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Abstract: Imprecise classification is a relatively new task within Machine Learning. The difference
with standard classification is that not only is one state of the variable under study determined, a set
of states that do not have enough information against them and cannot be ruled out is determined
as well. For imprecise classification, a mode called an Imprecise Credal Decision Tree (ICDT) that
uses imprecise probabilities and maximum of entropy as the information measure has been pre-
sented. A difficult and interesting task is to show how to combine this type of imprecise classifiers.
A procedure based on the minimum level of dominance has been presented; though it represents a
very strong method of combining, it has the drawback of an important risk of possible erroneous
prediction. In this research, we use the second-best theory to argue that the aforementioned type of
combination can be improved through a new procedure built by relaxing the constraints. The new
procedure is compared with the original one in an experimental study on a large set of datasets, and
shows improvement.
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1. Introduction

The standard classification task tries to predict one state of a class variable when a new
item or instance appears. A classifier normally learns from a set of data. In situations where
there is not enough information to point out a unique state of the class variable, Imprecise
classification arises. In this case, a set of states of that variable are predicted, which are
the states that have no clear information against them. It can be said that Imprecise
Classification discards some states and considers the ones that cannot be discarded via the
available information.

Credal Decision Tree (CDT) [1,2] is a single decision tree that uses imprecise proba-
bility models and uncertainty-based information measures in the tree-building process,
specifically, the maximum of entropy measure. This classifier has been used, similar to
other comparable models, in many ensemble procedures [3,4], and has been adapted for
Imprecise Classification (ICDT) [5]. However, ICDT was not the first imprecise classifier
presented in the literature; the Naive Credal Classifier (NCC) [6] was the first imprecise clas-
sifier presented. It combines the naive assumption (i.e., all the attributes are independent
given the class variable) and the Imprecise Dirichlet Model (IDM) to produce an imprecise
classification. This NCC procedure provides worse results than the ICDT model [5], and
we do not use it here.

An imprecise classifier might obtain a set of states of the class variable, often called
the set of non-dominated states. It is constituted by those class states for which there is no
other “better” choice according to an established criterion, usually known as the dominance
criterion. Intuitively, an Imprecise Classification evaluation measure must consider whether
the real class value belongs to the non-dominated states set as well as the precision of the
predicted set of class values, which is measured based on its cardinality.

Imprecise predictions tend to consist of sets of states. Therefore, it is not trivial to
combine multiple imprecise predictions. Until recently there was no technique for this. If
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the predictions are not properly combined, then it is highly likely that the ensemble will
perform no better than a unique classifier, as excessive information reduction may result.

The first ensemble of imprecise classifiers was recently presented by Moral-García
et al. [7]. This ensemble is based on a bagging scheme [8], which has obtained satisfactory
performance in precise classification, especially when used with CDTs. For these reasons a
bagging scheme with ICDTs was introduced in [7]. The proposed technique for combining
imprecise predictions aims to maximize the precision of the bagging scheme. If the com-
bination procedure is too conservative, then little information will be obtained, and the
performance of a single classifier might be worsened. The procedure of [7] only considers
the class values with the minimum level of dominance. Hence, it could be considered that
such a procedure assumes too much risk, although it achieves good results when compared
with the simple ICDT model.

In a procedure for combining imprecise classifiers, we consider the set of states belong-
ing to the set of the minimum level of dominance as the winner states. In the optimal case
of a clear set of winners states, i.e., if the difference with respect to the others is relatively
large, the minimum level of dominance could be considered a very good procedure. The
problem is that in the majority of real cases this does not occur. Consequently, the risk that
we must assume can produce bad informative results. This information is obtained via the
measure that we need to apply to quantify the performance.

Here, we consider the trade-off between risk and success in the procedure proposed in
[7] to be less than ideal. Thus, our starting point is to reduce the risk that we must assume
in a procedure to combine imprecise classifiers. This can be considered as a reduction of
the constraints taken into account to improve the level of information that such a type of
procedure should offer. When the optimal conditions cannot be satisfied, we can apply the
theory of the second-best [9], which was originally presented in the area of economics.

Considering the reasons above exposed, we present a new procedure for combining
imprecise classifiers that reduces the constraint of the minimum level of dominance, i.e.,
we consider a scenario in which the optimal situation is not normally attained. In the new
procedure, we add a parameter to control the degree of risk we are willing to take. If we
decrease that degree, the risk is higher, while the information can be higher as well. Hence,
we find it interesting to consider a trade-off between risk and information. This is obtained
by relaxing the minimum level of dominance considered by the original method through
a parameter. Greater values of that parameter provide less information; however, they
provide less risk as well, because a larger set of class values can be obtained.

The new procedure presented here can provide a greater amount of information via
the measure for this aim presented in [5]. In this paper, exhaustive experimentation on 34
different datasets is carried out. All these datasets have at least three states of the class
variables to ensure that our research on Imprecise Classification makes more sense. We
compare the procedure presented in [7] with our new proposal. To compare the results, we
apply the measure from [5]. This experimentation shows that the new procedure, which is
more cautious in its predictions, obtains clearly better results based on this measure. To
reinforce this assertion, our statistical tests show a performance improvement in favor of
the new procedure with a strong level of significance.

The rest of this paper is organized as follows: in Section 2, the Imprecise Credal
Decision Tree algorithm and the existing bagging scheme for Imprecise Classification
are described; Section 2.4 introduces our proposed procedure of combining imprecise
classifiers; and the experimental study carried out in this work is detailed in Section 4.
Finally, Section 5 provides conclusions and ideas for future work.

2. Background

Let C be the class variable and let {c1, c2, · · · , cK} be its set of possible values.
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2.1. Imprecise Credal Decision Tree

The Imprecise Credal Decision Tree (ICDT) algorithm introduced in [5] adapts the
Credal Decision Tree method for Imprecise Classification. The tree-building process of both
methods is identical.

Let D be the dataset corresponding to a certain node. Suppose that such a dataset
contain ND instances. Let nD(cj) be the number of instances in D that satisfy C = cj,
∀j = 1, 2, · · · , K. In order to represent the uncertainty-based information about C in D,
ICDT uses the Imprecise Dirichlet Model (IDM) [10], a formal imprecise probability model
based on probability intervals. Specifically, the IDM predicts that the probability that C
takes each possible value cj belongs to the following interval:

ID(cj) =

[
nD(cj)

ND + s
,

nD(cj) + s
ND + s

]
, ∀j = 1, 2, · · · , K, (1)

where s > 0 is a given parameter of the model that indicates the estimated degree of
imprecision in the data. This set of intervals yields the following credal set (a credal set
being a convex and closed set of probability distributions) on C [11]:

PD(C) =
{

p ∈ P(C) | p(cj) ∈ ID(cj), ∀j = 1, 2, · · · , K
}

, (2)

where P(C) is the set of all probability distributions on C. ICDT quantifies the uncertainty
about C through the maximum entropy on PD(C):

S∗
(
PD(C)

)
= max

p∈PD(C)
S(p), (3)

where S(p) is the Shannon entropy [12] of the probability distribution p, determined by

S(p) = −
K

∑
j=1

p(cj) log2 p(cj). (4)

It must be remarked that the maximum entropy is a well-established uncertainty
measure on credal sets, and satisfies the essential mathematical properties [13].

Let X be an attribute taking the possible values {x1, . . . , xt}. The split criterion of
ICDT, called the Imprecise Information Gain (IIG), is defined as follows:

I IGD(C) = S∗
(
PD(C)

)
−

t

∑
i=1

pD(xj)S∗
(
PD(C | X = xi)

)
, (5)

where pD(xj) is the probability of X = xj according to the probability distribution that
leads to the maximum entropy on the IDM credal set on X on D, while PD(C | X = xi)
is the IDM credal set on C on the subset of D constituted by those instances such that
X = xi, ∀i = 1, 2, . . . , t.

ICDT differs from CDT in the criterion used to make a prediction at a leaf node.
While CDT uses majority vote, ICDT applies a dominance criterion to the IDM probability
intervals to obtain the set of non-dominated states at a leaf node.

Let L be a leaf node; let NL be the total number of instances in L and let nL(cj) be the
number of instances in L for which C = cj, ∀j = 1, 2, . . . , K. Then, we have the following
set of IDM probability intervals at L:{[

nL(cj)

NL + s
,

nL(cj) + s
NL + s

]
, j = 1, 2, · · · , K

}
. (6)
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ICDT uses the stochastic dominance criterion on this set of intervals, which asserts
that a class value cj dominates another one ck if and only if

nL(cj)

NL + s
≥ nL(ck) + s

NL + s
⇔ nL(cj) ≥ nL(ck) + s.

According to the results proved in [14], stochastic dominance is the well-established
dominance criterion for IDM probability intervals.

2.2. Bagging of Credal Decision Trees for Imprecise Classification

Thus far, the only combined method for imprecise classification is called the Bagging
of Imprecise Credal Decision Trees (Bagging-ICDT) method [7]. The idea of this algorithm
is similar to the bagging scheme for standard classification. For each base classifier, a
bootstrapped sample of the training set is first chosen; then, using the selected sample and
ICDT, an Imprecise Classification model is learned.

The key issue with Bagging-ICDT is combining the predictions of the base imprecise
classifiers. We remark here that this is not a trivial question, as imprecise classifiers predict
a set of non-dominated states; in fact, there are multiple ways of combining multiple
imprecise predictions, as certain classifiers may predict that a class value will be dominated
while others predict it will be non-dominated. The fundamental point is to find a trade-off
between information and risk, where the term information indicates the precision of the
prediction, i.e, the number of non-dominated states set, and the term risk refers to the
probability that the real class value does not belong to the set of non-dominated states.
Obviously, a high level of information gives rise to a high level of risk.

The combination technique proposed in [7] tries to ensure that the ensemble scheme
is as informative as possible, though it implies a higher risk of misclassification. In this
approach, to classify an instance, the number of classifiers that predict such a state as
dominated is counted for each class state. The set of non-dominated states predicted by
Bagging-ICDT is composed of those class values predicted as dominated by the minimum
number of classifiers.

Figure 1 summarizes the Bagging-ICDT method proposed in [7].

Procedure Bagging-ICDT(training set of N instances D, number of classifiers n_trees)

1. From i = 1 to n_tress
2. Select a sample of N instances from D
with replacement, namely Di.
3. Build a classifier via ICDT using Di as the training set

For classifying an instance

1. From j = 1 to K
2. Let vaj denote the number of classifiers that predict cj as dominated

3. min_against = minj=1,2,··· ,k vaj
4. Predicted non-dominated set
{cr | var = min_against, 1 ≤ r ≤ k}

Figure 1. Summary of the Bagging-ICDT method.

The problem with this procedure is that it is possible that the set of states with the
minimum level of dominance has support very close to one of the other states. In this case,
the level of risk is very high. This situation appears in the majority of real cases. Hence, the
risk that we must assume can produce bad informative results. We find it interesting to
consider a trade-off between risk and information by relaxing the constraint represented by
the minimum level of dominance.
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2.3. Evaluation Metrics for Imprecise Classification

To evaluate the performance of imprecise classifiers, the MIC evaluation measure [5]
can be employed. This metric takes into account the possibility that in certain situations
the errors may have different degrees of importance. Here, consider the same level of
importance for all errors, as the different weights of each error must generally be quantified
by experts in a particular area.

MIC is defined as follows:

MIC =
1

Ntst

(
∑

i:Success
log
|Ui|
K

+
1

K− 1 ∑
i:Error

log K

)
, (7)

where Ntst is the number of test instances, K is the number of class states, and |Ui| is the
predicted set of non-dominated states for the i-th test instance, ∀i = 1, 2, . . . , N_tst.

It is obvious that the higher the value of MIC, the better the performance. We can
observe that the optimal value of MIC, which is reached when all the predictions are
precise and correct, is equal to − log 1

k = log k. Moreover, when it is verified that |Ui| = k,
∀i = 1, · · · , NTest, i.e, when the imprecise classifier always predicts all possible class values
as non-dominated states for a given instance, the value of MIC is equal to 0. This is
intuitively more correct, as in these cases the classifier is not informative.

We find that this measure is the better one to use, as it does not have the problems
presented by others, as can be seen in [7].

2.4. The Second-Best Theory

The theory of the second-best [9] was first presented in the area of economics, and
essentially stands as follows:

“It concerns the situation when one or more optimality conditions cannot be satisfied:
if one optimality condition in an economic model cannot be satisfied, then the next-best
solution might involve changing other variables away from the values that would otherwise
be optimal. Politically, the theory implies that if it is infeasible to remove a particular market
distortion, introducing one or more additional market distortions in an interdependent
market may partially counteract the first, and lead to a more efficient outcome.”

When a market distortion appears or is introduced (i.e., optimal conditions do not
exist), then the application of the best approach for those conditions, known as the second-
best (i.e., not optimal) can produce clear advantages. This is known as the second-best
equilibrium.

3. Application of the Second-Best Theory to the Combination of Imprecise Classifiers

In our case, the trade-off between risk and accuracy when combining the results of
different imprecise classifiers can produce a similar situation. As said above, the difference
between the set of winners and the rest of the states may not be large enough to consider
that set of winners to be a good result. We have found that this excessive risk can produce
a decrease in accuracy and a clear decrease in information via the MIC measure, which
takes into account the errors in the results in an important way. Hence, we think that it is
necessary to limit the risk in favor of accuracy. This is where we consider the second-best
set of non-dominated states.

Based on the above assessments, we consider the need to add a constraint for rejecting
states with similar information in the set of non-dominated states during the combination
process. We think that at least those states very close to the one selected in the original
method must be taken into account. We illustrate this issue via the following example.

Example 1. Consider a case where the class variable has five states {c1, c2, · · · , c5} and a bagging
procedure is applied using the standard size of 100 trees. To simplify, we can suppose that c1 has the
minimum number of votes against; in this case that value is 50 (dominated for 50 trees). However,
c2 has 52 votes against, while c3, c4, and c5 each have 80 votes against. The original method of
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combining the minimum dominated states outputs the set {c1}, which represents excessive risk
when taking the real situation into account.

In the resulting situation, the set we consider the optimal result is clearly {c1, c2} because of
its small difference in votes against with respect to the set {c1}.

We can analyze possible situations associated with the above numbers via the MIC measure.
We consider extreme situations around the number of votes against in concordance with those
numbers (the example numbers cannot be the most extreme ones, but they are very close to the
extreme possible values) in a bagging procedure of 100 trees to calculate the maximum and minimum
possible degrees of information obtained via the MIC measure.

1. The result is {c1}: the best situation (B1) is 50 success, i.e., 50 trees where c1 is the only state
non-dominated and 50 errors with that result, i.e., the set of non-dominated values is in the set
{c2, · · · , c5}. By this, we mean that with these values the possible real state is always accurate
when the resulting set is {c1}, i.e., no other option can be reached. For the cases where the
result is, for example, the set {c1, c3}, the real state associated with the instance can be c3.
The worst situation (W1) is two trees, where c1 is the only non-dominated state (because those
where c2 is non-dominated could coincide with the 48 where c1 is non-dominated as well), and
98 errors, i.e., the set of non-dominated values is in the set {c2, · · · , c5}.

2. The result is {c1, c2}: the best situation (B2) is 98 success, i.e., 50 trees where c1 and c2
are in the set of non-dominated states but never coincide, and two errors, i.e., the set of
non-dominated values of those two trees is in the set {c3, c4, c5}. The worst situation (W2) is
50 trees where c1 is one of non-dominated states and c2 is non-dominated by the same trees,
and 50 errors, i.e., the set of non-dominated values of those 50 trees is in the set {c3, c4, c5}.
The idea here is to think about the possible real value of the class variable associated with an

instance while considering the numbers discussed above. Using the MIC measure, we can obtain the
following values:

Using MIC measure (7):

MIC =
1

Ntst

(
∑

i:Success
log
|Ui|
K

+
1

K− 1 ∑
i:Error

log K

)
(8)

The values compatible with the above situations are

MIC(A1) = 1
100 (−50 log( 1

5 ) +
50
4 log(5)) = 1, 006

MIC(W1) = 1
100 (−2 log( 1

5 ) +
98
4 log(5)) = 0, 413

MIC(A2) = 1
100 (−98 log( 2

5 ) +
2
4 log(5)) = 0, 906

MIC(W2) = 1
100 (−50 log( 2

5 ) +
50
4 log(5)) = 0, 659.

We can observe that from one result to the other the upper value number is reduced by around
10% (from 1, 006 to 0, 906), whereas the lower value is increased by around 60% (from 0, 413 to
0, 659). In terms of bets, the upper value could be considered as the maximum win (greater values
imply the possibility of a greater win) and the lower one as complement of the maximum loss or
maximum risk (greater values imply lower levels of risk).

In this case, for a decrease in the possibility of the maximum win of 10%, the risk can be
reduced by around 60%. Hence, in our opinion, the more conservative strategy of considering the
set {c1, c2} in stead of {c1} makes more sense for predicting the real value of the class variable.

In Example 1, it can be seen that the use of the second-best theory can help us to obtain
an increase of information expressed in form of extreme values of gains. We can consider
that we are introducing the constraint of not taking on excessive risk, even this results
in a reduced maximum probability of success. Clearly, in this example, considering the
second-best issue {c1, c2} instead of {c1} notably reduces the likelihood of loss.

For our combination procedure, the problem is now how to quantify the optimal
difference among the best states to determine the maximum difference of votes against in
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terms of percentage. If we call this percentage γ%, then the method explained in Section 2.2
is modified only in terms of the procedure provided in Figure 2.

Procedure Bagging-ICDT(training set of N instances D, number of classifiers n_trees, threshold γ)

1. From i = 1 to n_trees
2. Select a sample of N instances from D with replacement, namely Di.
3. Build a classifier Ci via ICDT using Di as the training set

For classifying an instance

1. From j = 1 to K
2. Let vaj be the number of classifiers that
predict cj as dominated

3. min_against = minj=1,··· ,k vaj
4. Predicted non-dominated states set{

cr | var ≥ min_against− γ
100 min_against, 1 ≤ r ≤ k

}
Figure 2. New bagging scheme with ICDT: Bagging-ICDT2B.

Here, the parameter γ represents the degree of risk we are willing to take. If we
decrease its value, the risk is higher, though the information can be higher as well. We
consider it important to use a trade-off between risk and information. Greater values of γ
provide less information with less risk because a larger set of class values can be obtained.

4. Experimentation
4.1. Experimental Settings

For experimentation, we used the implementation in the Weka software [15] (https:
//en.wikipedia.org/wiki/Weka_(software)) for ICDT, as used in [5]. The structures pro-
vided in Weka for the bagging scheme were utilized to add all the necessary methods
for implementing the bagging of our ICDT procedures. We call the method presented in
[7] Bagging-ICDT and the new method presented here with a parameter γ = 5% Bagging-
ICDT2B, which can be considered a good trade-off between information and risk. The
bagging schemes were all applied with 100 trees, a number of classifiers established as
suitable for bagging [16].

Both methods were tested on 34 known datasets found in the UCI Machine Learning
repository [17]. These datasets are varied with regard to the number of instances, number of
discrete and continuous features, ranges of values of discrete attributes, number of states
of the class variable, etc. Consistent with the experimental analysis carried out in [5], in
all selected datasets the class variable had at least three possible values, as with only two
class values all of them are either predicted or a single one. Table 1 shows the most relevant
characteristics of each dataset.

In accordance with the experiments carried out in [7], missing values were replaced
by modal (mean) values for discrete (continuous) features. Then, continuous attributes
were discretized by means of Fayyad and Irani’s discretization procedure [18]. A ten-fold
cross-validation procedure was repeated ten times for each preprocessed dataset.

For statistical comparisons, following the recommendations in [19] when there are
two algorithms, the Wilcoxon test [20] was used with a level of significance of α = 0.01.
For each dataset, this test ranks the differences between the performance of two methods
regardless of the signs. Then, the ranks for the positive differences are compared with those
for negative differences.

https://en.wikipedia.org/wiki/Weka_(software)
https://en.wikipedia.org/wiki/Weka_(software)
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Table 1. Dataset description. Column “N” is the number of instances, column “Feat” is the number
of features or attribute variables, column “Cont” is the number of continuous variables, column
“Disc” is the number of discrete variables, column “K” is the number of states of the class variable,
and column “Range” is the range of value of the discrete attributes.

Dataset N Feat Cont Disc K Range

anneal 898 38 6 32 6 2–10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2–6
autos 205 25 15 10 7 2–22
balance-scale 625 4 4 0 3 -
bridges-version1 107 11 3 8 6 2–54
bridges-version2 107 11 0 11 6 2–54
car 1728 6 0 6 4 3–4
cmc 1473 9 2 7 3 2–4
dermatology 366 34 1 33 6 2–4
ecoli 366 7 7 0 7 -
flags 194 30 2 28 8 2–13
hypothyroid 3772 30 7 23 4 2–4
iris 150 4 4 0 3 -
letter 20,000 16 16 0 26 -
lymphography 146 18 3 15 4 2–8
mfeat-pixel 2000 240 0 240 10 4–6
nursery 12,960 8 0 8 4 2–4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10,992 16 16 0 10 -
postop-patient-data 90 9 0 9 3 2–4
primary-tumor 339 17 0 17 21 2–3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2–7
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4–6
sponge 76 44 0 44 3 2–9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2

4.2. Results

Table 2 shows the MIC results obtained by each algorithm on each dataset. A summary
of the MIC results is presented in Table 3, which shows the average value, the result of the
Wilcoxon test, and the number of datasets where one algorithm beats the other algorithm
as exspressed by the MIC measure.

Considering the MIC results in Table 2, Bagging-ICDT obtains lower values than
Bagging-ICDT2B. While the difference is not extremely large, the values are almost always
in favor of the new procedure. The differences are greater on datasets with a large number
of states of the class variable, which makes sense due to the range of the MIC measure. The
number of wins for each method compared to the other one can be seen in the third row
of Table 3. There is a large difference in the wins of the new procedure compared to the
original one (28 vs. 3).

The most important comparison can be seen in the second row of Table 3, where the
results of the Wilcoxon test are presented. This test was carried out with a very strong
level of significance of 0.01. Here, we can observe that Bagging-ICDT2B significantly
outperforms the original Bagging-ICDT method, demonstrating that the trade-off between
risk and information in the original method is not optimal.
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Tabla 2. Complete results obtained for the MIC measure, with the best results marked in bold.

Dataset Bagging-ICDT Bagging-ICDT2B

anneal 1.7847 1.7847
arrhythmia 1.9316 1.9440
audiology 2.5936 2.6132
autos 1.5553 1.5618
balance-scale 0.6006 0.6049
bridges-version1 1.0446 1.0340
bridges-version2 0.9767 0.9910
car 1.2568 1.2576
cmc 0.2636 0.2682
dermatology 1.6844 1.6834
ecoli 1.6182 1.6208
flags 1.1398 1.1615
hypothyroid 1.3744 1.3746
iris 0.9982 0.9985
letter 2.6771 2.6967
lymphography 0.9417 0.9558
mfeat-pixel 2.0066 2.0208
nursery 1.5398 1.5405
optdigits 1.9579 1.9715
page-blocks 1.5418 1.5424
pendigits 2.0925 2.0966
postoperative-patient-dat 0.6207 0.6207
primary-tumor 1.2278 1.2504
segment 1.8331 1.8344
soybean 2.7203 2.7256
spectrometer 1.9527 2.0219
splice 1.0077 1.0080
sponge 1.0121 1.0133
tae 0.2216 0.2216
vehicle 0.8372 0.8417
vowel 1.8594 1.8680
waveform 0.7325 0.7354
wine 0.9817 0.9837
zoo 1.8578 1.8571

Average 1.4248 1.4325

Table 3. Summary of the results obtained for the MIC measure. In the “Wilcoxon test” rows, if one
classifier is significantly better than the other one this is expressed by “*”. The level of significance
used is 0.01. The row “Number of wins” indicates the number of datasets on which one algorithm
beat the other in terms of MIC.

Bagging-ICDT Bagging-ICDT2B

MIC: Average 1.3652 1.4248
Wilcoxon t-test *

Number of wins 3 28

5. Conclusions and Future Work

In this work, we have shown that the first method to combine imprecise classifiers
based on the minimum level of non-dominance, while a very strong method of combination,
has the important drawback of possible information loss. This is because the difference
between the set of winning states and the rest can be very small in real situations. Here,
we have used the second-best theory to argue that this method can be improved to obtain
better results in the combination of imprecise classifiers by relaxing the constraints taken
into account.
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The experimental analysis carried out in our research has revealed that the new method
presented here is clearly superior to the original method. The new method outperforms the
existing one on a statistical test with a high level of significance. It has been demonstrated
that better results can be produced by relaxing the constraints taken into account in the
original method to minimize the loss of information at the cost of assuming greater risk, as
the trade-off between risk and information in the original method is not optimal.

The new method presented here can be tuned for specific datasets to obtain better
results in future work. Moreover, the procedure presented here for imprecise classification
can be inserted in other known ensemble schemes, such as Boosting [21] or Random
Forest [8].
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