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and southeastern South America show consistently significant increases. This
coherence is corroborated by the results of the ensemble mean which projects positive
changes from 10ºN towards the south, with exceptions such as eastern Brazil, northern
Chile and some smaller areas, such as the center of Colombia, while projected
negative changes are the majority found in the northernmost part.
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ABSTRACT 25 

Climate-change projections for boreal winter precipitation in Tropical America has been 26 

addressed by statistical downscaling (SD) using the principal component regression with 27 

sea-level pressure (SLP) as the predictor variable. The SD model developed from the 28 

reanalysis of SLP and gridded precipitation GPCC data, has been applied to SLP outputs 29 

from 20 CGMS of CMIP5, both from the present climate (1971-2000) and for the future 30 

(2071-2100) under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The SD model shows a 31 

suitable performance over large regions, presenting a strong bias only in small areas 32 

characterized by very dry climate conditions or poor data coverage. The difference in 33 

percentage between the projected SD precipitation and the simulated SD precipitation for 34 

present climate, ranges from moderate to intense changes in rainfall (positive or negative, 35 

depending on the region and the SD GCM model considered), as the radiative forcing 36 

increases from the RCP2.6 to RCP8.5. The disparity in the GCMs outputs seems to be the 37 

major source of uncertainty in the projected changes, while the scenario considered 38 

appears less decisive. Mexico and eastern Brazil are the areas showing the most coherent 39 

decreases between SD GCMs, while northwestern and southeastern South America show 40 

consistently significant increases. This coherence is corroborated by the results of the 41 

ensemble mean which projects positive changes from 10ºN towards the south, with 42 

exceptions such as eastern Brazil, northern Chile and some smaller areas, such as the 43 

center of Colombia, while projected negative changes are the majority found in the 44 

northernmost part. 45 

 46 
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downscaling; CMIP5 GCMs. 48 
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1. INTRODUCTION 50 

Producing reliable estimates of changes in precipitation at local and regional level 51 

remains a major challenge in climate science, as it is a key aspect for planning adaptation 52 

and mitigation measures in order to reduce the negative impacts of the climate change in 53 

vulnerable regions (Giorgi et al. 2001; Christensen et al. 2007). The tropical American 54 

region, because of its meteorological and climatological characteristics, has received a 55 

special attention from the scientific community over recent decades. Unique 56 

environments, such as the Amazonia (the largest tropical rainforest on the planet), the 57 

Andes Mountains (with steep slopes), the desert of Atacama in Chile, the arid region of 58 

northeastern Brazil, the extreme west of Peru and Ecuador, the biodiversity of western 59 

Colombia and western Central America, the migration of the Intertropical Convergence 60 

Zone (ITCZ), the South American Monsoon System, among others, that interact in a 61 

complex superposition of physical processes at diverse spatio-temporal scales, determine 62 

the meteorological and climatological aspects of Tropical America, constituting a 63 

fundamental component of the global system. In turn, the main features of atmospheric 64 

circulation are associated with precipitation in the region, which directly and indirectly 65 

affect the economy, ecosystems, and society (Alexander et al. 2002; Barsugli and 66 

Sardeshmukh 2002). The Fifth Assessment Report of the Intergovernmental Panel on 67 

Climate Change (IPCC AR5 2013a, 2013b) suggests both increases and decreases in 68 

rainfall for Central and South America by 2100, depending on the region, although with 69 

high uncertainties due to high discrepancies between different General Circulation 70 

Models (GCMs) projections. According to Magrin et al. (2014), changes in agricultural 71 

production, with consequences for food supply, associated with climate change, are 72 

expected to show significant spatial variability in Central and South America (Marengo 73 

et al. 2010). The increase in agricultural production and intensive land use could lead to 74 

desertification, water pollution, erosion, and negative effects on biodiversity and health. 75 

For this reason, the study of climate change in this area constitutes a vital objective for 76 

the socio-economic development of the region. 77 

Dynamic (DD) and statistical (SD) downscaling methods (Schmidli et al., 2006; Zorita 78 

and von Storch 1999; von Storch et al. 2000) are often used to reduce the gap between 79 

the coarse resolution of GCMs and the information at higher spatial resolution (Grotch 80 

and MacCraken 1991; von Storch et al. 1993; Wilby and Wigley 1997; Xu 1999). While 81 

the DD methods use a high-resolution regional climate model nested in a GCM, the SD 82 

is performed by looking for empirical statistical relationships between large scale 83 

atmospheric predictors and regional scale variables (Wood et al. 2004; Yang and Wang 84 

2012), assuming that these will be maintained over time under future climate conditions. 85 

The SD presents the added benefit of low computational cost versus DD methods. There 86 

are uncertainties in the projections associated with both methodologies, such as the 87 

parameterizations (in the DD) or the predictors choice (in the SD) (Frost et al., 2011; Bae 88 

et al., 2011; Wilby and Wigley 2000). Little consensus exists on which predictors are 89 

more appropriate, although variables related to atmospheric circulation, such as level 90 

pressure (SLP) are widely used, due to their availability from both observational and 91 

GCM output data. One of the most frequently used approaches for developing SD models 92 



is the principal component regression (PCR), which is based on the principal component 93 

analysis (PCA) to reduce the dimensionality of the predictor data (Preisendorfer 1988; 94 

Jolliffe 2002; Wilks 2006). According to the use of principal components (PCs) as 95 

predictors, the SD model generated by PCR, which takes into account the interactions 96 

between predictands and observed predictors, is applied to results from the GCM outputs 97 

representing climate change projections (Wilks 2006; Li and Smith 2009; Eden and 98 

Widmann 2014). However, before the SD model can be applied to project changes in 99 

rainfall for the end of the century, an evaluation of the ability of the SD model to 100 

reproduce the present climate should be performed. In any case, the climate change 101 

estimations at the regional scale are affected by different uncertainties coming from the 102 

different GCMs, scenarios, and the downscaling method itself selected. 103 

The use of several GCMs and scenarios is important to reduce some of these uncertainties 104 

(Wilby and Harris 2006; Maurer 2007). Thus, one way to analyze the uncertainty is to 105 

work with a multimodel ensemble (Palmer et al. 2005), which provides a probability 106 

distribution of possible future values (Harris et al. 2010). Some studies have demonstrated 107 

that simulation errors and uncertainties using individual GCMs could be reduced by the 108 

use of the ensemble mean of the members for multi-model projections. This is true for 109 

studies concerning the verification of seasonal forecasts (Palmer et al. 2004; Hagedorn et 110 

al. 2005), present-day climate from long-term simulations (Lambert and Boer 2001) or 111 

climate change projections (Nohara et al. 2006). So, the ensemble average usually 112 

reproduces the observations better than do individual models (Wallach et al. 2016).  113 

In the current literature few works attempt projections of climate change in Tropical 114 

America, most research being more focused on particular regions such as Brazil, 115 

Colombia or southern South America (Ramírez et al. 2006; Solman and Nuñez 1999; 116 

Mendes and Marengo 2010; Teichmann et al. 2013, Palomino-Lemus et al. 2015). Thus, 117 

there is a clear need for the study of climate change in Tropical America. 118 

The present work takes into account all the previous considerations and has a primary aim 119 

to obtain climate change projections for the boreal winter precipitation of Tropical 120 

America, during the period 2071-2100. For this, the precipitation has been statistically 121 

downscaled, using as predictor the SLP from the tropical Pacific through the PCR 122 

technique. Once the skill of the SD model developed was demonstrated for simulating the 123 

rainfall of the region under the present climate, this was applied to the SLP simulations 124 

of 20 GCMs selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5, 125 

Taylor et al. 2012), for three representative concentration pathways, RCP2.6, RCP4.5, 126 

and RCP8.5. The study is structured as follows. Section 2 describes the datasets used, 127 

Section 3 explains the methodology, Section 4 displays the results, and Section 5 presents 128 

the concluding remarks.  129 

2. DATA 130 

For this study, the observational precipitation dataset from the Global Precipitation 131 

Climatology Centre, GPCC version 6.0 (Schneider et al. 2014) was used. The boreal 132 

winter precipitation, composed by the averaged December, January, and February (DJF) 133 

rainfall over the 61-yr period, from 1950 to 2010, was generated from GPCC data. The 134 



time series of winter rainfall corresponding to the grid points of the study region 135 

[30°N30°S, 120ºW30ºW] (Figure 1), with a spatial resolution of 0.5º×0.5º, were used 136 

as the predictand in the process of building a SD model, using principal component 137 

regression (PCR) method, to simulate the boreal winter precipitation for the period 1950-138 

2010. 139 

As a predictor variable, the mean monthly sea level pressure (SLP) data available from 140 

the National Center for Environmental Prediction-National Center for Atmospheric 141 

Research (NCEP-NCAR reanalysis project), which has a spatial grid resolution of 142 

2.5°×2.5° (Kalnay et al. 1996), was used, covering a more extensive area [30ºS30ºN, 143 

180ºW30ºW] for the same period 1950-2010. 144 

In addition, SLP outputs from 20 GCMs, taken from the CMIP5 (Taylor et al. 2012), were 145 

used. These models were chosen for their accurate reproduction of the SLP variability 146 

modes (Palomino-Lemus et al. 2015). The model data include simulations with historical 147 

atmospheric concentrations and future projections for the representative concentration 148 

pathways RCP2.6, RCP4.5, and RCP8.5 (Moss et al. 2010; Taylor et al. 2012). The 149 

historical experiments cover the period from 1850 to 2005. In the present study, the period 150 

1971-2000 was used as representative of present climate, while, for the future climate, 151 

the period 2071-2100 was considered. Table 1 shows these 20 GCMs, labeled from (a) to 152 

(t) for their identification, and their principal features. In all the cases, the run1 of the 153 

simulations for historical climate was used. 154 

3. METHODOLOGY 155 

Statistical downscaling is a process consisting of a double step. First, a search was made 156 

of relationships between the local climate variables and the large-scale predictors (winter 157 

precipitation and SLP, respectively, in our case). Second, the relationships found were 158 

applied to the GCMs outputs to develop a SD model.  159 

A key point to take into account in this process is the multicollinearity between data 160 

subset, which could be a serious problem when a statistical regression model has a great 161 

number of input data, because the number of estimated regression coefficients can be very 162 

large, resulting in misleading estimates of the regression equation (Draper and Smith 163 

1981; Jolliffe 2002). To address the problems associated with multicollinearity, we used 164 

biased regression estimators, such as the principal components regression (PCR) method, 165 

as frequently suggested. A detailed description of this methodology can be seen in 166 

Palomino-Lemus et al. (2015). 167 

In this work the spatio-temporal variability of SLP reanalysis data from NCEP was 168 

analyzed by PCA using the covariance matrix (Preisendorfer 1988). Empirical orthogonal 169 

functions (EOFs) and principal components (PCs) that account for a high percentage of 170 

explained SLP variance, presenting significant correlations with the winter precipitation 171 

in the study area, were selected. For an assessment of the robust correlations between the 172 

main leading SLP PCs and DJF precipitation, the non-parametric bootstrap technique 173 

(Stine 1985; Li and Smith 2009) was used, identifying significant correlations at the 95% 174 

confidence level. When the main PCs of SLP were selected, the PCR method was applied 175 



to model the winter precipitation following the scheme proposed by Li and Smith (2009). 176 

The periods 1950-1993 and 1994-2010 were used for calibration and validation, 177 

respectively. The Bootstrap with replacement was applied to provide estimates of the 178 

statistical errors. Afterwards, the statistical model built for each grid point was 179 

recalibrated using the total observational period (1950-2010), allowing us to consider the 180 

most recent variability of the fields in the regression model, and finally, to generate the 181 

definitive SD model. 182 

The skill of the different GCMs to simulate the DJF rainfall in the Tropical America for 183 

present climate (1971-2000) was studied by computing the differences between the 184 

simulated and observed precipitation values. Lastly, to project DJF precipitation in the 185 

area for the period 2071-2100, the SD model, was applied to the SLP outputs from 20 186 

GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The non-parametric rank sum 187 

test of Wilcoxon-Mann-Whitney (von Storch and Zwiers 2013) was applied to analyze 188 

the significance of the changes projected. 189 

Finally, to take the advantage of reducing simulation errors and uncertainties (Lambert 190 

and Boer 2001; Palmer et al. 2004; Hagedorn et al. 2005; Nohara et al. 2006), we 191 

calculated the projected precipitation changes under the three scenarios using the 192 

arithmetic ensemble mean of the 20 SD GCM outputs. 193 

4. RESULTS 194 

4.1 Spatio-temporal SLP modes and their relationship with precipitation 195 

A PCA applied to the DJF SLP reanalysis data in the period 1950-2010 identifies 10 196 

leading modes of variability that explain 88.8% of the total variance. Figure 2 shows the 197 

spatial patterns (EOFs) of these modes and their corresponding PC series. 198 

The first mode of variability (EOF1) explains 31.5% of the total variance of the SLP data, 199 

and is characterized by the presence of a dominant pattern of positive correlations that 200 

represents the variability of almost the entire region of tropical Pacific Ocean included in 201 

this study, with a strong positive correlation center located around the 150ºW-10ºS, 202 

stretching to the northern tropical Atlantic. The second mode (EOF2), which explains 203 

16.9% of the SLP variance, exhibits two well-defined action centers, one with positive 204 

correlations located in the northwestern edge of the study area, and the other with negative 205 

correlations extending from the Gulf of Mexico, covering all Central America to 206 

approximately 150ºW. EOF3 (12.3% of variance), shows a spatial pattern with a strong 207 

core of positive correlations in the northeast, centered around 15°N-40ºW, which spreads, 208 

though weakened, throughout northern South America, to northern Chile. Additionally a 209 

gradient of negative correlations, which is distributed from the south end to the 10ºS, 210 

between 170ºW and 90ºW, also appears. EOF4 (8.8% of variance) shows two negative 211 

centers located in the west Pacific and South America, respectively, along with a weaker 212 

positive center covering the Gulf of Mexico, the Florida peninsula and most of the 213 

Caribbean islands. EOF5 (8.8% of variance) to EOF10 jointly account for 19.3% of the 214 

SLP variance and show different action centers over the study region with weaker factor 215 

loadings. 216 



To explore the physical meaning of these variability modes, we analyzed the correlations 217 

between their corresponding PC series (also shown in Figure 2) and several 218 

teleconnection indices. The results show that the first PC series is related to the ENSO 219 

and SOI indices, the highest correlation coefficient being for bivariate ENSO index 220 

(BEST, Smith and Sardeshmukh 2000) (r = -0.71), followed by El Niño4 (r = -0.68) and 221 

El Niño3.4 (r = -0.65) indices, all significant at 95% confidence level. PC2 is strongly 222 

correlated with the Western Pacific (WP) index (r = 0.80), and with El Niño1+2 index (r 223 

= 0.53). PC3 is related to the Atlantic SST, showing the highest negative correlations with 224 

the Atlantic Meridional Mode (AMM, Chiang and Vimont 2004) (r = -0.63), followed by 225 

the Atlantic Tripole SST EOF (ATLTRI, Deser and Timlin 1997) (r = -0.54) and the 226 

Tropical Northern Atlantic (TNA, Enfield et al. 1999) (r = -0.52) indices. The PC4 shows 227 

significant correlation with the Pacific SST, being the highest coefficient with the 228 

Western Hemisphere Warm Pool (WHWP, Wang and Enfield 2001) (r = -0.53) index. 229 

For the analysis of the relationships between the SLP and precipitation, Figure 3 shows 230 

the spatial distribution of the correlation coefficients between DJF precipitation data and 231 

each time PC series associated with the 10 main modes of variability of DJF SLP. Only 232 

statistically significant results at 95% confidence are colored. Additionally, the 233 

percentage of area covered by these significant correlations is also shown. The correlation 234 

map for the PC1 (Figure 3a) clearly presents significant correlations in an extended area 235 

of the region, with significant correlations covering about 40.9% of the region, being the 236 

SLP PC which correlates most extensively with the precipitation of the study region. The 237 

correlation map for this PC1 is dominated by a broad band of positive correlations that 238 

starts from the southwest and northern Brazil and extends to northern Nicaragua. In this 239 

area, two main centers have the highest values of positive correlation (above 0.6), located 240 

northwest of the Andes in Colombia, and the other in northern Brazil, reaching the east 241 

of Venezuela, and entirely covering Guiana, Surinam, and French Guiana. These positive 242 

correlations show the influence of the first DJF SLP mode of variability on DJF 243 

precipitation in these regions. In addition, significant negative correlations also appear, 244 

with values of up to -0.5, especially in Mexico, and slightly weaker in southeastern Brazil, 245 

in Paraguay, and in northeastern Argentina. Since PC1 is related mainly to the ENSO 246 

phenomenon, this result indicates a clear association between ENSO and DJF 247 

precipitation variability in the area of Tropical America.  248 

The next DJF SLP mode of variability that presents the second highest percentage 249 

(31.1%) of continental area with significant correlations with precipitation, is associated 250 

with the SLP PC3. The spatial correlation map (Figure 3c) shows a pattern similar to that 251 

of the PC1 (Figure 3a), with certain differences, but with opposite sign correlations. It has 252 

negative correlations in northern South America, stretching from Colombia to French 253 

Guiana, while positive correlations are located in northern Mexico, the Yucatan Peninsula 254 

and central Brazil. PC4 follows the third mode in percentage of area with significant 255 

correlations (Figure 3d), with 24.6%, and is characterized by the presence of lower and 256 

more localized correlation values. Regionally, it presents significant positive correlations 257 

with precipitation in Venezuela, Guiana, Surinam, and French Guiana, and negative in 258 

northeastern Argentina and southern end of Brazil. 259 



In addition, the correlation between DJF SLP PC2 and DJF precipitation (Figure 3b), 260 

presents, generally low values, showing significant positive correlations only in the 261 

Florida peninsula, some Caribbean islands and western Ecuador; and negative ones in 262 

Guiana, Surinam and at the mouth of the Amazon River in northern Brazil. These areas 263 

represent only 16% of total area. 264 

Moreover, the rest of DJF SLP PCs (PC5, PC8, PC7, PC10, PC9, and PC6) have lower 265 

percentages of areas with significant correlations (14.7%, 14.7%, 12.4%, 11.5%, 10.8%, 266 

and 8.9%, respectively). Note the PC5 correlations (Figure 3e), for which there are two 267 

centers of significant correlations with opposite signs located to the east of Brazil, and in 268 

southern Brazil, and in southern Paraguay, as well as PC8 (Figure 3h), for which a large 269 

center to the east of Brazil with significant negative correlations is shown. The rest of 270 

PCs show weaker correlations with precipitation, identifying localized regions scattered 271 

over the area of study. 272 

4.2 Statistical downscaling model 273 

After the analysis of the relationships between SLP and precipitation, the aim was to 274 

develop a robust statistical model that would provide the downscaled precipitation for 275 

each grid point from the large-scale SLP field. The PCR method was used to build the 276 

statistical downscaling (SD) model for DJF rainfall, using the PC series corresponding to 277 

the first 10 modes of variability of DJF SLP NCEP reanalysis data as predictor variables, 278 

and the observed gridded DJF precipitation as predictands. As mentioned above, the 279 

training period 1950-1993 was used as calibration period, and the period 1994-2010 to 280 

validate the model.  281 

Figure 4 shows the spatial distribution of the correlation coefficients between observed 282 

DJF precipitation data and the generated with the SD model for each grid point during 283 

the calibration (1950-1993) and validation (1994-2010) periods (Figure 4a and 4b, 284 

respectively). The highest correlations (r > 0.8) for the validation period are found in 285 

southern Central America, in the northwestern regions of Colombia and Ecuador, and in 286 

the northwestern end of Peru. There are also high correlations extending from eastern 287 

Venezuela to northern Brazil, covering Guiana, Surinam, and French Guiana. 288 

Additionally, strong correlation values appear in many scattered areas, such as Florida 289 

and south of the study area. On the other hand, comparing the calibration period with the 290 

validation one, lower correlation coefficients are found for the latter area, mainly from 291 

southern Mexico (through the Yucatan Peninsula) to Honduras. Lower values are also 292 

appreciated southeast of Colombia, northern Venezuela and a vast area over the center of 293 

South America. 294 

The relative root mean square error (RMSE) was used to quantify the differences between 295 

observed and simulated precipitation as well as to assess the stability of the SD model. 296 

The spatial distribution of the percentage of RMSE during the calibration and validation 297 

periods is shown in Figure 5a and 5b, respectively, reflecting great similarity between the 298 

two periods. Some regions have relatively large errors, such as Chile, coastal Peru, 299 

southwestern Bolivia, and Mexico, all registering low precipitation values. Generally, 300 



errors are lower on the southern half of the study area, while in the north the opposite 301 

happens. 302 

For a direct comparison between simulated and observed precipitation values at each grid 303 

point, Figure 6 depicts the spatial distribution of the observed (Figure 6a) and simulated 304 

DJF precipitation (Figure 6b) for the validation period (1994-2010), as well as the spatial 305 

distribution of the percentage differences between the two fields (Figure 6c). This 306 

comparison shows that the SD model provides a good representation of the average DJF 307 

rainfall field, with very small differences between observed and simulated values. 308 

Moreover, the maximum values of rainfall in the region, over relatively small areas in 309 

western Colombia, southeastern Peru, and central Bolivia, are properly reproduced. The 310 

major discrepancies are associated with very dry areas or without information, such as 311 

the western edge of South America or the Pacific coast of Mexico, where both 312 

underestimations and overestimations of precipitation are appreciated.  313 

4.3 Simulated DJF precipitation for present climate 314 

After assessing the ability of the SD model, we recalibrated it using the complete period 315 

1950-2010. Figure 7 presents the spatial distribution of the correlation coefficients 316 

between observed DJF precipitation data and the SD modeled values during the period of 317 

recalibration (Figure 7a), as well as the ones estimated from the SD model for the period 318 

1971-2000 (Figure 7b), which will be used as reference period to characterize 319 

precipitation in the present climate. For both the calibration (1950-1993, Figure 4a) and 320 

recalibration (1950-2010, Figure 7a) periods, the SD model shows the same spatial 321 

correlation pattern. For the period 1971-2000, correlations for certain relatively large 322 

areas prove poorer, while in more limited and scattered areas the correlation improves, 323 

but remaining essentially the same spatial configuration of the correlation as for the other 324 

periods. Figure 7c shows the percentage differences between the observed DJF 325 

precipitation and the results from SD modeled one using the SLP, for the period 1971-326 

2000. Only a small very dry area over the northwest of Chile presents remarkable bias. 327 

After recalibrating the SD model for the complete period 1950-2010, and assess its ability 328 

to reproduce the precipitation in each grid point, this was applied to SLP data derived 329 

from 20 GCMs, selected from CMIP5 (Table 1) for both present climate (1971-2000) and 330 

future climate (2071-2100) under the RCP2.6, RCP4.5, and RCP8.5 scenarios. 331 

Figure 8 shows the percentage of the differences between the SD precipitation from 20 332 

GCMs and the observed DJF precipitation for 1971-2000 period. Additionally, the 333 

statistical significance at 95% confidence level of these differences was estimated using 334 

the Wilcoxon-Mann-Whitney bilateral rank sum test. The results show that, generally, 335 

there are no statistically significant differences for a large number of models, indicating 336 

that the SD model applied to the SLP outputs of these GCMs has a high ability to 337 

faithfully reproduce the precipitation field. However, the simulations performed directly 338 

by using non-downscaled outputs of GCMs (Figure 9) strongly distort the precipitation 339 

field, since they are able to reproduce neither the values nor the spatial distribution of 340 

precipitation. Note that the area with significant differences (Figure 8) is on average 341 

(considering the SD of all models) only 16.79% for the period 1971-2000. Therefore, the 342 



SD applied to the 20 GCMs accurately reproduces the highest and lowest values of the 343 

rainfall in most of the study area. Furthermore, these SD precipitation values (not shown) 344 

are very close to those observed, showing spatial patterns very similar to the observed 345 

ones. 346 

The results of Figure 8 also reveal that, although the SD model successfully reproduces 347 

the most important spatial patterns of DJF precipitation in the study area, significant 348 

deficiencies are evident for simulations made with outputs from MIROC-ESM (p) and 349 

GISS-E2-R (k), followed by GFDL-CM3 (j), with a percentage of the area showing 350 

significant differences higher than 20%. In particular, for GISS-E2-R model (Figure 8k), 351 

SD overestimates by more than 60% the observed rainfall in areas located above 20°N, 352 

covering Mexico. Meanwhile, for the MIROC-ESM (Figure 8p), differences in 353 

percentage strongly underestimate precipitation in Mexico (< -90%). 354 

4.4 Projected changes in DJF precipitation 355 

Figures 10, 11, and 12 show the percentage of changes in projected (2071-2100) DJF 356 

rainfall compared to the present (1971-2000) SD precipitation for each GCM under the 357 

RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The statistical significance of the 358 

projected precipitation changes, as previously, has been estimated by using the bilateral 359 

rank sum test of Wilcoxon-Mann-Whitney. As can be seen, for the 20 projected 360 

predictions in general, the RCP4.5 and RCP8.5 scenarios show large areas with 361 

significant changes. For the RCP2.6 scenario (Figure 10), projected results reflect a 362 

predominance of very moderate decreases in rainfall, these being significant in some 363 

models. The extent of the area affected by significant changes varies from 2.56% for the 364 

SD CSIRO-Mk3.6 (Fig. 10g) to 57.91% for SD HadGEM2-ES (Fig. 10m). The area with 365 

most consistent changes between the SD GCMs is eastern Brazil (around 10°S, 40ºW), 366 

particularly intense (declines of more than 80%) in SD CanESM2 (Fig. 10c) and SD 367 

GFDL-CM3 (Fig. 10j) models. Some models also show a sharp decline in the Chilean 368 

Andes. Northern Mexico also presents significant declines from some SD models (around 369 

30% or higher in some areas), while the southwestern Mexican coastal area shows 370 

increases (over 60%) for several SD GCMs. 371 

As radiative forcing increases, the extent of the area with significant changes in 372 

precipitation also increases (Fig. 11 and 12). For example, for RCP8.5 (Fig. 12) the 373 

minimum extension with significant changes exceeds 40% (SD MPI-ESM-LR model, 374 

Fig. 12q, and SD MPI-ESM-MR model, Fig. 12r), reaching 80% is some case (SD 375 

NorESM1-ME model, Fig. 12t). This latter SD model also presents a greater surface area 376 

with significant changes under the RCP4.5 scenario (Fig. 11t). For this RCP4.5 scenario 377 

(Fig. 11), some models have fewer areas with significant changes than for the RCP2.6 378 

one (SD IPSL-CM5A-MR, Fig. 11n; SD MPI-ESM-MR, Fig. 11r; and especially the SD 379 

BCC-ESM1.1, Fig. 11b). In addition, there are more changes towards a decline in rainfall, 380 

which become very marked again in eastern Brazil (SD CanESM2, Fig. 11c, and SD 381 

GFDL-CM3, Fig. 11j), and Mexico (SD MIROC5, Fig. 11o, and SD NorESM1-ME, Fig. 382 

11t). However, the changes shown are less consistent in some areas, such as northern 383 

South America, where some models show increases (SD CNRM-CM5, Fig. 11f, and SD 384 



GISS-E2-R, Fig 11k) and other reductions (SD FGOALS-g2, Fig 11h, and SD 385 

HadGEM2-AO, Fig. 11l), or even opposing trends in relatively nearby areas ( SD MRI-386 

CGCM3, Fig. 11s). 387 

For RCP8.5 (Fig. 12), the SD of 13 GCMs show strongly significant declines (above 388 

30%) in most of Mexico, especially in the north, reaching over -90% in some cases (SD 389 

MIROC5, Fig. 12o, and SD NorESM1-ME, Fig. 12t). Eastward of Brazil (10ºS, 40ºW), 390 

similar results appear for 13 GCMs, showing significant decreases. In the northwest of 391 

South America (west of Colombia) simulations (for 12 GCMs), showing significant 392 

increases in precipitation predominate, in the northernmost part reaching an 80% increase 393 

(SD HadGEM2-ES, Fig. 12m). 394 

To identify how robust the projected precipitation changes are, we have studied the 395 

coherence between the results of the 20 SD GCMs by calculating the percentage of them 396 

that agree in the sign of projected precipitation change at each grid point of the study area. 397 

Only coherence values higher than 55% are shown. The Figure 13 depicts these results, 398 

showing that the projected precipitation changes have great coherence between the 20 SD 399 

models in most of the area, with positive or negative changes depending on the region 400 

and the scenario considered. The areas that are consistently affected by increased or 401 

decreased rainfall are spread as the radiative forcing increases, except for the region 402 

between Venezuela and Guiana, where there is a light loss of coherence. In general, there 403 

are wide spatial areas with coherence higher that 80%. Note for example the border region 404 

between Colombia, Ecuador, and Peru, the border between Brazil and Paraguay and the 405 

southern tip of Brazil, with coherent positive projected changes. Meanwhile, the diagonal 406 

band between the northwestern Brazil to the east coast of Brazil located around 20°S-407 

40ºW, the border between Bolivia, Chile, and Argentina, and an extended area covering 408 

Mexico and Central America, present coherent negative projected changes. The high 409 

coherence (higher than 90% in some grid points) is remarkable between the SD GCMs in 410 

the narrow area of Central America, where almost all the models are able to discriminate 411 

between positive changes in the Pacific coast and negative ones in the Atlantic coast.  412 

The coherence found between the sign of the projected precipitation changes for 20 SD 413 

GCMs provides the base to generate multimodel ensemble projections. The projected 414 

precipitation changes under the three scenarios considered were calculated from the 415 

arithmetic ensemble mean of the 20 SD GCM outputs. Figure 14 shows the percentage of 416 

changes in projected (2071-2100) DJF rainfall compared to the present (1971-2000) SD 417 

precipitation for the ensemble multi-model mean under the RCP2.6, RCP4.5 and RCP8.5 418 

scenarios, respectively. The statistical significance of the projected precipitation changes, 419 

as before, was estimated by the Wilcoxon-Mann-Whitney test. The results show that the 420 

projected changes were significant in most of the study area, covering from 66.27% under 421 

the RCP2.6 scenario, up to 83.95% under the RCP8.5. Projected changes are mostly 422 

moderate, covering extended regions with coherent sign, even under the scenario of 423 

highest radiative forcing. For all scenarios, areas with increased precipitation predominate 424 

over those where a decline is projected, although the prevalence increases with the 425 

radiative forcing considered, becoming 48.38% vs. 35.57% under the RCP8.5 scenario. 426 

Note the sharp increase projected in some parts of the Pacific coast, especially in southern 427 



Mexico, Peru, and Chile, as well as the sharp decline in parts of Colombia, Venezuela, 428 

on the border between Brazil and Guiana, and areas of Chile. 429 

5. CONCLUDING REMARKS AND DISCUSSION 430 

The main goal of this work was to get climate change projections for boreal winter 431 

precipitation in Tropical America. For this, we developed a precipitation SD model for 432 

each grid point of the area by PCR technique using as predictors the SLP PCs series of 433 

NCEP data, and the observed gridded DJF precipitation as predictands. These predictors 434 

were rigorously selected according to the significance of their correlations with the 435 

observed precipitation field. Climate variability modes related to ENSO phenomenon can 436 

satisfactorily describe the precipitation in many areas of South America (Barros et al. 437 

2000; Grimm et al. 2002; Tedeschi et al. 2013; Córdoba-Machado et al. 2015a, 2015b). 438 

For example, for Colombia precipitation these latter authors showed that the variability 439 

in the tropical Pacific SST, including El Niño and El Niño Modoki, is sufficient to 440 

reproduce and predict seasonal rainfall. El Niño phenomenon leads the variability of 441 

precipitation in much of the study region through its influence on the circulation of 442 

Walker, whose variations are reflected in the SLP field, this mode being particularly 443 

associated with the PC1 taken from the PCA applied to the tropical Pacific SLP. In 444 

addition, other patterns associated with the variability of the SLP on the tropical American 445 

continent and over the tropical Atlantic can also help in describing the behavior of 446 

precipitation in various areas of the tropical America, such as the Panama High or the 447 

northeastern Brazil Low pressure system. Moreover, some of the SLP PCs series analyzed 448 

in this study reflect the influence of certain extra-tropical Atlantic patterns, such as the 449 

Atlantic Meridional Mode, the Tripolar Atlantic SST or the Tropical Northern Atlantic 450 

pattern, whose contribution to the SD model could also be significant. So, in accordance 451 

with our results, other papers have shown that during the boreal winter (DJF), most of the 452 

moisture arriving to Central and South America comes from the Atlantic (Hoyos et al, 453 

2017). In this sense, the ability of the SD model to predict the precipitation comes from 454 

the inclusion of these climate variability modes through their corresponding PCs. 455 

In general, the SD model shows proper performance over large areas with small domains 456 

with major bias, particularly for the validation period (1994-2010). This may be due to 457 

the unreliable coverage of the GPCC data in certain areas (e.g. forest areas of the Amazon 458 

and Orinoco and Andes) in recent years, or regions characterized by very dry climate 459 

conditions (e.g. western edge of South America). These results are consistent with those 460 

reported by Eden et al. (2012) and Eden and Widmann (2014), who found bias greater 461 

than 10% in most of the tropics and in areas where the quality of the observation network 462 

is poor. However, SD model can properly reproduce the maximum values of rainfall in 463 

the region in western Colombia, southeastern Peru, or central Bolivia.  464 

For present climate, while the simulations performed directly using GCM outputs are 465 

unable to reproduce the distribution of the precipitation field, there are no statistically 466 

significant differences between the observed DJF precipitation and the simulated one 467 

using the SD model for many GCMs. We find that, on average, the areas with significant 468 

differences represent only 16.79% of the complete region. Thus, the SD model applied to 469 



the selected GCMs can accurately reproduce the DJF precipitation field throughout most 470 

of the study area. 471 

The high-resolution climate simulations projected for the end of this century have been 472 

evaluated using the difference in percentage between the projected SD precipitation for 473 

the period 2071-2100 and the simulated SD precipitation for the period 1971-2000. 474 

Results show positive or negative differences depending on the region and the SD GCM 475 

model considered. In general, these changes in rainfall range from very moderate to 476 

intense as the radiative forcing increases from the RCP2.6 to RCP8.5. Major sources of 477 

uncertainty in the projected precipitation changes for the end of the century seem to come 478 

from the disparity in the GCMs outputs, being less sensitive to the scenario considered. 479 

The results of the coherence between models shows that three northwest-to-southeast 480 

bands can be differentiated throughout the region, alternating projected changes in 481 

increased and decreased precipitation. Central and southeastern Brazil, Mexico and 482 

Guatemala are the areas showing the most consistent decrease changes between SD 483 

GCMs, while for the northwest and southeast of South America simulations showing 484 

significant increases predominate. 485 

The mean ensemble shows regions having projected significant increases and significant 486 

decreases. While the percentage of area presenting negative significant changes is very 487 

similar for the three RCPs (from 32.06% to 35.74%), the percentage relative to significant 488 

positive changes is higher as the radiative forcing intensifies (ranging from 34.21% for 489 

the RCP2.6 to 48.38% for the RCP8.5). Basically, positive projected changes are found 490 

from 10ºN latitude to the south, with exceptions such as eastern Brazil, northern Chile 491 

and smaller areas such as the center of Colombia, while negative projected changes 492 

appear mostly in the northernmost part. The coherence of our results essentially agrees 493 

with the findings of Sánchez et al. (2015). Most of the simulations in this paper and in the 494 

present work show a precipitation decrease in the east and some interior parts of Brazil, 495 

as well as increases in the coast of Ecuador and Bolivia in addition to northern Argentina, 496 

Paraguay and southern Brazil, although Sánchez et al. (2015) used different GCMs, 497 

dynamical downscaling, and the A1B scenario. Chou et al. (2014), in their study of 498 

assessing the climate change over South America using dynamical downscaling, 499 

projected a reduction of DJF precipitation in a large area that extends from northwestern 500 

to southeastern South America, also especially important towards the end of the century 501 

and for the RCP8.5 in southeastern Brazil. However, comparing the results found in the 502 

present work with those reported by other authors is problematic because of the 503 

differences between regions, periods, seasons, GCMs, and scenarios analyzed. 504 

Few studies have used the statistical downscaling over Tropical America, being more 505 

focused on the climate of some regions of Brazil or in the southern part of South America 506 

(Johnson et al. 2014; Valverde Ramírez et al. 2006; Solman and Nuñez 1999; Mendes 507 

and Marengo 2010). Hence the present study is novel for being one of the few papers 508 

devoted to obtain future rainfall projections at the regional scale for the Tropical America 509 

using CMIP5 models. Additionally, the statistical downscaling method developed in this 510 

work accurately reproduces the precipitation at the local scale for the study region, being, 511 

therefore, a useful technique for climate change studies, with the advantage of minimal 512 



computation requirement. Therefore the results of this work could be useful for the 513 

climate change mitigation purposes in this area. 514 
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Figure captions 739 

 740 

Figure 1: a) Region used for the precipitation study. b) Topographical features of the 741 

region of interest. 742 

 743 

Figure 2. Loading factors for the 10 leading variability modes of the DJF SLP reanalysis 744 

data for the period 1950–2010 and their corresponding PC series. 745 

 746 

Figure 3. Spatial correlation patterns between gridded DJF precipitation and the 10 747 

leading PCs from NCAR DJF SLP. Only statistically significant results at 95% 748 

confidence are colored, and the percentage of area covered by these patterns is also 749 

shown. 750 

 751 

Figure 4. Spatial distribution of the correlation coefficients between observed DJF 752 

precipitation values and simulated one by the SD model for each grid point during: a) 753 

calibration (1950-1993), and b) validation (1994-2010) periods. 754 

 755 

Figure 5. Spatial distribution of the percentage of RMSE between observed DJF 756 

precipitation values and simulated one by the SD model for each grid point during: a) 757 

calibration (1950-1993) and b) validation (1994-2010) periods. 758 

 759 

Figure 6. Spatial distribution of: a) simulated, and b) observed DJF precipitation (mm) 760 

during the validation period (1994-2010). c) Spatial distribution of the difference (%) 761 

between these two fields. 762 

 763 

Figure 7. Spatial distribution of the correlation coefficients between observed DJF 764 

precipitation and predicted one by the SD model for each grid point during: a) 1950-2010 765 

recalibration, and b) 1971-2000 periods. c) Difference in percentage the between the 766 

observed DJF precipitation and the SD modeled one for the period 1971-2000. 767 

 768 

Figure 8. Differences (%) between the SD precipitation from 20 GCMs and the observed 769 

DJF precipitation for the 1971-2000 period. The areas where the differences are 770 

significant at the 95% confidence level (according to the Wilcoxon-Mann-Whitney non-771 

parametric rank sum test) are marked by gray dots, and the numbers in brackets represent 772 

the percentages of these areas. 773 

 774 

Figure 9. As in Figure 8, but for direct precipitation outputs of the 20 GCMs. 775 



 776 

Figure 10. Changes (%) in projected (2071-2100) DJF precipitation compared to the 777 

present (1971-2000) SD precipitation for each GCM under the RCP2.6 scenario. The 778 

areas where the differences are significant at the 95% confidence level (according to the 779 

Wilcoxon-Mann-Whitney non-parametric rank sum test) are marked by gray dots, and 780 

the numbers in brackets represent the percentages of these areas. 781 

 782 

Figure 11. As in Figure 10, but for the RCP4.5 scenario. 783 

 784 

Figure 12. As in Figure 10, but for the RCP8.5 scenario. 785 

 786 

Figure 13. Percentage of 20 SD GCMs that predict a positive or negative change in 787 

projected (2071-2100) DJF precipitation respect to the present (1971-2000) for each grid 788 

point, under: a) RCP2.6, b) RCP4.5, and c) RCP8.5 scenarios. The positive or negative 789 

sign of the percentage corresponds to an increase or decrease, respectively, in the 790 

projected change, with a coherence value higher than 55%. 791 

 792 

Figure 14. Changes (%) in projected (2071-2100) DJF precipitation compared to the 793 

present (1971-2000) SD precipitation for the ensemble multi-model under the: a) RCP2.6, 794 

b) RCP4.5, and c) RCP8.5 scenarios. The areas where the differences are significant at 795 

the 95% confidence level (according to the Wilcoxon-Mann-Whitney non-parametric 796 

rank sum test) are marked by gray dots, and the numbers in brackets represent the 797 

percentages of these areas with positive (P), negative (N) and total (A) change. 798 
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Table caption 800 

 801 

Table 1. CMIP5 models used for the analysis of SD at both present climate (1971-2000), 802 

and future climate (2071-2100) under the RCP2.6, RCP4.5 and RCP8.5 scenarios. 803 
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ABSTRACT 25 

Climate-change projections for boreal winter precipitation in Tropical America has been 26 

addressed by statistical downscaling (SD) using the principal component regression with 27 

sea-level pressure (SLP) as the predictor variable. The SD model developed from the 28 

reanalysis of SLP and gridded precipitation GPCC data, has been applied to SLP outputs 29 

from 20 CGMS of CMIP5, both from the present climate (1971-2000) and for the future 30 

(2071-2100) under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The SD model shows a 31 

suitable performance over large regions, presenting a strong bias only in small areas 32 

characterized by very dry climate conditions or poor data coverage. The difference in 33 

percentage between the projected SD precipitation and the simulated SD precipitation for 34 

present climate, ranges from moderate to intense changes in rainfall (positive or negative, 35 

depending on the region and the SD GCM model considered), as the radiative forcing 36 

increases from the RCP2.6 to RCP8.5. The disparity in the GCMs outputs seems to be the 37 

major source of uncertainty in the projected changes, while the scenario considered 38 

appears less decisive. Mexico and eastern Brazil are the areas showing the most coherent 39 

decreases between SD GCMs, while northwestern and southeastern South America show 40 

consistently significant increases. This coherence is corroborated by the results of the 41 

ensemble mean which projects positive changes from 10ºN towards the south, with 42 

exceptions such as eastern Brazil, northern Chile and some smaller areas, such as the 43 

center of Colombia, while projected negative changes are the majority found in the 44 

northernmost part. 45 

 46 

Keywords: boreal winter precipitation; climate projections; Tropical America; statistical 47 

downscaling; CMIP5 GCMs. 48 
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1. INTRODUCTION 50 

Producing reliable estimates of changes in precipitation at local and regional level 51 

remains a major challenge in climate science, as it is a key aspect for planning adaptation 52 

and mitigation measures in order to reduce the negative impacts of the climate change in 53 

vulnerable regions (Giorgi et al. 2001; Christensen et al. 2007). The tropical American 54 

region, because of its meteorological and climatological characteristics, has received a 55 

special attention from the scientific community over recent decades. Unique 56 

environments, such as the Amazonia (the largest tropical rainforest on the planet), the 57 

Andes Mountains (with steep slopes), the desert of Atacama in Chile, the arid region of 58 

northeastern Brazil, the extreme west of Peru and Ecuador, the biodiversity of western 59 

Colombia and western Central America, the migration of the Intertropical Convergence 60 

Zone (ITCZ), the South American Monsoon System, among others, that interact in a 61 

complex superposition of physical processes at diverse spatio-temporal scales, determine 62 

the meteorological and climatological aspects of Tropical America, constituting a 63 

fundamental component of the global system. In turn, the main features of atmospheric 64 

circulation are associated with precipitation in the region, which directly and indirectly 65 

affect the economy, ecosystems, and society (Alexander et al. 2002; Barsugli and 66 

Sardeshmukh 2002). The Fifth Assessment Report of the Intergovernmental Panel on 67 

Climate Change (IPCC AR5 2013a, 2013b) suggests both increases and decreases in 68 

rainfall for Central and South America by 2100, depending on the region, although with 69 

high uncertainties due to high discrepancies between different General Circulation 70 

Models (GCMs) projections. According to Magrin et al. (2014), changes in agricultural 71 

production, with consequences for food supply, associated with climate change, are 72 

expected to show significant spatial variability in Central and South America (Marengo 73 

et al. 2010). The increase in agricultural production and intensive land use could lead to 74 

desertification, water pollution, erosion, and negative effects on biodiversity and health. 75 

For this reason, the study of climate change in this area constitutes a vital objective for 76 

the socio-economic development of the region. 77 

Dynamic (DD) and statistical (SD) downscaling methods (Schmidli et al., 2006; Zorita 78 

and von Storch 1999; von Storch et al. 2000) are often used to reduce the gap between 79 

the coarse resolution of GCMs and the information at higher spatial resolution (Grotch 80 

and MacCraken 1991; von Storch et al. 1993; Wilby and Wigley 1997; Xu 1999). While 81 

the DD methods use a high-resolution regional climate model nested in a GCM, the SD 82 

is performed by looking for empirical statistical relationships between large scale 83 

atmospheric predictors and regional scale variables (Wood et al. 2004; Yang and Wang 84 

2012), assuming that these will be maintained over time under future climate conditions. 85 

The SD presents the added benefit of low computational cost versus DD methods. There 86 

are uncertainties in the projections associated with both methodologies, such as the 87 

parameterizations (in the DD) or the predictors choice (in the SD) (Frost et al., 2011; Bae 88 

et al., 2011; Wilby and Wigley 2000). Little consensus exists on which predictors are 89 

more appropriate, although variables related to atmospheric circulation, such as level 90 

pressure (SLP) are widely used, due to their availability from both observational and 91 

GCM output data. One of the most frequently used approaches for developing SD models 92 



is the principal component regression (PCR), which is based on the principal component 93 

analysis (PCA) to reduce the dimensionality of the predictor data (Preisendorfer 1988; 94 

Jolliffe 2002; Wilks 2006). According to the use of principal components (PCs) as 95 

predictors, the SD model generated by PCR, which takes into account the interactions 96 

between predictands and observed predictors, is applied to results from the GCM outputs 97 

representing climate change projections (Wilks 2006; Li and Smith 2009; Eden and 98 

Widmann 2014). However, before the SD model can be applied to project changes in 99 

rainfall for the end of the century, an evaluation of the ability of the SD model to 100 

reproduce the present climate should be performed. In any case, the climate change 101 

estimations at the regional scale are affected by different uncertainties coming from the 102 

different GCMs, scenarios, and the downscaling method itself selected. 103 

The use of several GCMs and scenarios is important to reduce some of these uncertainties 104 

(Wilby and Harris 2006; Maurer 2007). Thus, one way to analyze the uncertainty is to 105 

work with a multimodel ensemble (Palmer et al. 2005), which provides a probability 106 

distribution of possible future values (Harris et al. 2010). Some studies have demonstrated 107 

that simulation errors and uncertainties using individual GCMs could be reduced by the 108 

use of the ensemble mean of the members for multi-model projections. This is true for 109 

studies concerning the verification of seasonal forecasts (Palmer et al. 2004; Hagedorn et 110 

al. 2005), present-day climate from long-term simulations (Lambert and Boer 2001) or 111 

climate change projections (Nohara et al. 2006). So, the ensemble average usually 112 

reproduces the observations better than do individual models (Wallach et al. 2016).  113 

In the current literature few works attempt projections of climate change in Tropical 114 

America, most research being more focused on particular regions such as Brazil, 115 

Colombia or southern South America (Ramírez et al. 2006; Solman and Nuñez 1999; 116 

Mendes and Marengo 2010; Teichmann et al. 2013, Palomino-Lemus et al. 2015). Thus, 117 

there is a clear need for the study of climate change in Tropical America. 118 

The present work takes into account all the previous considerations and has a primary aim 119 

to obtain climate change projections for the boreal winter precipitation of Tropical 120 

America, during the period 2071-2100. For this, the precipitation has been statistically 121 

downscaled, using as predictor the SLP from the tropical Pacific through the PCR 122 

technique. Once the skill of the SD model developed was demonstrated for simulating the 123 

rainfall of the region under the present climate, this was applied to the SLP simulations 124 

of 20 GCMs selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5, 125 

Taylor et al. 2012), for three representative concentration pathways, RCP2.6, RCP4.5, 126 

and RCP8.5. The study is structured as follows. Section 2 describes the datasets used, 127 

Section 3 explains the methodology, Section 4 displays the results, and Section 5 presents 128 

the concluding remarks.  129 

2. DATA 130 

For this study, the observational precipitation dataset from the Global Precipitation 131 

Climatology Centre, GPCC version 6.0 (Schneider et al. 2014) was used. The boreal 132 

winter precipitation, composed by the averaged December, January, and February (DJF) 133 

rainfall over the 61-yr period, from 1950 to 2010, was generated from GPCC data. The 134 



time series of winter rainfall corresponding to the grid points of the study region 135 

[30°N30°S, 120ºW30ºW] (Figure 1), with a spatial resolution of 0.5º×0.5º, were used 136 

as the predictand in the process of building a SD model, using principal component 137 

regression (PCR) method, to simulate the boreal winter precipitation for the period 1950-138 

2010. 139 

As a predictor variable, the mean monthly sea level pressure (SLP) data available from 140 

the National Center for Environmental Prediction-National Center for Atmospheric 141 

Research (NCEP-NCAR reanalysis project), which has a spatial grid resolution of 142 

2.5°×2.5° (Kalnay et al. 1996), was used, covering a more extensive area [30ºS30ºN, 143 

180ºW30ºW] for the same period 1950-2010. 144 

In addition, SLP outputs from 20 GCMs, taken from the CMIP5 (Taylor et al. 2012), were 145 

used. These models were chosen for their accurate reproduction of the SLP variability 146 

modes (Palomino-Lemus et al. 2015). The model data include simulations with historical 147 

atmospheric concentrations and future projections for the representative concentration 148 

pathways RCP2.6, RCP4.5, and RCP8.5 (Moss et al. 2010; Taylor et al. 2012). The 149 

historical experiments cover the period from 1850 to 2005. In the present study, the period 150 

1971-2000 was used as representative of present climate, while, for the future climate, 151 

the period 2071-2100 was considered. Table 1 shows these 20 GCMs, labeled from (a) to 152 

(t) for their identification, and their principal features. In all the cases, the run1 of the 153 

simulations for historical climate was used. 154 

3. METHODOLOGY 155 

Statistical downscaling is a process consisting of a double step. First, a search was made 156 

of relationships between the local climate variables and the large-scale predictors (winter 157 

precipitation and SLP, respectively, in our case). Second, the relationships found were 158 

applied to the GCMs outputs to develop a SD model.  159 

A key point to take into account in this process is the multicollinearity between data 160 

subset, which could be a serious problem when a statistical regression model has a great 161 

number of input data, because the number of estimated regression coefficients can be very 162 

large, resulting in misleading estimates of the regression equation (Draper and Smith 163 

1981; Jolliffe 2002). To address the problems associated with multicollinearity, we used 164 

biased regression estimators, such as the principal components regression (PCR) method, 165 

as frequently suggested. A detailed description of this methodology can be seen in 166 

Palomino-Lemus et al. (2015). 167 

In this work the spatio-temporal variability of SLP reanalysis data from NCEP was 168 

analyzed by PCA using the covariance matrix (Preisendorfer 1988). Empirical orthogonal 169 

functions (EOFs) and principal components (PCs) that account for a high percentage of 170 

explained SLP variance, presenting significant correlations with the winter precipitation 171 

in the study area, were selected. For an assessment of the robust correlations between the 172 

main leading SLP PCs and DJF precipitation, the non-parametric bootstrap technique 173 

(Stine 1985; Li and Smith 2009) was used, identifying significant correlations at the 95% 174 

confidence level. When the main PCs of SLP were selected, the PCR method was applied 175 



to model the winter precipitation following the scheme proposed by Li and Smith (2009). 176 

The periods 1950-1993 and 1994-2010 were used for calibration and validation, 177 

respectively. The Bootstrap with replacement was applied to provide estimates of the 178 

statistical errors. Afterwards, the statistical model built for each grid point was 179 

recalibrated using the total observational period (1950-2010), allowing us to consider the 180 

most recent variability of the fields in the regression model, and finally, to generate the 181 

definitive SD model. 182 

The skill of the different GCMs to simulate the DJF rainfall in the Tropical America for 183 

present climate (1971-2000) was studied by computing the differences between the 184 

simulated and observed precipitation values. Lastly, to project DJF precipitation in the 185 

area for the period 2071-2100, the SD model, was applied to the SLP outputs from 20 186 

GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The non-parametric rank sum 187 

test of Wilcoxon-Mann-Whitney (von Storch and Zwiers 2013) was applied to analyze 188 

the significance of the changes projected. 189 

Finally, to take the advantage of reducing simulation errors and uncertainties (Lambert 190 

and Boer 2001; Palmer et al. 2004; Hagedorn et al. 2005; Nohara et al. 2006), we 191 

calculated the projected precipitation changes under the three scenarios using the 192 

arithmetic ensemble mean of the 20 SD GCM outputs. 193 

4. RESULTS 194 

4.1 Spatio-temporal SLP modes and their relationship with precipitation 195 

A PCA applied to the DJF SLP reanalysis data in the period 1950-2010 identifies 10 196 

leading modes of variability that explain 88.8% of the total variance. Figure 2 shows the 197 

spatial patterns (EOFs) of these modes and their corresponding PC series. 198 

The first mode of variability (EOF1) explains 31.5% of the total variance of the SLP data, 199 

and is characterized by the presence of a dominant pattern of positive correlations that 200 

represents the variability of almost the entire region of tropical Pacific Ocean included in 201 

this study, with a strong positive correlation center located around the 150ºW-10ºS, 202 

stretching to the northern tropical Atlantic. The second mode (EOF2), which explains 203 

16.9% of the SLP variance, exhibits two well-defined action centers, one with positive 204 

correlations located in the northwestern edge of the study area, and the other with negative 205 

correlations extending from the Gulf of Mexico, covering all Central America to 206 

approximately 150ºW. EOF3 (12.3% of variance), shows a spatial pattern with a strong 207 

core of positive correlations in the northeast, centered around 15°N-40ºW, which spreads, 208 

though weakened, throughout northern South America, to northern Chile. Additionally a 209 

gradient of negative correlations, which is distributed from the south end to the 10ºS, 210 

between 170ºW and 90ºW, also appears. EOF4 (8.8% of variance) shows two negative 211 

centers located in the west Pacific and South America, respectively, along with a weaker 212 

positive center covering the Gulf of Mexico, the Florida peninsula and most of the 213 

Caribbean islands. EOF5 (8.8% of variance) to EOF10 jointly account for 19.3% of the 214 

SLP variance and show different action centers over the study region with weaker factor 215 

loadings. 216 



To explore the physical meaning of these variability modes, we analyzed the correlations 217 

between their corresponding PC series (also shown in Figure 2) and several 218 

teleconnection indices. The results show that the first PC series is related to the ENSO 219 

and SOI indices, the highest correlation coefficient being for bivariate ENSO index 220 

(BEST, Smith and Sardeshmukh 2000) (r = -0.71), followed by El Niño4 (r = -0.68) and 221 

El Niño3.4 (r = -0.65) indices, all significant at 95% confidence level. PC2 is strongly 222 

correlated with the Western Pacific (WP) index (r = 0.80), and with El Niño1+2 index (r 223 

= 0.53). PC3 is related to the Atlantic SST, showing the highest negative correlations with 224 

the Atlantic Meridional Mode (AMM, Chiang and Vimont 2004) (r = -0.63), followed by 225 

the Atlantic Tripole SST EOF (ATLTRI, Deser and Timlin 1997) (r = -0.54) and the 226 

Tropical Northern Atlantic (TNA, Enfield et al. 1999) (r = -0.52) indices. The PC4 shows 227 

significant correlation with the Pacific SST, being the highest coefficient with the 228 

Western Hemisphere Warm Pool (WHWP, Wang and Enfield 2001) (r = -0.53) index. 229 

For the analysis of the relationships between the SLP and precipitation, Figure 3 shows 230 

the spatial distribution of the correlation coefficients between DJF precipitation data and 231 

each time PC series associated with the 10 main modes of variability of DJF SLP. Only 232 

statistically significant results at 95% confidence are colored. Additionally, the 233 

percentage of area covered by these significant correlations is also shown. The correlation 234 

map for the PC1 (Figure 3a) clearly presents significant correlations in an extended area 235 

of the region, with significant correlations covering about 40.9% of the region, being the 236 

SLP PC which correlates most extensively with the precipitation of the study region. The 237 

correlation map for this PC1 is dominated by a broad band of positive correlations that 238 

starts from the southwest and northern Brazil and extends to northern Nicaragua. In this 239 

area, two main centers have the highest values of positive correlation (above 0.6), located 240 

northwest of the Andes in Colombia, and the other in northern Brazil, reaching the east 241 

of Venezuela, and entirely covering Guiana, Surinam, and French Guiana. These positive 242 

correlations show the influence of the first DJF SLP mode of variability on DJF 243 

precipitation in these regions. In addition, significant negative correlations also appear, 244 

with values of up to -0.5, especially in Mexico, and slightly weaker in southeastern Brazil, 245 

in Paraguay, and in northeastern Argentina. Since PC1 is related mainly to the ENSO 246 

phenomenon, this result indicates a clear association between ENSO and DJF 247 

precipitation variability in the area of Tropical America.  248 

The next DJF SLP mode of variability that presents the second highest percentage 249 

(31.1%) of continental area with significant correlations with precipitation, is associated 250 

with the SLP PC3. The spatial correlation map (Figure 3c) shows a pattern similar to that 251 

of the PC1 (Figure 3a), with certain differences, but with opposite sign correlations. It has 252 

negative correlations in northern South America, stretching from Colombia to French 253 

Guiana, while positive correlations are located in northern Mexico, the Yucatan Peninsula 254 

and central Brazil. PC4 follows the third mode in percentage of area with significant 255 

correlations (Figure 3d), with 24.6%, and is characterized by the presence of lower and 256 

more localized correlation values. Regionally, it presents significant positive correlations 257 

with precipitation in Venezuela, Guiana, Surinam, and French Guiana, and negative in 258 

northeastern Argentina and southern end of Brazil. 259 



In addition, the correlation between DJF SLP PC2 and DJF precipitation (Figure 3b), 260 

presents, generally low values, showing significant positive correlations only in the 261 

Florida peninsula, some Caribbean islands and western Ecuador; and negative ones in 262 

Guiana, Surinam and at the mouth of the Amazon River in northern Brazil. These areas 263 

represent only 16% of total area. 264 

Moreover, the rest of DJF SLP PCs (PC5, PC8, PC7, PC10, PC9, and PC6) have lower 265 

percentages of areas with significant correlations (14.7%, 14.7%, 12.4%, 11.5%, 10.8%, 266 

and 8.9%, respectively). Note the PC5 correlations (Figure 3e), for which there are two 267 

centers of significant correlations with opposite signs located to the east of Brazil, and in 268 

southern Brazil, and in southern Paraguay, as well as PC8 (Figure 3h), for which a large 269 

center to the east of Brazil with significant negative correlations is shown. The rest of 270 

PCs show weaker correlations with precipitation, identifying localized regions scattered 271 

over the area of study. 272 

4.2 Statistical downscaling model 273 

After the analysis of the relationships between SLP and precipitation, the aim was to 274 

develop a robust statistical model that would provide the downscaled precipitation for 275 

each grid point from the large-scale SLP field. The PCR method was used to build the 276 

statistical downscaling (SD) model for DJF rainfall, using the PC series corresponding to 277 

the first 10 modes of variability of DJF SLP NCEP reanalysis data as predictor variables, 278 

and the observed gridded DJF precipitation as predictands. As mentioned above, the 279 

training period 1950-1993 was used as calibration period, and the period 1994-2010 to 280 

validate the model.  281 

Figure 4 shows the spatial distribution of the correlation coefficients between observed 282 

DJF precipitation data and the generated with the SD model for each grid point during 283 

the calibration (1950-1993) and validation (1994-2010) periods (Figure 4a and 4b, 284 

respectively). The highest correlations (r > 0.8) for the validation period are found in 285 

southern Central America, in the northwestern regions of Colombia and Ecuador, and in 286 

the northwestern end of Peru. There are also high correlations extending from eastern 287 

Venezuela to northern Brazil, covering Guiana, Surinam, and French Guiana. 288 

Additionally, strong correlation values appear in many scattered areas, such as Florida 289 

and south of the study area. On the other hand, comparing the calibration period with the 290 

validation one, lower correlation coefficients are found for the latter area, mainly from 291 

southern Mexico (through the Yucatan Peninsula) to Honduras. Lower values are also 292 

appreciated southeast of Colombia, northern Venezuela and a vast area over the center of 293 

South America. 294 

The relative root mean square error (RMSE) was used to quantify the differences between 295 

observed and simulated precipitation as well as to assess the stability of the SD model. 296 

The spatial distribution of the percentage of RMSE during the calibration and validation 297 

periods is shown in Figure 5a and 5b, respectively, reflecting great similarity between the 298 

two periods. Some regions have relatively large errors, such as Chile, coastal Peru, 299 

southwestern Bolivia, and Mexico, all registering low precipitation values. Generally, 300 



errors are lower on the southern half of the study area, while in the north the opposite 301 

happens. 302 

For a direct comparison between simulated and observed precipitation values at each grid 303 

point, Figure 6 depicts the spatial distribution of the observed (Figure 6a) and simulated 304 

DJF precipitation (Figure 6b) for the validation period (1994-2010), as well as the spatial 305 

distribution of the percentage differences between the two fields (Figure 6c). This 306 

comparison shows that the SD model provides a good representation of the average DJF 307 

rainfall field, with very small differences between observed and simulated values. 308 

Moreover, the maximum values of rainfall in the region, over relatively small areas in 309 

western Colombia, southeastern Peru, and central Bolivia, are properly reproduced. The 310 

major discrepancies are associated with very dry areas or without information, such as 311 

the western edge of South America or the Pacific coast of Mexico, where both 312 

underestimations and overestimations of precipitation are appreciated.  313 

4.3 Simulated DJF precipitation for present climate 314 

After assessing the ability of the SD model, we recalibrated it using the complete period 315 

1950-2010. Figure 7 presents the spatial distribution of the correlation coefficients 316 

between observed DJF precipitation data and the SD modeled values during the period of 317 

recalibration (Figure 7a), as well as the ones estimated from the SD model for the period 318 

1971-2000 (Figure 7b), which will be used as reference period to characterize 319 

precipitation in the present climate. For both the calibration (1950-1993, Figure 4a) and 320 

recalibration (1950-2010, Figure 7a) periods, the SD model shows the same spatial 321 

correlation pattern. For the period 1971-2000, correlations for certain relatively large 322 

areas prove poorer, while in more limited and scattered areas the correlation improves, 323 

but remaining essentially the same spatial configuration of the correlation as for the other 324 

periods. Figure 7c shows the percentage differences between the observed DJF 325 

precipitation and the results from SD modeled one using the SLP, for the period 1971-326 

2000. Only a small very dry area over the northwest of Chile presents remarkable bias. 327 

After recalibrating the SD model for the complete period 1950-2010, and assess its ability 328 

to reproduce the precipitation in each grid point, this was applied to SLP data derived 329 

from 20 GCMs, selected from CMIP5 (Table 1) for both present climate (1971-2000) and 330 

future climate (2071-2100) under the RCP2.6, RCP4.5, and RCP8.5 scenarios. 331 

Figure 8 shows the percentage of the differences between the SD precipitation from 20 332 

GCMs and the observed DJF precipitation for 1971-2000 period. Additionally, the 333 

statistical significance at 95% confidence level of these differences was estimated using 334 

the Wilcoxon-Mann-Whitney bilateral rank sum test. The results show that, generally, 335 

there are no statistically significant differences for a large number of models, indicating 336 

that the SD model applied to the SLP outputs of these GCMs has a high ability to 337 

faithfully reproduce the precipitation field. However, the simulations performed directly 338 

by using non-downscaled outputs of GCMs (Figure 9) strongly distort the precipitation 339 

field, since they are able to reproduce neither the values nor the spatial distribution of 340 

precipitation. Note that the area with significant differences (Figure 8) is on average 341 

(considering the SD of all models) only 16.79% for the period 1971-2000. Therefore, the 342 



SD applied to the 20 GCMs accurately reproduces the highest and lowest values of the 343 

rainfall in most of the study area. Furthermore, these SD precipitation values (not shown) 344 

are very close to those observed, showing spatial patterns very similar to the observed 345 

ones. 346 

The results of Figure 8 also reveal that, although the SD model successfully reproduces 347 

the most important spatial patterns of DJF precipitation in the study area, significant 348 

deficiencies are evident for simulations made with outputs from MIROC-ESM (p) and 349 

GISS-E2-R (k), followed by GFDL-CM3 (j), with a percentage of the area showing 350 

significant differences higher than 20%. In particular, for GISS-E2-R model (Figure 8k), 351 

SD overestimates by more than 60% the observed rainfall in areas located above 20°N, 352 

covering Mexico. Meanwhile, for the MIROC-ESM (Figure 8p), differences in 353 

percentage strongly underestimate precipitation in Mexico (< -90%). 354 

4.4 Projected changes in DJF precipitation 355 

Figures 10, 11, and 12 show the percentage of changes in projected (2071-2100) DJF 356 

rainfall compared to the present (1971-2000) SD precipitation for each GCM under the 357 

RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The statistical significance of the 358 

projected precipitation changes, as previously, has been estimated by using the bilateral 359 

rank sum test of Wilcoxon-Mann-Whitney. As can be seen, for the 20 projected 360 

predictions in general, the RCP4.5 and RCP8.5 scenarios show large areas with 361 

significant changes. For the RCP2.6 scenario (Figure 10), projected results reflect a 362 

predominance of very moderate decreases in rainfall, these being significant in some 363 

models. The extent of the area affected by significant changes varies from 2.56% for the 364 

SD CSIRO-Mk3.6 (Fig. 10g) to 57.91% for SD HadGEM2-ES (Fig. 10m). The area with 365 

most consistent changes between the SD GCMs is eastern Brazil (around 10°S, 40ºW), 366 

particularly intense (declines of more than 80%) in SD CanESM2 (Fig. 10c) and SD 367 

GFDL-CM3 (Fig. 10j) models. Some models also show a sharp decline in the Chilean 368 

Andes. Northern Mexico also presents significant declines from some SD models (around 369 

30% or higher in some areas), while the southwestern Mexican coastal area shows 370 

increases (over 60%) for several SD GCMs. 371 

As radiative forcing increases, the extent of the area with significant changes in 372 

precipitation also increases (Fig. 11 and 12). For example, for RCP8.5 (Fig. 12) the 373 

minimum extension with significant changes exceeds 40% (SD MPI-ESM-LR model, 374 

Fig. 12q, and SD MPI-ESM-MR model, Fig. 12r), reaching 80% is some case (SD 375 

NorESM1-ME model, Fig. 12t). This latter SD model also presents a greater surface area 376 

with significant changes under the RCP4.5 scenario (Fig. 11t). For this RCP4.5 scenario 377 

(Fig. 11), some models have fewer areas with significant changes than for the RCP2.6 378 

one (SD IPSL-CM5A-MR, Fig. 11n; SD MPI-ESM-MR, Fig. 11r; and especially the SD 379 

BCC-ESM1.1, Fig. 11b). In addition, there are more changes towards a decline in rainfall, 380 

which become very marked again in eastern Brazil (SD CanESM2, Fig. 11c, and SD 381 

GFDL-CM3, Fig. 11j), and Mexico (SD MIROC5, Fig. 11o, and SD NorESM1-ME, Fig. 382 

11t). However, the changes shown are less consistent in some areas, such as northern 383 

South America, where some models show increases (SD CNRM-CM5, Fig. 11f, and SD 384 



GISS-E2-R, Fig 11k) and other reductions (SD FGOALS-g2, Fig 11h, and SD 385 

HadGEM2-AO, Fig. 11l), or even opposing trends in relatively nearby areas ( SD MRI-386 

CGCM3, Fig. 11s). 387 

For RCP8.5 (Fig. 12), the SD of 13 GCMs show strongly significant declines (above 388 

30%) in most of Mexico, especially in the north, reaching over -90% in some cases (SD 389 

MIROC5, Fig. 12o, and SD NorESM1-ME, Fig. 12t). Eastward of Brazil (10ºS, 40ºW), 390 

similar results appear for 13 GCMs, showing significant decreases. In the northwest of 391 

South America (west of Colombia) simulations (for 12 GCMs), showing significant 392 

increases in precipitation predominate, in the northernmost part reaching an 80% increase 393 

(SD HadGEM2-ES, Fig. 12m). 394 

To identify how robust the projected precipitation changes are, we have studied the 395 

coherence between the results of the 20 SD GCMs by calculating the percentage of them 396 

that agree in the sign of projected precipitation change at each grid point of the study area. 397 

Only coherence values higher than 55% are shown. The Figure 13 depicts these results, 398 

showing that the projected precipitation changes have great coherence between the 20 SD 399 

models in most of the area, with positive or negative changes depending on the region 400 

and the scenario considered. The areas that are consistently affected by increased or 401 

decreased rainfall are spread as the radiative forcing increases, except for the region 402 

between Venezuela and Guiana, where there is a light loss of coherence. In general, there 403 

are wide spatial areas with coherence higher that 80%. Note for example the border region 404 

between Colombia, Ecuador, and Peru, the border between Brazil and Paraguay and the 405 

southern tip of Brazil, with coherent positive projected changes. Meanwhile, the diagonal 406 

band between the northwestern Brazil to the east coast of Brazil located around 20°S-407 

40ºW, the border between Bolivia, Chile, and Argentina, and an extended area covering 408 

Mexico and Central America, present coherent negative projected changes. The high 409 

coherence (higher than 90% in some grid points) is remarkable between the SD GCMs in 410 

the narrow area of Central America, where almost all the models are able to discriminate 411 

between positive changes in the Pacific coast and negative ones in the Atlantic coast.  412 

The coherence found between the sign of the projected precipitation changes for 20 SD 413 

GCMs provides the base to generate multimodel ensemble projections. The projected 414 

precipitation changes under the three scenarios considered were calculated from the 415 

arithmetic ensemble mean of the 20 SD GCM outputs. Figure 14 shows the percentage of 416 

changes in projected (2071-2100) DJF rainfall compared to the present (1971-2000) SD 417 

precipitation for the ensemble multi-model mean under the RCP2.6, RCP4.5 and RCP8.5 418 

scenarios, respectively. The statistical significance of the projected precipitation changes, 419 

as before, was estimated by the Wilcoxon-Mann-Whitney test. The results show that the 420 

projected changes were significant in most of the study area, covering from 66.27% under 421 

the RCP2.6 scenario, up to 83.95% under the RCP8.5. Projected changes are mostly 422 

moderate, covering extended regions with coherent sign, even under the scenario of 423 

highest radiative forcing. For all scenarios, areas with increased precipitation predominate 424 

over those where a decline is projected, although the prevalence increases with the 425 

radiative forcing considered, becoming 48.38% vs. 35.57% under the RCP8.5 scenario. 426 

Note the sharp increase projected in some parts of the Pacific coast, especially in southern 427 



Mexico, Peru, and Chile, as well as the sharp decline in parts of Colombia, Venezuela, 428 

on the border between Brazil and Guiana, and areas of Chile. 429 

5. CONCLUDING REMARKS AND DISCUSSION 430 

The main goal of this work was to get climate change projections for boreal winter 431 

precipitation in Tropical America. For this, we developed a precipitation SD model for 432 

each grid point of the area by PCR technique using as predictors the SLP PCs series of 433 

NCEP data, and the observed gridded DJF precipitation as predictands. These predictors 434 

were rigorously selected according to the significance of their correlations with the 435 

observed precipitation field. Climate variability modes related to ENSO phenomenon can 436 

satisfactorily describe the precipitation in many areas of South America (Barros et al. 437 

2000; Grimm et al. 2002; Tedeschi et al. 2013; Córdoba-Machado et al. 2015a, 2015b). 438 

For example, for Colombia precipitation these latter authors showed that the variability 439 

in the tropical Pacific SST, including El Niño and El Niño Modoki, is sufficient to 440 

reproduce and predict seasonal rainfall. El Niño phenomenon leads the variability of 441 

precipitation in much of the study region through its influence on the circulation of 442 

Walker, whose variations are reflected in the SLP field, this mode being particularly 443 

associated with the PC1 taken from the PCA applied to the tropical Pacific SLP. In 444 

addition, other patterns associated with the variability of the SLP on the tropical American 445 

continent and over the tropical Atlantic can also help in describing the behavior of 446 

precipitation in various areas of the tropical America, such as the Panama High or the 447 

northeastern Brazil Low pressure system. Moreover, some of the SLP PCs series analyzed 448 

in this study reflect the influence of certain extra-tropical Atlantic patterns, such as the 449 

Atlantic Meridional Mode, the Tripolar Atlantic SST or the Tropical Northern Atlantic 450 

pattern, whose contribution to the SD model could also be significant. So, in accordance 451 

with our results, other papers have shown that during the boreal winter (DJF), most of the 452 

moisture arriving to Central and South America comes from the Atlantic (Hoyos et al, 453 

2017). In this sense, the ability of the SD model to predict the precipitation comes from 454 

the inclusion of these climate variability modes through their corresponding PCs. 455 

In general, the SD model shows proper performance over large areas with small domains 456 

with major bias, particularly for the validation period (1994-2010). This may be due to 457 

the unreliable coverage of the GPCC data in certain areas (e.g. forest areas of the Amazon 458 

and Orinoco and Andes) in recent years, or regions characterized by very dry climate 459 

conditions (e.g. western edge of South America). These results are consistent with those 460 

reported by Eden et al. (2012) and Eden and Widmann (2014), who found bias greater 461 

than 10% in most of the tropics and in areas where the quality of the observation network 462 

is poor. However, SD model can properly reproduce the maximum values of rainfall in 463 

the region in western Colombia, southeastern Peru, or central Bolivia.  464 

For present climate, while the simulations performed directly using GCM outputs are 465 

unable to reproduce the distribution of the precipitation field, there are no statistically 466 

significant differences between the observed DJF precipitation and the simulated one 467 

using the SD model for many GCMs. We find that, on average, the areas with significant 468 

differences represent only 16.79% of the complete region. Thus, the SD model applied to 469 



the selected GCMs can accurately reproduce the DJF precipitation field throughout most 470 

of the study area. 471 

The high-resolution climate simulations projected for the end of this century have been 472 

evaluated using the difference in percentage between the projected SD precipitation for 473 

the period 2071-2100 and the simulated SD precipitation for the period 1971-2000. 474 

Results show positive or negative differences depending on the region and the SD GCM 475 

model considered. In general, these changes in rainfall range from very moderate to 476 

intense as the radiative forcing increases from the RCP2.6 to RCP8.5. Major sources of 477 

uncertainty in the projected precipitation changes for the end of the century seem to come 478 

from the disparity in the GCMs outputs, being less sensitive to the scenario considered. 479 

The results of the coherence between models shows that three northwest-to-southeast 480 

bands can be differentiated throughout the region, alternating projected changes in 481 

increased and decreased precipitation. Central and southeastern Brazil, Mexico and 482 

Guatemala are the areas showing the most consistent decrease changes between SD 483 

GCMs, while for the northwest and southeast of South America simulations showing 484 

significant increases predominate. 485 

The mean ensemble shows regions having projected significant increases and significant 486 

decreases. While the percentage of area presenting negative significant changes is very 487 

similar for the three RCPs (from 32.06% to 35.74%), the percentage relative to significant 488 

positive changes is higher as the radiative forcing intensifies (ranging from 34.21% for 489 

the RCP2.6 to 48.38% for the RCP8.5). Basically, positive projected changes are found 490 

from 10ºN latitude to the south, with exceptions such as eastern Brazil, northern Chile 491 

and smaller areas such as the center of Colombia, while negative projected changes 492 

appear mostly in the northernmost part. The coherence of our results essentially agrees 493 

with the findings of Sánchez et al. (2015). Most of the simulations in this paper and in the 494 

present work show a precipitation decrease in the east and some interior parts of Brazil, 495 

as well as increases in the coast of Ecuador and Bolivia in addition to northern Argentina, 496 

Paraguay and southern Brazil, although Sánchez et al. (2015) used different GCMs, 497 

dynamical downscaling, and the A1B scenario. Chou et al. (2014), in their study of 498 

assessing the climate change over South America using dynamical downscaling, 499 

projected a reduction of DJF precipitation in a large area that extends from northwestern 500 

to southeastern South America, also especially important towards the end of the century 501 

and for the RCP8.5 in southeastern Brazil. However, comparing the results found in the 502 

present work with those reported by other authors is problematic because of the 503 

differences between regions, periods, seasons, GCMs, and scenarios analyzed. 504 

Few studies have used the statistical downscaling over Tropical America, being more 505 

focused on the climate of some regions of Brazil or in the southern part of South America 506 

(Johnson et al. 2014; Valverde Ramírez et al. 2006; Solman and Nuñez 1999; Mendes 507 

and Marengo 2010). Hence the present study is novel for being one of the few papers 508 

devoted to obtain future rainfall projections at the regional scale for the Tropical America 509 

using CMIP5 models. Additionally, the statistical downscaling method developed in this 510 

work accurately reproduces the precipitation at the local scale for the study region, being, 511 

therefore, a useful technique for climate change studies, with the advantage of minimal 512 



computation requirement. Therefore the results of this work could be useful for the 513 

climate change mitigation purposes in this area. 514 
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Figure captions 739 

 740 

Figure 1: a) Region used for the precipitation study. b) Topographical features of the 741 

region of interest. 742 

 743 

Figure 2. Loading factors for the 10 leading variability modes of the DJF SLP reanalysis 744 

data for the period 1950–2010 and their corresponding PC series. 745 

 746 

Figure 3. Spatial correlation patterns between gridded DJF precipitation and the 10 747 

leading PCs from NCAR DJF SLP. Only statistically significant results at 95% 748 

confidence are colored, and the percentage of area covered by these patterns is also 749 

shown. 750 

 751 

Figure 4. Spatial distribution of the correlation coefficients between observed DJF 752 

precipitation values and simulated one by the SD model for each grid point during: a) 753 

calibration (1950-1993), and b) validation (1994-2010) periods. 754 

 755 

Figure 5. Spatial distribution of the percentage of RMSE between observed DJF 756 

precipitation values and simulated one by the SD model for each grid point during: a) 757 

calibration (1950-1993) and b) validation (1994-2010) periods. 758 

 759 

Figure 6. Spatial distribution of: a) simulated, and b) observed DJF precipitation (mm) 760 

during the validation period (1994-2010). c) Spatial distribution of the difference (%) 761 

between these two fields. 762 

 763 

Figure 7. Spatial distribution of the correlation coefficients between observed DJF 764 

precipitation and predicted one by the SD model for each grid point during: a) 1950-2010 765 

recalibration, and b) 1971-2000 periods. c) Difference in percentage the between the 766 

observed DJF precipitation and the SD modeled one for the period 1971-2000. 767 

 768 

Figure 8. Differences (%) between the SD precipitation from 20 GCMs and the observed 769 

DJF precipitation for the 1971-2000 period. The areas where the differences are 770 

significant at the 95% confidence level (according to the Wilcoxon-Mann-Whitney non-771 

parametric rank sum test) are marked by gray dots, and the numbers in brackets represent 772 

the percentages of these areas. 773 

 774 

Figure 9. As in Figure 8, but for direct precipitation outputs of the 20 GCMs. 775 



 776 

Figure 10. Changes (%) in projected (2071-2100) DJF precipitation compared to the 777 

present (1971-2000) SD precipitation for each GCM under the RCP2.6 scenario. The 778 

areas where the differences are significant at the 95% confidence level (according to the 779 

Wilcoxon-Mann-Whitney non-parametric rank sum test) are marked by gray dots, and 780 

the numbers in brackets represent the percentages of these areas. 781 

 782 

Figure 11. As in Figure 10, but for the RCP4.5 scenario. 783 

 784 

Figure 12. As in Figure 10, but for the RCP8.5 scenario. 785 

 786 

Figure 13. Percentage of 20 SD GCMs that predict a positive or negative change in 787 

projected (2071-2100) DJF precipitation respect to the present (1971-2000) for each grid 788 

point, under: a) RCP2.6, b) RCP4.5, and c) RCP8.5 scenarios. The positive or negative 789 

sign of the percentage corresponds to an increase or decrease, respectively, in the 790 

projected change, with a coherence value higher than 55%. 791 

 792 

Figure 14. Changes (%) in projected (2071-2100) DJF precipitation compared to the 793 

present (1971-2000) SD precipitation for the ensemble multi-model under the: a) RCP2.6, 794 

b) RCP4.5, and c) RCP8.5 scenarios. The areas where the differences are significant at 795 

the 95% confidence level (according to the Wilcoxon-Mann-Whitney non-parametric 796 

rank sum test) are marked by gray dots, and the numbers in brackets represent the 797 

percentages of these areas with positive (P), negative (N) and total (A) change. 798 
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Table 1. CMIP5 models used for the analysis of SD at both present climate (1971-2000), 802 

and future climate (2071-2100) under the RCP2.6, RCP4.5 and RCP8.5 scenarios. 803 
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Table 1. CMIP5 models used for the analysis of SD at both present climate (1971-2000), and future climate 

(2071-2100) under the RCP2.6, RCP4.5 and RCP8.5 scenarios. 

 

Label GCM Centre Label GCM Centre 

a 
BCC-

CSM1.1(m) Beijing Climate Center, 

China Meteorological 

Administration 

(BCC/China) 

k GISS-E2-R 
NASA Goddard Institute for 

Space Studies (NASA 

GISS/USA) 

b BCC-CSM1.1 l 
HadGEM2-

AO 

National Institute of 

Meteorological Research 

(NIMR/South Korea) 

c CanESM2 
Canadian Centre for 

Climate Modeling and 

Analysis (CCCma/Canada) 

m 
HadGEM2-

ES 

Met Office Hadley 

Centre(MOHC/UK) 

d CCSM4 
National Center for 

Atmospheric Research 

(NCAR/USA) 

n 
IPSL-

CM5A-MR 

Institute Pierre-Simon Laplace 

(IPSL/France) 

e CESM1(CAM5) 
National Center for 

Atmospheric Research 

(NSF-DOE NCAR/USA) 

o MIROC5 

National Institute for 

Environmental Studies, The 

university of Tokyo 

(MIROC/Japan) 

f CNRM-CM5 

Centre National de 

Recherches 

Meteorologiques / Centre 

Europeen de Recherche et 

Formation Avancees en 

Calcul Scientifique 

(CNRM/France) 

p 
MIROC-

ESM 

Japan Agency for Marine-Earth 

Science and Technology 

(JAMSTEC), The University of 

Tokyo Atmosphere Ocean 

Research Institute (AORI) and 

National Institute for 

Environmental Studies (NIES) 

g CSIRO-Mk3.6 

Communication Scientific 

and Industrial Research 

Organization 

(CSIRO/Australia) 

q 
MPI-ESM-

LR 

Max Planck Institute for 

Meteorology (MPI-M/Germany) 

h FGOALS-g2 

LASG, Institute of 

Atmospheric Physics, 

Chinese Academy of 

Sciences; and CESS, 

Tsinghua University 

r 
MPI-ESM-

MR 

i FIO-ESM 
The First Institute of 

Oceanography, SOA, 

China 

s 
MRI-

CGCM3 

Meteorological Research 

Institute (MRI/Japan) 

j GFDL-CM3 
NOAA Geophysical Fluid 

Dynamics Laboratory 

(GFDL/USA) 

t 
NorESM1-

ME 

Norwegian Climate Centre 

(NCC/Norway) 
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