee, 2011;
Jaeggi, Buschkuehl, Jonides, & Perrig, 2008), others have
reported that individuals with high WM capacity show larger
training-related gains than those with a low WM capacity
(Fossella, Posner, Fan, Swanson, & Pfaff, 2002; Foster, 2017;
Fuchs et al., 2013; Swanson, Moran, Lussier, & Fung, 2014).

Another focus of study addressing individual differ-
ences have aimed at understanding how certain individual
variables can modulate the extent to which children ben-
efit from training. While some of those variables are
related to children’s performance during training (Jaeggi
et al., 2011; Söderqvist, Bergman Nutley, Ottersen, Grill, &
Klingberg, 2012), other variables are related to children’s
constitutional factors such as temperament (Studer-Luethi,
Bauer, & Perrig, 2016) or genetic endowment (Bäckman &
Nyberg, 2013).

Among genetic-based individual differences, variations in
specific dopamine-related genes that are involved in regulat-
ing the availability of this neurotransmitter in the prefrontal
cortex and the striatum have been linked to variations
in cognitive training effects. Specifically, polymorphisms
within the gene coding for the dopamine transporter pro-
tein (DAT1) have been associated with improved effects of
training on Gf and WM (Söderqvist et al., 2012). Likewise,
(Brehmer, Westerberg, Bellander, Fürth, & Karlsson, 2009)
found that carriers of at least one copy of the 9-repeat
allele of the DAT1 gene show larger training effects in
visuospatial WM compared to participants homozygous
for the 10-repeat allele. The dopamine transporter is the
main mechanism of dopamine regulation in the synaptic
cleft within the striatum. Therefore, it has been argued that
the different concentrations of DAT proteins associated to
different alleles within the gene, might be the molecular
basis of neural plasticity through its influence on the activity
of dopamine D1 and D2 receptors (Söderqvist et al., 2012).

Other studies have found that polymorphisms associ-
ated to different levels of the catechol O-methyltransferase
(COMT) enzymatic activity can also influence training-
related gains in different cognitive domains. However,
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variations associated to better cognitive gains appear to
differ depending on the age of the population included
in the study. For instance, two independent studies have
found an association between the Val allele of the gene and
increased WM plasticity in adults (Bellander et al., 2015;
Colzato, van den Wildenberg, & Hommel, 2014), while
others have reported better cognitive gains for carriers of
the Met allele, particularly in younger participants (Zhao
et al., 2020). These results corroborate the central role
of dopamine availability in the prefrontal cortex for the
plasticity of cognitive processes associated with cognitive
flexibility, such as those involved in the updating component
of WM or the top-down orientation and reorientation of
attention associated to executive attention.

The interaction of genes and experience has also been
widely reported evidencing how specific genetic variations
moderate the impact of environmental variables on chil-
dren’s cognitive performance and behavior. For example,
the presence of the 7-repeat allele, a variation of the DRD4
dopamine receptor gene, has been shown to interact with the
quality of parenting in early childhood to influence children’s
temperamental characteristics related to sensation seeking,
including impulsivity, high intensity pleasure and activity
level (Sheese, Voelker, Rothbart, & Posner, 2007). Similarly,
(Bakermans-Kranenburg & Van Ijzendoorn, 2006) found
that children’ susceptibility to maternal insensitivity and its
impact on externalizing behaviors was highly dependent on
the presence of the DRD4 7-repeat variation. In addition,
(Voelker, Sheese, Rothbart, & Posner, 2009) have observed
that both the COMT genotype and haplotype (a combina-
tion of alleles within the COMT gene locus) interact with
parenting quality, influencing the performance of 2-year-old
children in a visual sequence task that targets attention.

Similar results have been found with genes related to
the modulation of different neurotransmitters in areas of
the brain associated with executive attention and other
executive processes (Posner, Rothbart, & Sheese, 2007). For
instance, (Kochanska, Philibert, & Barry, 2009) reported
that the development of self-regulation during the preschool
years could be partially explained by the interaction between
a polymorphism in the serotonin transporter (5HTTPR) and
the quality of early mother–child attachment. Additional
evidence from Caspi et al. (2002), shows that variations
within the monoamine oxidase A (MAOA gene) that codes
for the isoenzyme MAOA which regulates the levels of
serotonin, norepinephrine, and dopamine, modulates the
influence of child maltreatment on the development of anti-
social behavior and conduct disorders (Caspi et al., 2002).

Clearly, significant evidence has been provided in this
field of study, showing that genetic variations can moder-
ate the extent to which children can benefit from cognitive
training. However, as new discoveries are made in the field,
new and relevant questions start to emerge. For instance, it is

important to discern whether it is possible to predict which
children could benefit from a cognitive intervention consid-
ering only specific genetic patterns as predictors. Given the
relevance of this question, in the present study, we aimed at
developing predictive models of children’s cognitive-related
gains in measures of WM and Gf following executive atten-
tion training. In addition, this study aims at understanding
the contribution of specific genetic markers to these predic-
tive models, and to compare particular patterns predicting
gains in WM and Gf.

Some authors have shown that traditional statisti-
cal methods do not always yield accurate predictions
and/or classifications (Bansal, Kauffman, & Weitz, 1993;
Duliba, 1991; Everson, 1995). A more robust and accurate
approach has been developed during the last decade and
applied in health and education fields for the purpose of
prediction (Cascallar, Boekaerts, & Costigan, 2006; Everson,
Chance, & Lykins, 1994; Gorr, 1994; Hardgrave, Wilson,
& Walstrom, 1994; Musso & Cascallar, 2009; Musso et al.,
2012; Musso, Kyndt, Cascallar, & Dochy, 2013; Musso,
Cascallar, Bostani, & Crawford, 2020; Musso, Hernández,
& Cascallar, 2020). Machine-learning techniques, such as
methods using artificial neural networks (ANN), have been
shown to be very effective to study problems consisting
of a large number of variables in complex, nonlinear, and
poorly understood interactions (Cascallar, Musso, Kyndt, &
Dochy, 2014). In addition to being powerful classifiers, ANN
build plausible architectures to explore the participation of
variables involved in the modeling of a problem (Detienne,
Detienne, & Joshi, 2003; Neal & Wurst, 2001; White &
Racine, 2001). This methodological approach could allow
us to consider simultaneously a large number of factors
without the usual parametric constraints, and it could help
us understand whether genetic-based individual differences
can explain differences in children’s susceptibility to train-
ing. These advantages allow for a better understanding of the
genetic factors that could be related to outcomes associated
with cognitive training, taking into account their complex
interactions. Moreover, detecting children who can benefit
from a systematic cognitive training intervention might
inform the development of more targeted program designs.

PRESENT STUDY

The present study is based on the effects of cognitive train-
ing demonstrated in a previous study (Pozuelos et al., 2019).
The main research question is whether it is possible to pre-
dict cognitive gains in children, with high accuracy, con-
sidering only specific genetic variants. The answer to this
question will lead us to the second research question of this
study: which are the most important patterns of predictors
contributing to the classification between children who ben-
efit or do not benefit from training?
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Given the evidence in the field, we hypothesized that
ANN can, in fact, help us to predict cognitive training gains
in preschool children, an age group that shows high levels
of individual differences. We also hypothesized that those
children carrying genetic variations associated with a more
efficient neural functioning within the executive atten-
tion network will show larger training benefits. Although
machine learning techniques have been widely used in sev-
eral different fields of research and in applied environments,
to our knowledge, there are no known studies applied
with this objective using genetic data during early child
development.

METHOD

Participants
The data base consists of a sample of 66 children correspond-
ing to the training group of a previous study (Pozuelos et al.,
2019), male = 54.2%, ages between 50.9 and 75.9 months
(M= 63.07; SD = 7.31), from Granada (Spain). Socioeco-
nomic status, based on the educational level of the mother,
was not statistically significantly different between the var-
ious genotype groups. Inclusion criteria were that children
had normal or corrected-to-normal sensory capacities, no
history of chronic illness and/or psychopathologies, and
were not under pharmacological treatment of any kind as
informed by caregivers. Ethical approval was obtained from
the Research Ethics Committee of the University of Granada.
Parents were informed about the purpose of the study, and
they gave written consent to participate in the study (for a
more detailed description see Pozuelos et al., 2019).

MATERIALS AND PROCEDURE

Training Program
A computerized training program was administered for
4 weeks (ten sessions: 45 min per session). The program
consisted of 14 computerized exercises divided into five
categories: (1) Tracking/Anticipatory; (2) Attention Focus-
ing/Discrimination; (3) Conflict Monitoring/Resolution; (4)
Inhibitory control; and (5) Sustained Attention (for a more
detailed description of the training program, see (Author)).

Genotyping Procedure and Classification
Variation in genes involved in the regulation of dopamine
(COMT, DAT1, DRD4), serotonin (5HTT), and nore-
pinephrine (MAOA3), which have been shown to interact
with environmental factors influencing cognition and
behavior during development, were included in the analysis.
In addition, we included several genetic variations related to
the modulation of acetylcholine (CHRNA4), and other brain

factors (SNAP, DBH), which have been linked to ADHD and
to individual differences in attention and other executive
processes, to explore their potential interaction with the
cognitive training program implemented here (Gosso et al.,
2006; Parasuraman, Greenwood, Kumar, & Fossella, 2005).

DNA was isolated from saliva samples using Oragene
collection kits (DNA Genotek Inc., Ontario, Canada) accord-
ing to the manufacturer’s instructions. Approximately,
10–40 ng of template was included in each PCR amplifi-
cation, reactions contained 0.2 mM each deoxynucleotide,
0.2 μM each oligonucleotide, 0.05 U/μl recombinant Taq
DNA polymerase with its 1× reaction buffer (NH4)2SO4
(Thermo Fisher Scientific, Pittsburg, PA), and 8% (COMT,
DAT1)—20%(DRD4) QuickExtract buffer V1.0 (Epicenter
Biotechnologies, Madison, WI) in addition to PCR- specific
optimizations. The DAT1 amplification contained 1.5 mM
MgCl2, 0.6 M betaine, and the oligonucleotide DAT1F
5′ - TGTGGTGTAGGGAACGGCCTGAG and DAT1R
5′-CTTCCTGGAGGTCACGGCTCAAGG (Shinohara
et al., 2004). Amplification conditions were the following:
95∘C 4 min; 35× 94∘C 30 s, 65∘C 1 min, 72∘C 30 s; 72∘C
3 min. Amplified products were size separated on a 2%
agarose gel (GenePure LE, BioExpress, Kaysville, UT) and
visualized using ethidium bromide.

The COMT haplotype combinations as well as the dif-
ferent allele groups included in the analysis were arranged
based on previous literature regarding their association with
brain function or cognitive and behavioral performance.
Accordingly, a 40 base pairs (bp) variable number tandem
repeat (VNTR) located in the 3′ untranslated region (UTR)
of the DAT1 gene was included in the study. The most com-
mon alleles of this polymorphism are the 9-r allele (a 440 bp
product) and the 10r allele (a 480 bp 10-repeat product)
(Kang, Palmatier, & Kidd, 1999). Children were grouped
according to the presence (9/9 or 9/10) or absence (10/10)
of the 9-r allele.

Variations in the gene encoding the catechol-O-
methyltransferase (COMT) were included in the study
considering both the SNP in codon 158 (Val158Met) and
the COMT haplotype. Compared to the COMT Val158Met
genotype that reflects variation in enzyme activity, the
COMT haplotypes have shown to reflect differences both
at the enzyme expression level and the activity level.
Diatchenko et al. (2005) identified three common COMT
haplotypes that constitute a more sensitive measure of
COMT expression levels and allows to categorize alle-
les into low, medium, and high levels of COMT enzymatic
activity. In the present study, the COMT Val158Met genotype
was grouped according to the presence or absence of the
methionine allele (Met- Ab/Pr), and the COMT haplotype
was amplified and identified as in Voelker et al. (2009).
Three different groups were constituted. The LPS group,
associated to higher levels of COMT enzymatic activity,
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comprised children homozygous for the LPS allele as well
as carriers of the LPS/APS genotype; the MSP group, asso-
ciated to medium levels of COMT activity, were either
homozygous for the APS allele or carriers of the HPS/LPS.
Finally, children homozygous for the HPS allele and carriers
of the APS/HPS genotype were included in the HPS group,
a variation related to lower levels of COMT activity and
higher levels of catecholamine-mediated neurotransmission
(Diatchenko et al., 2006).

The DRD4 genotype was determined as previously
published (Sheese, Rothbart, Voelker, & Posner, 2012).
Individuals were grouped by the presence or absence of
the 7-repeat allele (619 bp). The 5HTT human serotonin
transporter genotype was grouped according to the pres-
ence or absence of the long (L- Ab/Pr) and short (S- Ab/Pr)
variants of the polymorphism. Regarding the monoamine
oxidase A, MAOA gene, a VNTR polymorphism within the
promoter region was analyzed. Individuals were grouped
according to the presence or absence of the 3-repeat
allele. The CHRNA4 gene, also known as Human Neural
Nicotinic Acetylcholine Receptor, subunit α4 was analyzed
including the presence/absence of the C allele. For the
synaptosomal-associated protein 25 or SNAP-25 gene,
two different Single Nucleotide Polymorphisms (SNPs)
were genotyped: the MnlI and the DdelI. The three most
common variations within each SNP were included in the
analysis: T–T, T–G, and G–G for the MnlI and the T–C,
T–T, and CC for the DdelI SNP. Finally, variations within
the Dopamine B-hydroxylase (DBH) gene, which is a G to
A polymorphism, were included in the analysis grouped in
relation to the presence or absence of the A allele. Table 1
shows the distribution of the sample regarding the genetic
variations considered in the present study.

Cognitive Assessment Tasks
The Kaufman Brief Intelligence Test (K-BIT; (Kaufman &
Kaufman, 2014)) was applied to assess children’s Gf. Admin-
istration of the test takes approximately 20 min per child of
preschool age. The Working Memory Span Subtest of the
WISC-III, backwards condition (Wechsler, 1991), was used
to measure processes of maintenance and manipulation of
information.

Analysis Procedure
There are several machine learning methods that show
similar performance as predictive classifiers over a wide
range of applications, such as logistic regression, random
forest, decision trees, and support vector machines, among
others (e.g., Maroco et al., 2011). However, it has been found
that in several conditions, ANN consistently outperform the
other methods. ANN are very flexible when the objective is
to maximize the precision in the prediction, and particularly

effective when the data consist of variables with com-
plex intercorrelations (Caruana & Niculescu-Mizil, 2006;
Duin, 1996) (see King, Feng, & Sutherland, 1995 for a
comparison among different machine learning methods).
Specifically, this study used a multilayer perceptron network
with a backpropagation algorithm. It is composed of nonlin-
ear units which compute their activation level by summing
all the weighted activations they receive; then, they trans-
form their activation into a response via a nonlinear transfer
function which establishes a relationship between the inputs
and the weights they are assigned (see (David Garson, 1998)
and Figure 1). In addition, a logistic regression analysis was
used to analyze the same data in order to compare the predic-
tive classification results of a more traditional approach with
the ANN method. SPSS v.19 was used for the development
and analysis of all ANN and LR predictive models.

Traditional measures were calculated including the
determination of actual values and rates for true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN) outcomes. In these analyses, both preci-
sion and recall or sensitivity, as outcome measures of
the network, were given equal weight when evaluating
the quality of the neural network results. Recall or sen-
sitivity represents the proportion of correctly identified
targets, out of all targets presented in the set, and is rep-
resented as: Recall = TP/(TP+ FN). Precision represents
the proportion of correctly identified targets, out of all
identified targets by the system, and is represented as:
Precision = TP/(TP+ FP). Specificity is defined as the pro-
portion of correctly rejected targets from all the targets that
should have been rejected by the system, and it is expressed
as Specificity = TN/(TN+ FP). Other quality measure as
F1-Score was calculated taking into account both false
positives and false negatives and it is the harmonic mean of
Precision and Recall.

Architecture of the Neural Networks
Two different neural networks (ANN) were developed
as predictive systems for the classification of the pre- to
post-training gains, one for each of the two standardized
cognitive measures: Gf, on the one hand, and Working Mem-
ory Span (WM), on the other hand. ANN1 was developed to
maximize the predictive classification of the “Zero or less”
(“No-Gain” condition) and “Higher than zero” (“Gain” con-
dition) in IQ-f change. Similarly, ANN2 was developed for
the classification of “Zero or less” (“No-Gain” condition) and
“Higher than zero” (“Gain” condition) in WM span change.

The data set was partitioned into a training set and a
testing set for each ANN, and for each network, training
and testing samples were chosen at random by the software,
from the available set of cases. Literature suggests that about
2/3 of the cases in the available data set can be used for the
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Mariel F. Musso et al.

TABLE 1
Sample distribution by genetic variations

Genetic variant Valid N Missing

Haplotype group

LPS MPS HPS

Frequency 35 16 7 58 8
Proportion 60.3 27.6 12.1

DAT1 10r Ab/Pr

10r - Pr 10r - Ab

Frequency 50 9 59 7
Proportion 84.7 15.3

COMT Met-Ab/Pr

Met - Pr Met - Ab

Frequency 40 22 62 4
Proportion 64.5 35.5

DRD4 Genotype

2/3 2/4 4/4 4/5 4/7 4/8 7/7

Frequency 1 4 33 4 17 2 1 62 4
Proportion 1.6 6.5 53.2 6.5 27.4 3.2 1.6

DRD4 7r Ab/Pr

7r - Pr 7r - Ab

Frequency 18 44 62 4
Proportion 29.0 71.0

MAOA 3r Ab/Pr

3r - Pr 3r - Ab

Frequency 43 19 62 4
Proportion 69.4 30.6

SNAP-25 MnlI polymorphism Genotype

G/G T/G T/T

Frequency 10 31 21 62 4
Proportion 16.1 50.0 33.9

SNAP-25 DdelI polymorphism Genotype

C/C T/C T/T

Frequency 1 17 44 62 4
Proportion 1.6 27.4 71.0

5HTT Genotype

S/S S/L L/L

Frequency 17 28 17 62 4
Proportion 27.4 45.2 27.4
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Cognitive Gains and Machine Learning Approach

TABLE 1
Continued

Genetic variant Valid N Missing

5HTT S-Ab/Pr
S - Pr S - Ab

Frequency 45 17 62 4
Proportion 72.6 27.4

5HTT L-Ab/Pr
L - Pr L - Ab

Frequency 45 17 62 4
Proportion 72.6 27.4

CHRNA4 C-Ab/Pr
C - Pr C - Ab

Frequency 42 20 62 4
Proportion 67.7 32.3

DBH A-Ab/Pr
A - Pr A - Ab

Frequency 47 15 62 4
Proportion 75.8 24.2

Note: Each section presents the frequency, proportion, valid number of samples, and missing genetic classification for each genetic variant included in the analysis.
The Ab/Pr categorization refers to the Absence or Presence of the genetic variant of interest for each gene included in the analysis.
Abbreviations: HPS, High Pain Sensitivity; LPS, Low Pain Sensitivity; MPS, Moderate Pain Sensitivity.
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Fig. 1. Multilayer perceptron network architecture with one hid-
den layer used in this study.

training phase in order to include a set of cases representing
most of the patterns expected to be present in the data
(patterns represented by the vector of information on the
input variables for each case). The remaining 1/3 of the data
is used for the testing phase of the network.

The implementation and evaluation of the models
was based on a systematic procedure suggested by
(Rodríguez-Hernández, Musso, Kyndt, & Cascallar, 2021).
During the training phase, the system evaluates the effect of
the weight patterns on the precision of their classification
of outputs, and then, through backpropagation, it adjusts
those weights in a recursive fashion until they maximize
the precision of the resulting classifications. During this
training phase several models were attempted, and sev-
eral modifications of the neural network parameters and
hyperparamenters were explored, such as: learning per-
sistence (controlling the continuation of training after no
significant change in weights), learning rate (the rate at
which the ANN “learns” by controlling the size of weight
and bias changes during learning), momentum (adds a
fraction of the previous weight update to the current one,
and is used to prevent the system from converging to a local
minimum), number of hidden layers, stopping rules (when
the network should stop “learning” to avoid overfitting
the current sample), activation functions (which define
the output of a node given an input or set of inputs to
that node or unit), and number of nodes. The systematic
changes to several parameters (i.e., five learning rate values
by nine momentum values by two activation functions)
led to 90 models for training and testing ANNs in each
cognitive gain group. Finally, the model that achieved the
best accuracy for both cognitive and noncognitive gain on
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Mariel F. Musso et al.

TABLE 2
Architecture of ANNs

Topology NNs fluid intelligence gain NNs WM gain

Initial learning rate values (×5) 0.4, 0.3, 0.2, 0.2, 0.1 0.4, 0.3, 0.2, 0.2, 0.1
Momentum values (×9) Going from 0.1 to 0.9 Going from 0.1 to 0.9
Transfer function of the hidden layer Hyperbolic tangent Hyperbolic tangent
Transfer function of the output layer (×2) Sigmoid and Softmax Sigmoid and Softmax
Partitions data set Training: 70% Testing: 30% Training: 70% Testing: 30%

Final NN fluid intelligence gain Final NN WM gain

Training set data 78.8% 77.4%
Testing set data 21.2% 22.6%
Cross-entropy error 3.804 2.015
Stopping error Two consecutive steps with no decrease in

error
Two consecutive steps with no decrease

in error
Number of input nodes 49 49
Number of output units 2 units: “Zero or less” 2 units: “Zero or less”

“High than zero” “High than zero”
Number of hidden layers One hidden layer with six units One hidden layer with 10 units
Number of epochs for training Automatically computed by the system Automatically computed by the system
Method for rescaling covariates Standardized method Standardized method
Activation function for hidden layers Hyperbolic tangent Hyperbolic tangent
Activation and error function for output

layer
Softmax.
cross-entropy.

Softmax.
cross-entropy

Methodology in the training phase Online (one case by cycle) Online
Parameters Initial learning rate = 0.4

Momentum = 0.9
Optimization algorithm: gradient descent
Minimum relative change in training

error = 0.0001.

Initial learning rate = 0.4
Momentum = 0.9
Optimization algorithm: gradient descent
Minimum relative change in training

error = 0.0001.

Note: The gradient descent optimization algorithm takes steps proportional to the negative of the approximate gradient of the function at the current point.
Cross-entropy function accelerates the backpropagation algorithm, and it provides good overall network performance with relatively short stagnation periods.

the testing phase was selected for each one of the target
classifications.

Each ANN introduced 17 input predictors: 15 specific
genetic markers, gender, and age. They were used for the
development of the vector–matrix containing all predictor
variables for each student. Table 2 shows the topology of the
explored ANNs and the architecture for each final model
predicting gains in Gf and WM.

RESULTS

In order to evaluate the quality of the solutions achieved by
each ANN, several measures were calculated. These results
are presented in the Table 3. Accuracy measures refer to
the percentages of the correct classifications in each group.
As Table 3 shows, both ANN models achieved high accu-
racy for each of the outputs. In addition, the solutions have
good “recall” (or sensitivity): the proportion of correctly
identified targets, out of all targets actually presented in the
set. The “precision” and “specificity” results were very good.
The area under the ROC curve represents the true-positive
rate (Sensitivity) plotted as a function of the false-positive
rate (100 - Specificity) for different cut-off points and it can

be viewed as a measure of the overall model performance
across all possible thresholds, that is, how well it distin-
guishes between two groups.

ANN 1: Zero or Less Versus Higher than Zero Gain
in Fluid Intelligence
Table 4 shows the “confusion matrix” representing all four
outcomes for the training and testing phases.

Table 5 and Figure 2 show the actual predictive weight
(importance for the classification) of the participating pre-
dictor variables (factors and covariates), as well as their
normalized importance (expressed as percentages of the
best predictor participation). COMT haplotype, age, gender
and the presence or absence of 10r allele of the dopamine
transporter (DAT1) gene were the top four predictors with
the most significant importance in modeling Gf gains after
training.

ANN 2: Zero or Less Versus Higher than Zero Gain
in WM Span
Table 6 shows the “confusion matrix” representing all four
outcomes for the training and testing phases.
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Cognitive Gains and Machine Learning Approach

TABLE 3
Measures for ANN and LR in the prediction of gain in fluid intelligence (Gf) and WM in the training and testing phases

Fluid intelligence WM
Artificial
neural networks

Artificial
neural networks

Measures Training Testing
Logistic

regression Training Testing
Logistic

regression

Accuracy for “Higher than zero”
group (TP)

96.3% 83.3% 82.6% 73.3% 80% 67.7%

Accuracy for “Zero or less” group
(TN)

92.9% 100% 75.7% 96.2% 100% 88.9%

Overall accuracy
(TP+TN)/(TP+ FP+ FN+TN)

95.1% 90.9% 79.5% 87.8% 91.7% 81.2%

Precision = TP/(TP+ FP) 0.96 1 0.80 0.92 1 0.78
Sensitivity/Recall = TP/(TP+ FN) 0.96 0.83 0.83 0.73 0.80 0.68
Specificity = TN/(TN+ FP) 0.93 1 0.75 0.96 1 0.89
F1 Score (harmonic mean of PPV

& TP 2TP/(2TP+ FP+ FN)
0.96 0.91 0.82 0.81 0.88 0.72

Area under the curve – 0.971 – – 0.953 –

Note: Precision represents the proportion of correctly identified targets. Out of all true targets presented to the system. Specificity is the proportion of correctly
identified nontargets. Out of all true-nontargets presented in the set. The F1-Score is the harmonic mean of Precision and Recall taking both false positives and false
negatives into account.
Abbreviations: FN, False Negatives; FP, False Positives; NPV, Negative Predicted Value; PPV, Positive Predicted Value; TN, True Negatives; TP, True Positives.

TABLE 4
Predictive classification of gains in Gf

Classification
Predicted (%)

Sample
Zero or

less
Higher

than zero

Overall
percent
correct

Training Zero or less 92.9 7.1
higher than zero 3.7 96.3
Overall percent 34.1 65.9

Testing Zero or less 100 –
higher than zero 16.7 83.3
Overall percent 54.5 45.5 90.9

Table 7 and Figure 3 show the actual predictive weight
(importance) of the participating predictor variables (factors
and covariates), as well as their normalized importance. The
COMT haplotype, age, presence, or absence of the 3r allele of
the monoamine oxidase A (MAOA), and the DRD4 genotype
were particularly informative in the modeling of the pre- to
post-training change in WM.

Logistic Regression Results
A likelihood-ratio logistic regression (enter method) was
carried out to predict children belonging to each cognitive
gain group (Zero or less vs. higher than zero gain in Gf and
WM) using the same predictors used with the ANN.

For the Gf gain model, the 17 predictors accounted for 46%
(Nagelkerke R2 = 0.465) of the variance in Gain/No-Gain
group membership, but only gender reached significance
(B = 1.884; p< .05). The Homer-Lemeshow test yielded a
X2 (8) of 4.933 (p> .05) suggesting the data had an adequate
overall fit to the model. Accuracy and other quality measures
are presented in the ANN table (Table 3) to facilitate the
comparison.

For the prediction of WM gain, the 17 predictors
accounted for 47% (Nagelkerke R2 = 0.472) of the vari-
ance in Gain/No-Gain group membership, but no variable
reached significance. The Homer-Lemeshow test yielded a
X2 (7) of 7.667 (p> .05) suggesting the data had an adequate
overall fit to the model. Accuracy and other quality measures
are presented in the ANN table (Table 3) to facilitate the
comparison.

Differences between Predicted Gain Groups
We carried out a series of X2 tests for categorical vari-
ables (genetic markers) and independent-samples t-test
for continuous dependent variables (age in months) to test
the differences (cognitive and genetic predictors) between
Gain and No-Gain children groups predicted by the neural
networks.

Gf gains and Group Differences
No significant differences were found among the three levels
of Haplotype regarding the proportions of each Gf gain
groups (X2 (2) = 0.675; p> .05).
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Mariel F. Musso et al.

TABLE 5
Relative importance and predictive weights of the variables partic-
ipating in the model for the predictive classification of the gains in
Gf

Predictor Importance
Predictive

weights (%)

COMT
Haplotype

0.202 20.22

Age 0.122 12.16
Gender 0.110 11
DAT1
10r Ab/Pr

0.097 9.69

DRD4
Genotype

0.082 8.19

SNAP-25
MnlI

0.074 7.39

DBH
A- Ab/Pr

0.065 6.51

5HTT
Genotype

0.063 6.29

5HTT
S- Ab/Pr

0.043 4.33

MAOA
3r Ab/Pr

0.038 3.79

COMT
Val158Met
Met- Ab/Pr

0.028 2.81

CHRNA4
C- Ab/Pr

0.025 2.46

5HTT
L- Ab/Pr

0.022 2.21

DRD4
7- Ab/Pr

0.017 1.72

SNAP-25
DdelI

0.012 1.22

Gender was associated with Gf gains (X2 (1) = 4.880;
p< .05, Cramer’s V = 0.301; 1− 𝛽 = 0.68), 70.6% of the
Gain group were males, while 60% of No-Gain group were
females.

DAT1 10r Ab/Pr was related with Gf gains (X2 (1) = 5.804;
Fisher’s Exact Test p< .05; Cramer’s V = 0.328; 1− 𝛽 = 0.74).
Most of the children in the Gain group were carriers of at
least one copy of 10r allele (94.1%) while 70% of the No-Gain
group were carriers of this allele. In addition, the DRD4
genotype was associated with Gf gains (X2 (5) = 11.342;
p< .05; Cramer’s V = 0.458; 1− 𝛽 = 0.83), with 58.8% of cog-
nitive Gain group carrying the 4/4 combination of the gene.
No significant differences were found between groups for the
other genetic markers.

Independent-samples t-test revealed that there was a
significant difference between predicted Gain groups in Gf
when considering the pre-test scores (t(51) = 3.013; p< .01;
Cohen’s d = 0.854). Children who had benefited from the
training program (Gain condition) were those who had

lower pre-test Gf (M = 100.18; SD = 16.576) compared
with children who had not benefited from the intervention
(No-Gain condition M = 109.95; SD = 10.94; 1− 𝛽 = 1.00).
(See Table 8).

WM Gains and Group Differences
The COMT Haplotype was significantly associated with
Gain and No-Gain differences in the backward span mea-
sure (X2 (2)= 8.93; p< .01; Cramer’s V = 0.392). 72.2% of the
No-Gain group belonged to the LPS group of the Haplotype,
while 13.9% belonged to the MPS group, and the remaining
13.9% belonged to the HPS group. Regarding the Gain group,
50% of children belonged to the MPS group of the COMT
Haplotype, 40.9% were part of the LPS group, and only the
9.1% belonged to the HPS group.

No significant differences were found between Gain and
No-Gain groups for the rest of the genetic markers nor for
gender. In addition, no significant differences were found
between predicted Gain groups in the baseline pre-test value
of Gf, WM, nor in age (see Table 9).

DISCUSSION

The strengths and advantages of the machine learning
approach explain the high precision and accuracy find-
ings in this study. One strength of this approach is to
dispense with the assumptions required by traditional
statistical predictive models (e.g., ordinary least squares
regression, logistic regression) (Cascallar et al., 2014).
Both ANN models were able to model nonlinear, com-
plex, and not well-known relationships among several
variables, in this case genetic factors, age and gender,
while classifying individuals between cognitive Gain and
No-Gain groups. The iterative process of error reduction
during the training of the network, through the back-
propagation algorithm, enables the ANN to “learn” the
patterns associated with the outcome of each individual
case in the training set. It then applies the model generated
to the new data in the testing sample, generalizing the
results.

An additional advantage of ANN is that it can use infor-
mation from all the multiple interactions between all the
predictors. While statistical significance is determined by
the probability of error (p-value) in the estimate of the
difference between values of a variable in different groups,
the weights in an ANN are partially analogous to the coef-
ficients in a general linear model (GLM). However, while
in a GLM the weight in a model prediction represents the
relative importance of a variable in its association with
the dependent or outcome variable, in ANN there are
many weights which connect one predictor to the outcome,
including the weights influenced by the interaction effects
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Cognitive Gains and Machine Learning Approach

Fig. 2. Predictive weights of the variables participating in the model for the predictive classification of the gains in fluid intelligence (Gf).

TABLE 6
Predictive classification of gains in working memory (WM)

Classification
Predicted (%)

Sample
Zero or

less
Higher

than zero

Overall
percent
correct

Training Zero or less 96.2 3.8
higher than zero 26.7 73.3
Overall percent 70.7 29.3

Testing Zero or less 100 –
higher than zero 20 80
Overall percent 66.7 33.3 91.7

between all predictors, which are reflected in the hidden
layers. Although this architecture makes an ANN very
flexible and effective in modeling nonlinear conditions, it
does present some difficulties for a correct interpretation.
We follow (Garson, 2016) recommendation, expanded by
(Goh, 1995) of considering all model weights, pooling and
scaling all weights specific to a predictor, thus generating
a single value (with a range from 0 to 1) that reflects the
relative importance of the predictor on the corresponding
outcome. It can then be considered that this predictive
weight assigned to each predictor captures the complexity
of the relationships in a manner that can only be achieved

with an ANN. In any given comparison between groups with
a significance test, we would only be capturing as significant
those differences that, given the observed difference in the
variable, and the size of the sample, would be below a certain
probability of error. The ANN, on the other hand, informs
on the effect size taking into account the full complexity of
the model. Its reliability is measured by the various statistics
used to evaluate the ANN results (e.g., F1, precision, recall,
sensitivity, etc.). Using all this information the ANN models
were able to detect patterns among input predictors for
each of the cases associated with a certain outcome. This
is compatible with previous evidence regarding the robust-
ness of neural models in the statistical sense, even when
they are faced with a small number of data points (David
Garson, 1998).

Classical statistical analyses revealed that children with
lower Gf scores at baseline improved more after cognitive
training than those starting with higher Gf. This result
is in agreement with some previous findings (Diamond
& Lee, 2011; Jaeggi et al., 2008; Mackey, Hill, Stone, &
Bunge, 2011). However, in this study there are no baseline
differences in WM span between Gain and No-Gain groups
in Gf, contrary to the findings reported in previous stud-
ies (Foster, 2017; Fuchs et al., 2013). This result could be
explained by the different WM tasks used: backward task
span involves a simpler task compared to the complex span
tasks used in those studies (Kane et al., 2005). The complex
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Mariel F. Musso et al.

TABLE 7
Relative importance and predictive weights of the variables partic-
ipating in the model for the predictive classification of the gains in
WM

Predictor Importance
Predictive

weights (%)

COMT
Haplotype

0.284 28.38

Age 0.116 11.61
MAOA
3r Ab/Pr

0.106 10.56

DRD4
Genotype

0.097 9.68

SNAP-25
DdelI

0.079 7.91

CHRNA4
C- Ab/Pr

0.077 7.72

SNAP-25
MnlI

0.044 4.41

5HTT
Genotype

0.041 4.11

DRD4
7 Ab/Pr

0.032 3.20

DBH
A- Ab/Pr

0.026 2.60

COMT
Val158Met
Met- Ab/Pr

0.026 2.58

5HTT
S- Ab/Pr

0.023 2.31

DAT1
10r Ab/Pr

0.019 1.89

Gender 0.016 1.62
5HTT
L- Ab/Pr

0.014 1.42

WM tasks present a secondary processing task that depletes
capacity from the cognitive system, interfering with the stor-
age of information, and they are more strongly correlated
with Gf than memory span tasks (Kane et al., 2005).

In terms of the relationship between genetic variation and
the prediction of cognitive gains given the training program
implemented, both networks were able to achieve high pre-
dictive accuracy based on specific genetic information, gen-
der, and age, as it was hypothesized. This could be explained
because the selection of the predictors of the ANN was based
on solid theoretical knowledge about which specific genetic
markers are related with individual differences in brain acti-
vation, cognitive and behavioral outcomes, and susceptibil-
ity to environmental factors, as it is suggested by a structured
neural network approach for modeling (Lee & Garver, 2005).

The results reported in this study suggest that particular
variations in genes involved in the regulation of dopamine
neurotransmission in the brain, among other individual dif-
ferences as gender and age, affect children’s susceptibility
to benefit from executive attention training, a pattern that

is consistent with previous studies (Brehmer et al., 2009;
Söderqvist, 2012).

The machine learning approach used in this study facili-
tates the analysis of the differences in the contribution of a
set of genes involved in cognitive functions that are highly
correlated (Conway, Kane, & Engle, 2003; Kane et al., 2005).
It was found that the COMT haplotype, age, gender, and the
dopamine transporter DAT1 genotype were the top four pre-
dictors with the most significant importance in modeling
Gf change after cognitive training. It was also determined
that the COMT haplotype, age, the monoamine oxidase A
(MAOA) genotype and the DRD4 genotype were particu-
larly informative in the modeling of the pre- to post-training
change in WM.

The results achieved in this study, given the statistical
robustness offered by machine learning analysis, draw a
pattern where multiple genetic markers, along with other
constitutional factors such as gender or age, contribute
to children’s susceptibility to benefit from a systematic
cognitive training program. This pattern relates to the
concept known as “plasticity genes” introduced by Belsky
et al. (2009) to represent how some genetic markers operate
to make individuals more susceptible to the influence of
particular environmental factors “for better and for worse”
(Belsky et al., 2009). An example of this was reported by
Belsky & Beaver (2011), who aimed at understanding the
cumulative-genetic plasticity showed by dopamine-related
genetic markers including alleles of the DAT1, the DRD4 and
the MAOA genes, in relation to the influence of parenting
on adolescent’s self-regulation skills. In line with our results,
(Belsky & Beaver, 2011) demonstrated that both gender and
dopamine-genetic markers interacted with environmental
variables associated to parenting supportiveness to explain
adolescents’ individual differences in the development of
self-regulation.

It is important to note that, although the pattern of con-
tribution differs between WM and Gf gains, there is an
important commonality among the genetic markers found
to be predictive of children’s susceptibility to cognitive train-
ing in both cases: they are all involved in the regulation of
dopamine levels in brain areas that are highly associated
to the performance of executive functions and other cog-
nitive processes typically recruited by Gf tasks (Duncan &
Owen, 2000). Previous studies have reported that cognitive
training is associated to increased BOLD activity (Dahlin,
Nyberg, Bäckman, & Neely, 2008) and DA release (Bäck-
man & Nyberg, 2013) in the same areas that are involved
in the performance of the cognitive tasks that are subject
to training. Therefore, efficiency of dopaminergic pathways
does appear to play an important role defining whether an
individual can benefit from a cognitive training program and
to this extent, Gene×Training studies are key to understand
the mechanisms that underlie such relationship.

Volume 16—Number 4 311

 1751228x, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

be.12336 by U
niversidad D

e G
ranada, W

iley O
nline L

ibrary on [11/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Cognitive Gains and Machine Learning Approach

Fig. 3. Predictive weights of the variables participating in the model for the predictive classification of the gains in working memory
(WM).

TABLE 8
Mean differences between Gf gain and No-Gain predicted groups
in pre-testing cognitive measures and age

Cognitive measures
pre-test

No-Gain
group

mean (SD)
Gain group
mean (SD) t-test (df ) p

Backward span 1.70 (1.42) 2.26 (1.26) −1.516 (52) .135
Fluid intelligence 109.95 (10.94) 100.18 (11.72) 3.013 (51) .004*
Age 61.08 (7.05) 64.25 (7.77) −1.496 (52) .141

∗The difference was significant at level p< .01.

Evidence involving humans and other species have shown
that there is an inverted-U shape relationship between
prefrontal dopaminergic function and performance of
executive function tasks (Barnett et al., 2009; Williams &
Goldman-Rakic, 1995). Using traditional statistical analy-
sis, several studies have shown that DA genetic variations
that lead to a more efficient dopaminergic function, are
also linked to increased cognitive gains after training. For
instance, (Brehmer et al., 2009) found that individuals
carrying the 9/10 genotype of the DAT1 gene, a variation
associated to more active DA pathways within the striatum,

TABLE 9
Mean differences between WM gain and No-Gain predicted groups
in pre-testing cognitive measures and age

Cognitive measures
pre-test

No-Gain group
mean (SD)

Gain group
mean (SD) t- test (df ) p

Backward span 2.14 (1.417) 1.75 (1.065) 0.973 (51) .335
Fluid intelligence 103.89 (12.405) 103.80 (12.542) 0.024 (50) .981
Age 63.45 (7.514) 61.07 (7.766) 1.048 (51) .30

could benefit to a greater extent from a computerized WM
training program. This pattern has been also observed with
the COMT gene in younger participants where carriers
of the more efficient Met allele have been found to have
increased WM plasticity (Zhao et al., 2020).

In the present study, the COMT haplotype showed to
be the strongest predictor of children’s capacity to bene-
fit from training for both Gf and WM outcomes. Previous
research has shown that, compared to the study of individ-
ual polymorphism within the catechol-O-methyltransferase
(COMT) gene, the use of COMT haplotype provides a better
understanding of the COMT enzyme function, reflecting
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Mariel F. Musso et al.

both its expression and its activity. In vitro studies have
demonstrated that the LPS haplotype is related to a higher
level of enzymatic activity (i.e., lower levels of dopamine
transmission), compared to the APS or the HPS haplotypes
(Diatchenko et al., 2005). Several studies have reported that
the COMT haplotypes are related to children’s cognitive per-
formance in a variety of measures including WM and inhi-
bition (Barnett et al., 2009) and they have been shown to
interact with environmental factors to influence the develop-
ment of attention in younger children (Voelker et al., 2009).

Given that the developmental changes observed in
COMT activity within the prefrontal cortex follow the
same inverted U-shape relationship between DA availability
and cognitive function (Tunbridge et al., 2007), it can be
hypothesized that efficiency of the COMT enzyme within
the prefrontal cortex during childhood may underlie the
individual differences that lead to an increased cognitive
plasticity for some children.

Some limitations of this study have to be considered. First,
the sample size for modeling ANN was rather small so we
could not generalize the models on a different random set of
data. We have to consider that this type of machine learning
approach has been used very recently to predict develop-
mental or training changes, so this study has an exploratory
scope. Also, given the fact that only recently machine learn-
ing approaches have been used to predict developmental and
training data, this study should be considered exploratory
in this realm. As such, further research should use larger
samples to validate the models obtained, thus diminishing
the risk of overfitting the data and increasing the gener-
alization of the networks’ functioning. Second, this study
involved only a few variables such as certain genetic vari-
ations, age, and gender. Future studies should have to go
beyond unmodifiable individual differences, including tem-
perament and environmental factors in the pre-training
baseline.
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