
Sustainable Energy, Grids and Networks 34 (2023) 101066

a

A
b

c

b
c
t
c
l
t
t
a
b
p
m
a
i
m
a
w

e
a
a
t
a

(

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

On the optimal demand-sidemanagement inmicrogrids through
polygonal composition
A.O. Topa a, N.C. Cruz b, J.D. Álvarez a,∗, J.L. Torres c

Department of Computer Engineering, Automation and Robotics, CIESOL—ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano, University of
lmería, 04120 Almería, Spain
Department of Computer Architecture and Technology, University of Granada, Journalist Daniel Saucedo Street, 18014 Granada, Spain
Department of Engineering, CIESOL—ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano, University of Almería, 04120 Almería, Spain

a r t i c l e i n f o

Article history:
Received 4 November 2022
Received in revised form 25 February 2023
Accepted 7 May 2023
Available online 11 May 2023

Keywords:
Demand-side management
Microgrid
Optimization

a b s t r a c t

This article presents a novel methodology for energy management in microgrids focused on the
demand side. It is inspired by the Tangram puzzle. The energy demand and production profiles are
represented by polygons and managed through computational geometry. Therefore, an optimization
problem is defined to place n energy demand profiles (pieces) to cover the total energy production
profile (target shape). The optimization problem is addressed with a genetic algorithm. It tries to
calculate the optimal positions of the polygons of the demands covering the maximum energy
production. Since the referred production comes from renewable energy sources in the microgrid,
this method allows reducing both the consumption of fossil fuels and energy bills.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A large part of the energy consumption in smart bioclimatic
uildings is carried out through microgrids (MGs) made up of
ontrol systems, advanced detection technologies, communica-
ion infrastructures, and smart meters [1,2]. Over time, great
hallenges have been encountered related to environmental prob-
ems, security, and energy management of the public grid. Facing
hem requires an intelligent energy generation system to ob-
ain an MG featuring maximum renewable generation, reliability,
nd intelligence, known as Smart Grid [3–5]. An MG offers a
idirectional energy flow and information between the energy
rovider and the customer. For this purpose, an energy manage-
ent system (EMS) is necessary to guarantee the load demand
nd the commercialization of electric energy. EMSs are classified
nto supply-side management (SSM) and demand-side manage-
ent (DSM). These strategies help minimize energy and oper-
ting costs and CO2 emissions and maximize energy production
hile efficiently managing energy consumption [1,6,7].
Although SSM guarantees efficient energy supply, satisfying

nergy demand and reducing polluting emissions and costs, it is
ffected by market price volatility. Hence, DSM becomes more
ttractive and allows the active participation of users, who can
ake load demand management decisions affecting the energy us-
ge patterns. The aim is to optimize energy consumption, which
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allows reducing the maximum load demand and maintains the
stability of the MG [1,7–9].

DSM strategies consist of: (i) energetically efficient control-
lable devices with different consumption patterns, (ii) control
systems that allow load demand conformation, (iii) ON/OFF con-
trollers or actuators to turn on and off the devices, and (iv)
communication link for users and external agents [10]. The ob-
jective of DSM is to change energy demand based on energy
production, which directly relates to users’ consumption patterns.
Several DSM strategies have been developed recently, most based
on moving energy demands. These displacements consider as-
pects such as energy availability, on-peak to off-peak electricity
tariff hours, and improving energy performance [11].

Recent studies have developed different optimization appr-
oaches that aim to approximate the energy consumption curve
with the original consumption one. For example, Djeudjo et al.
[12] use a multi-objective particle swarm optimization model
for performing a techno-economic analysis to respond to energy
demand in communities in the Sub-Saharan African region. The
authors of [13–16] focus on demand areas, such as residential,
commercial, and industrial ones, considering controllable loads.
They use several optimization models to satisfy the demand effi-
ciently in energy and economic terms. Additionally, the authors
of [17,18] proposed an innovate algorithm based on Grey Wolf
Optimization. Its main goal is to reduce energy bills and the peak
demand of residential, commercial, and industrial microgrids.
Alternatively, [19,20] use blockchain-connected smart controllers.
They aim to improve DSM, energy efficiency of buildings, and

comfort level while reducing CO2 emissions.
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Fig. 1. Representation of Tangram puzzle game.
Although recent methods, such as particle swarm and Grey
olf optimization, have been used in DSM optimization, genetic

lgorithms (GAs) are arguably one the most used population-
ased optimizers [21,22]. For instance, the authors of [23–25]
ropose strategies based on GAs achieving substantial savings,
educing the energy demand, and motivating users to shift their
oads to off-peak hours. The complexity of the resulting problems
nd the lack of mathematically exploitable properties, such as
inearity and convexity, explain the popularity of Evolutionary
lgorithms (EA), including GAs [10,26]. These optimizers are in-
pired by the Darwinian theory of evolution. They define a generic
lobal search strategy in which every solution is treated as an
ndividual subject to the biological processes of sexual reproduc-
ion, mutation, and selective pressure to survive. As individuals
volve, the corresponding solutions improve [24,27,28].
This article focuses on EMS by displacing energy demands

ver time. Energy production is supposed to include renewable
ources, so it is fixed in time and shape. The aim is to mini-
ize electricity costs, carbon emissions, and user intervention.
he main contribution is conceptualizing energy management as
shape composition problem in which the energy production
nd demand profiles are handled as polygons. In this context,
genetic algorithm seeks the optimal position of the demand
rofiles to fit the production one, which results in a schedule
or using the available devices. This planning allows maximizing
he use of renewable energy instead of the public grid. Therefore,
he contributions of this work are three: Firstly, it describes a
ethodology to handle the inherently intermittent availability of

enewable energy resources. Secondly, it confirms the aptitude of
As to let an EMS adapt its configuration to arbitrary production
rofiles despite using a new problem representation. Thirdly and
ast, the referred representation conceptually simplifies the un-
erlying optimization problem of covering the energy production
rofile with the demands as shape composition. It allows users to
ssimilate and face a non-linear optimization problem in a simple
ay. Several case studies have been included to test the effec-
iveness of the proposal. Although the first examples are didactic,
here are realistic cases that the methodology also successfully
ddresses. For this purpose, data from a bioclimatic building, the
IESOL research center of the University of Almería (Spain), have
een used.
The rest of the article is structured as follows: Section 2

resents the proposed methodology for MG demand-side energy
anagement. Then, Section 3 describes the experimentation and

he results obtained. Finally, Section 4 shows the conclusions and
ome ideas for future work.
2

2. Methodology

As introduced, this work focuses on minimizing the cost of
electricity and the associated environmental impact by managing
the energy demand in time. This section explains the proposal,
starting with modeling the energy demand management as a
polygonal shape replication problem. After that, an approach to
evaluate and compare different candidate solutions is exposed,
which allows facing energy demand management as an optimiza-
tion problem. Finally, the section ends with a description of the
method used for solving the resulting optimization problem.

2.1. Problem representation

The main idea of this work is that, in practical terms, DSM
resembles the ancient Chinese puzzle known as Tangram [29].
This logic game consists in composing desired shapes, such as a
house, using only its predefined set of pieces. Fig. 1 shows the
different parts of a Tangram puzzle on the left, some simple target
shapes in the center, and how to achieve them on the right.

For the problem at hand, the energy demand profile of each
device can be represented by a small polygon in two dimensions,
i.e., time and energy consumption. The same occurs with the
production profile, which results in a larger polygonal shape. Both
kinds of polygons are considered in a 2D coordinate system in
which the vertical axis is power, in kW, and the horizontal one
is the time of the day, in hours. Accordingly, the total energy
expressed in kWh is the area of the resulting polygon. Fig. 2
shows a simulation scenario determined through the polygons,
both energy consumption and production. In this context, the
methodology proposed tries to form the big polygon, i.e., the
production, by combining the smaller ones, i.e., the consumption
profiles. In contrast to the Tangram game, perfect replication
might not always be possible in this case, but the conceptual
similarity of the proposed approach is obvious.

Accordingly, the problem statement consists of n consumption
profiles and the target energy production. They and the candidate
solutions will be represented by polygons to be handled through
computational geometry.

2.2. Problem formulation

Having expressed the problem at hand in terms of composing
a target polygon by combining n different ones, addressing it
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Fig. 2. Sample problem context.
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as an optimization problem comes naturally. The fundamental
aspect is to define how to encode and compare solutions, which
allows us to decide if a given configuration is better than any
other one.

As stated, n polygons represent the demand profile of n de-
ices, and they can be seen as Tangram pieces to place to cover
he energy production. Thus, any candidate solution consists of
vector that assigns a particular position to each demand pro-

ile. Defining those positions, which are the decision or design
ariables, is left to the selected optimization method. However,
he strategy for decoding and assessing each possible solution is
ecoupled from it and explained next.
The space in which the polygons are considered has two

imensions, the total energy and the time of day. They are placed
nd shifted in both at optimization. Accordingly, each candi-
ate solution has two components per demand profile, i.e., 2n
ariables. For evaluating any particular distribution or candidate
olution, it is first necessary to put each demand profile where
ncoded. Then, the resulting shape must be compared to the
roduction polygon.
Let Dy

i be the vertical dimension (total power, in kW) and
x
i the horizontal one (time of day, in hours). The first stage,
.e., demand polygon placement, can be defined as in Eq. (1),
here the achieved profile, DT , results from reading the position
f each demand polygon, Di for i = 1, . . . , n, and putting them
ppropriately in the energy and time axes. Since the polygons can
nly be translated, they are identified by a single reference point.
y convention, the bottom-left point is considered. The position
f the reference point of the ith demand polygon Di is labeled as
Dx
i , D

y
i ), where the first component refers to the first dimension,

.e., time, and the second is linked to the second one, i.e., power.
he abstract function ‘translate’ is responsible for placing the
emand polygon that is part of the problem input in the position
roposed for its reference point. The first argument is the polygon
o place, and the second is the position of its reference point
efined by its coordinates in both dimensions of interest. These
ositions will be ultimately adjusted through optimization. The
isplaced polygons form a total demand polygon DT using the
ogical union operation, represented by

⋃
.

T =

n⋃
i=1

translate(Di, (Dx
i ,D

y
i )) (1)

Regarding the second and last stage, i.e., polygon comparison,
t follows Eq. (2). FDSM is the area of the difference between the
nergy production polygon, PE , and the one composed by the
ifferent demand profiles, DT . Hence, it is a real number in the
ange [0, ∞). The nearer it is to 0, the better the shape replication
s, so this is the value to minimize for addressing the problem.
ymbol ⊕ represents the exclusive OR (XOR) operation between
he area of both polygons involved. Function ‘area’ is an abstract
unction taking as input a polygon and computing its area.

(D ) = area(P ⊕ D ) (2)
DSM T E T

3

The optimization problem can be formulated according to
Eq. (3). The aim is to find the position of each demand polygon so
that the objective function, i.e., the difference between the target
and the composed polygon, is minimized. The constraints require
each demand polygon to stay in the region of interest. Namely,
they limit the coordinates of reference points for the arbitrary
bounds xmin and ymax, which refer to the dimension of power, and
min and tmax, linked to that of time.⎧⎪⎨⎪⎩

min
Dx
1,Dy

1,...,Dx
n,Dy

n

FDSM (DT )

s.t. xmin ≤ Dx
i ≤ xmax∀i ∈ {1, . . . , n}

ymin ≤ Dy
i ≤ ymax∀i ∈ {1, . . . , n}

(3)

The previous definitions are mainly conceptual. In practical
erms, FDSM is computed according to Algorithm 1. Notice that
E results from combining all the renewable and non-renewable
nergy production profiles available. In this work, PE might con-
ist of photovoltaic energy production, wind energy production,
attery supply, electric vehicle energy production, and public grid
upply.

Algorithm 1 Objective function computation

Require: {D1 . . .Dn}, PE,
(
Dx
1,D

y
1, . . . ,D

x
n,D

y
n
)

1: DT = ∅

2: for i = 1 : n do
3: DT = (DT

⋃
translate(Di, [Dx

i ,D
y
i ])) ▷ See Eq. (1)

4: end for
5: [ID, I

y
D] = PolygonIntersect(Di,DT )

6: DT = DT
⋃

translate(ID, [0, I
y
D])

7: return area(PE ⊕ DT ) ▷ See Eq. (2)

The PolygonIntersect function referred to in Algorithm 1 is
ighly relevant for comparing solutions. Conceptually, it aims
o identify and correct the overlappings of polygons considering
heir real meaning, i.e., energy consumption profiles. Its out-
uts, ID and IyD, are the intersected polygon and the vertical

displacement of this polygon, respectively. Computationally, it
implements Algorithm 2. This process handles the overlapping
of energy demand profiles. The reason is that they cannot ab-
sorb each other in the problem context, as standard boolean
operations over polygons suggest. This situation arises while the
optimization algorithm studies different placements of the en-
ergy profiles considered in time (hours) and magnitude (kW).
Algorithm 2 identifies overlapping, and the intersected energy
amount is displaced only in magnitude (kW). This approach does
not alter the energy consumption timing, which avoids incon-
venient pauses in the resulting schedule. Hence, notice that de-
spite the plain geometric representation, the solution assessment
logic must ultimately parse the different cases in terms of the
underlying problem.

Additionally, it is relevant to mention that the theoretical
conception of the objective function allows modifying its practical
implementation, which could implicitly allow prioritizing de-
mand profiles. In other words, provided an optimization method
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Algorithm 2 Function PolygonIntersect
Require: {D1 . . .Dn},DT .

Tolerance = 0.08,Displacement = 0.05, IyD = 0, AID = ∞

2: Control = 0
for i = 1 : n − 1 do

4: for j = 2 + Control : n do
ID = Di

⋂
Dj ▷ Compute intersection

6: if area(ID) > Tolerance then
while AID ≥ Tolerance do

8: IyD = IyD + Displacement
ID = translate(ID, [IxD, I

y
D]) ▷ Move intersection up

only
0: AID = area(DT

⋂
ID)

end while
2: end if

end for
4: Control = Control + 1

end for
6: return ID, I

y
D

that focuses on comparing objective function values, its decisions
are directly affected by the definition and behavior of the objec-
tive function. Similarly, notice that some devices might represent
divisible demand profiles, such as a washing machine executing
several processes. Its stages could be provided as input as dif-
ferent polygons, but the evaluation of solutions should promote
(or require, if possible) that they appear in the appropriate order.
Regardless, an exhaustive analysis of these extensions of the
proposed formulation is out of the scope of the present paper.

2.3. Optimization method

The objective function of the previous optimization prob-
em does not feature a closed analytical expression with known
athematical properties to exploit, such as linearity and con-
exity [30]. In this situation, nature-inspired meta-heuristic op-
imization algorithms are valuable tools. They allow obtaining
cceptable solutions despite the lack of certainty of optimal-
ty [22,30]. Evolutionary algorithms stand out from them as
ighly-adaptable methods with outstanding exploration capabil-
ties. They use a population of candidate solutions or individuals
hat interact with each other in a simulated context of biological
volution and randomness [21,31,32]. Genetic algorithms [33–
5] are arguably their most visible exponent due to their high
erformance, simplicity, and adaptability.
In this work, the GA shipped with the Global Optimization

oolbox of MATLAB has been used with its default configura-
ion [36]. However, the reader should notice that the present
ethodology is not linked to the optimization algorithm cho-
en for implementing the proposal. Instead, any other general-
urpose optimization engine, like one of the plethora of evolu-
ionary methods [21,22], could be used within the same proposed
olygonal context. The only requirement is that they focus on
omputing and comparing values of the objective function de-
ined, which could encapsulate any comparison and prioritization
riteria, as previously mentioned.
Centering our attention on the selected GA and according to

ts official documentation, the algorithm starts by initializing a
opulation of candidate solutions. More specifically, it randomly
reates a user-defined number of solution vectors within the
ounds of the search space. They are evaluated according to the
bjective function, i.e., Eq. (3).
After initialization, the algorithm executes its main loop. The

im is to create new individuals and evolve them to produce
4

better solutions after several iterations. The main loop consists
of these genetic operators: Selection, Generation of offspring, and
Replacement. It also has an elitist component to ensure that the
best results continue in the active population [33]. The selection
operator, which starts every evolutionary loop, chooses some
individuals from the population to become the parents of a new
generation of candidate solutions. As in nature, every individual
can become a parent, but better solutions are more likely to be
selected. In terms of implementation, according to the documen-
tation, the algorithm implements a stochastic uniform selection
procedure. It represents all the candidate solutions in a common
segment. The section length of each one depends on its quality
as a solution, so the better value, the longer portion. Then, the
algorithm moves along the segment taking steps of equal size
and selecting the individual linked to the portion reached every
time. Although individuals can be selected more than once, this
approach avoids limiting to the best individuals and enhances
dispersion in the search space [21,22]. The step size is randomly
determined by the algorithm.

The generation of offspring creates the new individuals that
will form the population of the next iteration. It consists of elite
selection, crossover, and mutation. Elite selection directly takes
the best individuals for the next population. This quantity is
defined by a parameter whose default value is 5% of the total
population size.

Aside from the previous individuals, the optimizer executes a
crossover process to combine the contents of different progen-
itors and create potentially better candidate solutions as their
descendants. More specifically, the algorithm makes pairs of pro-
genitors and obtains a descendant from each. Every descendant
is defined by randomly selecting the value of one of its parents
for each component as a solution, i.e., the coordinates of the
reference position of every demand polygon. The number of in-
dividuals to create in this way is set by a user-defined parameter
that is a percentage of the population size without considering
the elite size. By default, the percentage is 0.8.

Regarding mutation, it is launched when the combination of
the individuals in the elite and the descendants results in fewer
individuals than the current population size, which must be kept
constant. In this situation, the algorithm changes the required
number of parents by adding a perturbation vector to each one.
Every component follows a Gaussian distribution with mean 0
and standard deviation scaled by considering the range of each
variable.

It is relevant to highlight that the new solutions resulting from
these steps must be evaluated. This consideration includes altered
or mutated individuals, which become new solutions in practical
terms. The exception is the set of individuals forming the elite.
They do not vary, and it is unnecessary to re-evaluate them.

The replacement ends the main loop of the method by es-
tablishing the set of individuals coming from the generation
of offspring, i.e., elite, crossover, and mutation, as the current
population.

The GA iterates until one of the following stopping conditions
is met. The first one is after executing the maximum number of
iterations, which is set to 100 times the number of variables of the
optimization problem by default. The second one is to complete
a given number of iterations with the average relative change in
the best fitness function value being less than or equal to a given
threshold. It is also possible to define other conditions, such as
a maximum time or a particular value for the best solution. The
interested reader can access the official documentation for further
information.
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Fig. 3. Representation of the polygons of energy demands.
Fig. 4. Polygon of total energy production.
3. Experimentation and results

The proposed DSM strategy has been implemented in MATLAB
using its built-in functions for polygon handling (polyshape) and
the GA provided by its Global Optimization Toolbox [36]. It has
been tested in seven different situations to test its effectiveness.
The first four have been chosen because they are easy to un-
derstand and solve. Conversely, the fifth example shows a more
realistic scenario, which includes multiple demands of different
shapes and is harder to solve. Finally, the last two use real data
from a bioclimatic building, the CIESOL research center of the
University of Almería. The main aim is to take as much energy
as possible from the production profile, i.e., to cover it with the
demand profiles. The section ends with the computational cost of
addressing each case.

The interested reader can find the source code used at the
following link: https://github.com/ual-arm/DSMoptimizer.

3.1. Simulation setup

The proposed methodology expects as input the demand and
production profiles presented as polygons, as described in Sec-
tion 2.2. For simplicity and without loss of generality, the fun-
damental experimentation considers three energy demands of
the same area to move in [Dy

i ,D
x
i ]. Fig. 3 shows them. As can

be seen, all the energy demand profiles have the same shape
representing 1 kW during three hours, which results in a total
5

Table 1
Parameters for GA simulation.
GA parameters

Population Tolerance Optimization
parameters

Time max (s) Generations

50 0.05 6 10800 36

energy consumption of 3 kWh. Accordingly, the GA will see
optimization problems of six variables. It has been configured
with the parameters shown in Table 1, which were tuned after
preliminary experimentation.

3.2. Simple case 1: Energy production is equal to energy demand
without overlap

In the first case, Fig. 4 shows that the energy production starts
with 2 kW during the first 3 h and ends with 1 kW during the last
3 h. The total energy production is 9 kWh, which is the sum of
the three demands from Fig. 3.

As shown in Fig. 5, the developed DSM strategy can cover the
whole energy production by moving the energy demands without
overlapping. The optimization algorithm optimally moved the
energy demand. Hence, the total energy demand consumes all the
production profile, which comes from renewable resources and
avoids using the public grid. The lower graph shows a negligible

https://github.com/ual-arm/DSMoptimizer
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Fig. 5. Results for the first case when energy production and demand are equal without overlap.
Fig. 6. Representation of the polygon of total energy production.
rror of the GA in the excess energy, but it is due to numerical
recision.

.3. Simple case 2: Energy production is equal to energy demand
ith overlap

In the second case, Fig. 6 shows that the energy production
tarts with 1 kW during the first 2 h. Then, the energy production
ncreases its power to 3 kW for 1 h. Finally, it decreases to 2 kW
uring the last 2 h. The total energy production is 9 kWh. It is the
ame as in the previous case, which is equal to the sum of the
hree demands in Fig. 3. However, in this case, it is impossible to
it any of the demand profiles in the upper part of the production.
hus, some demand profiles must be split to cover the energy
roduction profile.
Fig. 7 shows the results obtained by the proposed DSM strat-

gy when energy production equals energy demand with overlap.
he optimization algorithm can move the energy demands opti-
ally. The overlap between them is displaced by the GA so that

he energy demand shapes cover the production profile. Thus,
t takes all the available energy generated through renewable
esources without consuming it from the public grid. As in the
revious case, the lines shown in the lower graph are due to
umerical precision errors.

.4. Simple case 3: Energy production below energy demand with
verlap

For the third test scenario, the energy production starts with
kW during the first 2 h and ends with 2 kW in the last 3 h. The
6

total energy production is 8 kWh, as shown in Fig. 8. It is less than
the sum of the three demand profiles from Fig. 3.

Fig. 9 shows the results of the proposed DSM strategy for the
third case. The overlap between demands is displaced by the GA
outside the production profile because, as previously pointed out,
the total energy demand exceeds the energy production from
renewable sources. Thus, a part of this demand must be covered
using the public grid. However, the energy consumption from the
public grid is minimal.

3.5. Simple case 4: Energy production higher than energy demand

In this case, the energy production is 3 kW during the 5 h. As
shown in Fig. 10, the total energy production is 15 kWh, higher
than the sum of the three demands from Fig. 3.

Fig. 11 shows the results of the proposed DSM strategy for
the fourth case. As the energy production is greater than the sum
of the energy demands, the placement of the latter is irrelevant
as long as they stay in the production profile. For this reason,
the total energy demand consumes part of the energy of the
production profile without needing the public grid. The excess
of energy is significant, and it could be either stored in a power
supply system or sold to electric companies.

3.6. Complex case

The proposed methodology has also been tested in a more
complex scenario to demonstrate its applicability to reality. Nam-
ely, the production profile used is more sophisticated, as shown in
Fig. 12. It tries to reproduce the energy production from renew-

able sources where a constant wind energy source can produce
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Fig. 7. Results for the second case when energy production and demand are equal with overlap.
Fig. 8. Representation of the polygon of total energy production.
Fig. 9. Results for the third case when energy production is below demand with overlap.
kW of power during the day. In the middle hours, this produc-
ion is complemented by the power of a photovoltaic plant with
maximum production peak of 5 kW. It is worth mentioning that
his energy production profile is the polygonal approximation of a
eal one. In general, any profile can be approximated by a polygon
f N sides.
Aside from sophisticating the production profile, up to six

emands will be used in this example, as shown in Fig. 13. Be-
ides, in contrast to the previous cases, the demand polygons have
7

different shapes, such as rectangular, triangular, and trapezoidal,
and areas. Some of them can be only put in one place of the
energy production profile, e.g., the triangular demands two and
three, while others can be placed in several locations, such as the
rectangular demands five and six.

Although it is difficult to appreciate it from Figs. 12 and 13,
this case is similar to the first one, where the energy production
equals the sum of energy demands without overlap. This fact can
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b
a
p

Fig. 10. Representation of the polygon of total energy production.
Fig. 11. Results for the fourth case when energy production is higher than energy demand.
Fig. 12. Energy production profile for the complex case.
e seen in Fig. 14. As shown, the proposed methodology to man-
ge energy demands in microgrids puts each one in its optimal
lace to cover all the energy production. Therefore, this example
8

confirms that the presented methodology can be successfully
applied even with complex production profiles and demands that
differ in shape and size.
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Fig. 13. Energy demand profiles for the complex case.
Fig. 14. Results for the complex case.
.7. Real cases

Aside from the previous theoretical examples, the proposed
ethodology has also been executed with real data to demon-
trate its applicability.
To this aim, data from a bioclimatic building, the CIESOL re-

earch center, placed at the campus of the University of Almería,
pain, are used, see Fig. 15. It is a bioclimatic building with
everal energy systems for self-consumption, such as flat solar
ollectors for hot water and a photovoltaic plant for electricity
eneration. The CIESOL has a wide sensor network to monitor
undreds of variables, which includes power meters to measure
he energy consumed or produced for their subsystems. Thus, the
eal energy production of the photovoltaic plant during a sunny
ay is presented together with the energy consumption of one
ab of the building.

.7.1. Real case 1
This case relies on data obtained from the photovoltaic plant

f the CIESOL building. The upper graph of Fig. 16 shows its
otal energy production with a sampling time of 1 h, dotted
ine. The observed shape corresponds to a typical sunny day in
ummer, when the photovoltaic plant can reach a maximum peak
9

of 3 kW, approximately. Moreover, it shows the total energy
demand too, green area. As it occurs with the energy production,
it has been sampled in intervals of 1 h. After that, it has been
split into four different irregular polygons, as shown in the lower
graph of Fig. 16. It represents the energy demand of different
devices running at one of the laboratories of CIESOL. It is worth
mentioning that these devices do not depend on each other. Thus,
none of them must wait for any other to start or end.

As shown in Fig. 17, the proposed methodology successfully
manages the energy demand of the laboratory. More specifically,
it moves the demand profiles inside the ‘bell’ corresponding to
the energy production of the photovoltaic plant. The profile of the
total energy demand once the individual four demands are moved
is drawn by a red dotted line. Thus, the use of renewable energy
improves. Moreover, as energy production exceeds the sum of the
four demands, other systems could benefit from the excess.

3.7.2. Real case 2
The second case with real data uses the production profile

shown in the upper graph of Fig. 18. It corresponds to the pro-
duction of the photovoltaic system on a typical sunny day in
winter. As in the previous case, the energy production polygon
has been built with radiation data sampled at intervals of 1 h.
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Fig. 15. CIESOL research center.

Fig. 16. Total energy demand and production (upper graph), and its division into four irregular demand profiles (lower graph).

Fig. 17. Results for the real case 1.

10
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Fig. 18. Representation of the total energy demand polygon.
n the same graph, the green polygon contains the total energy
emand considered for this example. Again, sampling intervals
re of 1 h each. However, this time the total profile has been split
nto the three demands depicted in the lower graph of Fig. 18.
otice that one of them simulates a device that is always working.
or instance, it could correspond to a lamp that is always on or a
omputer executing a program uninterruptedly.
The energy production is enough to supply all the demand, but

ne of the demand profiles cannot be split. For this reason, there
ill be a deficit of energy at the beginning and the end of the
ay. Although the algorithm can move the other demands into
he production profile, it cannot do anything with the bigger one.
s in the previous case, the total energy demand after moving the
ndividual four ones is drawn by a red dotted line. However, the
esults obtained show an improvement over the initial conditions.
herefore, the proposed methodology demonstrates that it can be
pplied successfully to realistic situations involving complex and
rregular production profiles (see Fig. 19).

.8. Computational cost

This section provides the reader with an overview of the ex-
cution time taken by our sample implementation for each case.
able 2 contains the times. They have been measured in a non-
edicated personal laptop featuring 11th Gen Intel(R) Core(TM)
5-11400H, 2.70 GHz, RAM=16 GB and MATLAB version: Mat-
ab2022b. As can be seen, the execution time Texe is directly
roportional to the number of polygons and overlap cases. Nev-
rtheless, the time records remain compatible with realistic use,
specially considering the lack of real-time requirements. This
lanning should be executed offline and rely on predictions and
ecorded consumption patterns. Moreover, the MATLAB imple-
entation used is a prototype that could be profiled to speed
p its execution, if needed, or even ported to a non-interpreted
anguage, such as C.

. Conclusions

Successfully implementing microgrids in the current electric-
ty market requires defining strategies with algorithms that op-
imize the available energy from renewable resources. Including
11
Table 2
Execution times of the proposed DSM methodology.
Study case Demand polygons Texc (min)

Simple case 1 3 5.6748
Simple case 2 3 5.6765
Simple case 3 3 6.2863
Simple case 4 3 1.6851
Complex case 6 12.4117
Real case 1 4 7.8370
Real case 2 3 3.9734

these algorithms transforms microgrids into smart grids since
they become able to manage their energy sources. The optimiza-
tion algorithms can be on the production side, the demand one,
or both.

The main objective of this work is to present a demand-side
management methodology that optimizes the energy consump-
tion profiles of a microgrid. The DSM strategy is based on the
Tangram puzzle since demand profiles are represented as poly-
gons to be combined to form the production profile for each
target case. For this reason, this paper proposes an optimization
problem focused on composing the production profile using the
demand ones. The representation and operations with polygons
have been implemented with the built-in polyshape functions of
MATLAB. The optimization method used is the genetic algorithm
included in the Global Optimization Toolbox of MATLAB. This
optimization algorithm calculates the optimal positions of each
energy demand to fill the production shape.

The results obtained in five different scenarios show that
the proposed methodology can manage several energy demand
profiles, with and without overlap, to fill an arbitrary produc-
tion profile. Thus, as energy production comes from renewable
sources, consumption from the public grid is minimized, as well
as energy bills and polluting emissions. Although the first test
scenarios include a few rectangular energy demands and a sim-
ple production profile for better understanding, the proposed
methodology can deal with multiple energy demands and irregu-
lar shapes. These capabilities are demonstrated in the complex
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Fig. 19. Results for the real case 2.
xperiment, where only the computational cost of the search
ncreases acceptably, and the quality of solutions remains high.

In future works, more sophisticated problem formulations will
e studied. For instance, they could include shifting and fixed
oads, energy prices, prioritization, and divisible demands, i.e., de-
ices that can be paused. Besides, increasing the complexity of
he problem might require considering different optimization
lgorithms.
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1–12, http://dx.doi.org/10.1007/s12046-021-01626-z.

[28] M.A. Khan, N. Javaid, A. Mahmood, Z.A. Khan, N. Alrajeh, A generic
demand-side management model for smart grid, Int. J. Energy Res.
39 (7) (2015) 954–964, http://dx.doi.org/10.1002/er.3304, arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1002/er.3304, URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/er.3304.

[29] F.T. Wang, C.-C. Hsiung, A theorem on the tangram, Amer. Math.
Monthly 49 (9) (1942) 596–599, http://dx.doi.org/10.1080/00029890.1942.
11991289.

[30] N. Cruz, J.L. Redondo, E. Ortigosa, P. Ortigosa, On the design of a new
stochastic meta-heuristic for derivative-free optimization, in: International
Conference on Computational Science and Its Applications, Springer, 2022,
pp. 188–200.

[31] A. Rajabi, C. Witt, Self-adjusting evolutionary algorithms for multimodal
optimization, Algorithmica 84 (2022) 1694–1723, http://dx.doi.org/10.
1007/s00453-022-00933-z.

[32] X. Zhang, X. Fan, S. Yu, A. Shan, S. Fan, Y. Xiao, F. Dang, Intersection
signal timing optimization: A multi-objective evolutionary algorithm, Sus-
tainability 14 (3) (2022) http://dx.doi.org/10.3390/su14031506, URL https:
//www.mdpi.com/2071-1050/14/3/1506.

[33] N.C. Cruz, S. Salhi, J.L. Redondo, J.D. Álvarez, M. Berenguel, P.M. Ortigosa,
Design of a parallel genetic algorithm for continuous and pattern-free
heliostat field optimization, J. Supercomput. 75 (3) (2019) 1268–1283,
http://dx.doi.org/10.1007/s11227-018-2404-8.

[34] X. Lü, Y. Wu, J. Lian, Y. Zhang, C. Chen, P. Wang, L. Meng, En-
ergy management of hybrid electric vehicles: A review of energy
optimization of fuel cell hybrid power system based on genetic al-
gorithm, Energy Convers. Manage. 205 (2020) 112474, http://dx.doi.
org/10.1016/j.enconman.2020.112474, URL https://www.sciencedirect.com/
science/article/pii/S0196890420300108.

[35] A. Lambora, K. Gupta, K. Chopra, Genetic algorithm- a literature review,
in: 2019 International Conference on Machine Learning, Big Data, Cloud
and Parallel Computing, COMITCon, 2019, pp. 380–384, http://dx.doi.org/
10.1109/COMITCon.2019.8862255.

[36] Mathworks, Global optimization toolbox - MATLAB, 2022, https://
es.mathworks.com/products/global-optimization.html. (Accessed 21 July
2022).

http://dx.doi.org/10.1109/ACCESS.2021.3109136
http://dx.doi.org/10.1109/ACCESS.2021.3109136
http://dx.doi.org/10.1109/ACCESS.2021.3109136
http://dx.doi.org/10.3390/en11010190
https://www.mdpi.com/1996-1073/11/1/190
https://www.mdpi.com/1996-1073/11/1/190
https://www.mdpi.com/1996-1073/11/1/190
http://dx.doi.org/10.1080/17512549.2020.1752799
http://dx.doi.org/10.1080/17512549.2020.1752799
http://dx.doi.org/10.1080/17512549.2020.1752799
http://dx.doi.org/10.1016/j.jobe.2022.104486
http://dx.doi.org/10.1016/j.jobe.2022.104486
http://dx.doi.org/10.1016/j.jobe.2022.104486
https://www.sciencedirect.com/science/article/pii/S2352710222004995
https://www.sciencedirect.com/science/article/pii/S2352710222004995
https://www.sciencedirect.com/science/article/pii/S2352710222004995
http://dx.doi.org/10.1109/ACCESS.2020.2975233
http://dx.doi.org/10.1109/ACCESS.2020.2975233
http://dx.doi.org/10.1109/ACCESS.2020.2975233
http://dx.doi.org/10.1007/978-981-16-1056-1_61
http://dx.doi.org/10.1007/978-981-16-1056-1_61
http://dx.doi.org/10.1007/978-981-16-1056-1_61
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.ins.2013.02.041
http://dx.doi.org/10.1016/j.ins.2013.02.041
https://www.sciencedirect.com/science/article/pii/S0020025513001588
https://www.sciencedirect.com/science/article/pii/S0020025513001588
https://www.sciencedirect.com/science/article/pii/S0020025513001588
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb22
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb22
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb22
http://dx.doi.org/10.1109/TSG.2012.2195686
http://dx.doi.org/10.1007/s12667-022-00510-x
http://dx.doi.org/10.1007/s11277-017-3959-z
http://dx.doi.org/10.1016/j.ijepes.2017.11.020
http://dx.doi.org/10.1016/j.ijepes.2017.11.020
http://dx.doi.org/10.1016/j.ijepes.2017.11.020
https://www.sciencedirect.com/science/article/pii/S0142061517317350
https://www.sciencedirect.com/science/article/pii/S0142061517317350
https://www.sciencedirect.com/science/article/pii/S0142061517317350
http://dx.doi.org/10.1007/s12046-021-01626-z
http://dx.doi.org/10.1002/er.3304
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/er.3304
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/er.3304
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/er.3304
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.3304
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.3304
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.3304
http://dx.doi.org/10.1080/00029890.1942.11991289
http://dx.doi.org/10.1080/00029890.1942.11991289
http://dx.doi.org/10.1080/00029890.1942.11991289
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://refhub.elsevier.com/S2352-4677(23)00074-7/sb30
http://dx.doi.org/10.1007/s00453-022-00933-z
http://dx.doi.org/10.1007/s00453-022-00933-z
http://dx.doi.org/10.1007/s00453-022-00933-z
http://dx.doi.org/10.3390/su14031506
https://www.mdpi.com/2071-1050/14/3/1506
https://www.mdpi.com/2071-1050/14/3/1506
https://www.mdpi.com/2071-1050/14/3/1506
http://dx.doi.org/10.1007/s11227-018-2404-8
http://dx.doi.org/10.1016/j.enconman.2020.112474
http://dx.doi.org/10.1016/j.enconman.2020.112474
http://dx.doi.org/10.1016/j.enconman.2020.112474
https://www.sciencedirect.com/science/article/pii/S0196890420300108
https://www.sciencedirect.com/science/article/pii/S0196890420300108
https://www.sciencedirect.com/science/article/pii/S0196890420300108
http://dx.doi.org/10.1109/COMITCon.2019.8862255
http://dx.doi.org/10.1109/COMITCon.2019.8862255
http://dx.doi.org/10.1109/COMITCon.2019.8862255
https://es.mathworks.com/products/global-optimization.html
https://es.mathworks.com/products/global-optimization.html
https://es.mathworks.com/products/global-optimization.html

	On the optimal demand-side management in microgrids through polygonal composition
	Introduction
	Methodology
	Problem representation
	Problem formulation
	Optimization Method

	Experimentation and results
	Simulation setup
	Simple case 1: Energy production is equal to energy demand without overlap
	Simple case 2: Energy production is equal to energy demand with overlap
	Simple case 3: Energy production below energy demand with overlap
	Simple case 4: Energy production higher than energy demand
	Complex case
	Real cases
	Real case 1
	Real case 2

	Computational cost

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


