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Abstract
Introduction This is a 12-weeks randomized controlled trial examining the effects of aerobic exercise (AE), computerized 
cognitive training (CCT) and their combination (COMB). We aim to investigate their impact on cardiovascular health and 
white matter (WM) integrity and how they contribute to the cognitive benefits.
Methods 109 participants were recruited and 82 (62% female; age = 58.38 ± 5.47) finished the intervention with > 80% 
adherence. We report changes in cardiovascular risk factors and WM integrity (fractional anisotropy (FA); mean diffusiv-
ity (MD)), how they might be related to changes in physical activity, age and sex, and their potential role as mediators in 
cognitive improvements.
Results A decrease in BMI (SMD = − 0.32, p = 0.039), waist circumference (SMD = − 0.42, p = 0.003) and diastolic blood 
pressure (DBP) (SMD = − 0.42, p = 0.006) in the AE group and a decrease in BMI (SMD = − 0.34, p = 0.031) and DBP 
(SMD = − 0.32, p = 0.034) in the COMB group compared to the waitlist control group was observed. We also found decreased 
global MD in the CCT group (SMD = − 0.34; p = 0.032) and significant intervention-related changes in FA and MD in the 
frontal and temporal lobes in the COMB group.
Conclusions We found changes in anthropometric measures that suggest initial benefits on cardiovascular health after only 
12 weeks of AE and changes in WM microstructure in the CCT and COMB groups. These results add evidence of the clini-
cal relevance of lifestyle interventions and the potential benefits when combining them.
Clinical Trial Registration ClinicalTrials.gov NCT031123900.

Keywords Aerobic exercise · Computerized cognitive training · Combined training · Cardiovascular health · White matter 
integrity

Introduction

In recent decades, there has been a growing interest in iden-
tifying the factors that influence cardiovascular, cerebral, 
and cognitive health during aging, with the aim of delaying 
or preventing age-related cognitive deficits (Livingston et al. 
2017). Literature has identified several modifiable factors 

and emphasized the link between cardiovascular risk fac-
tors, such as hypertension, diabetes, obesity, sedentarism, 
and smoking, with brain health, specifically for white matter 
(WM) microstructure (Wassenaar et al. 2019). Accessible, 
low-cost, and scalable lifestyle interventions, including aero-
bic exercise (AE) or cognitive training, either individually 
or in combination, have emerged as promising approaches 
to improve cardiovascular health (Sisti et al. 2018; Zhang 
et al. 2017) and protect brain (Wassenaar et al. 2019) and 
cognition (Phillips 2017; Sprague et al. 2019).Communicated by Philip D. Chilibeck.
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Physical activity (PA) has been widely recognized for its 
numerous beneficial effects on cardiovascular health (Fon-
tana 2018; Nystoriak and Bhatnagar 2018; Pinckard et al. 
2019). Regular PA improves glucose tolerance, insulin sen-
sitivity, and reduces circulating lipid concentrations, rest-
ing heart rate, and blood pressure (Nystoriak and Bhatnagar 
2018; Pinckard et al. 2019). Physically active individuals 
tend to have higher levels of high-density lipoprotein (HDL) 
(Kodama et al. 2007), and higher physical fitness is associ-
ated with lower blood pressure in cross-sectional and lon-
gitudinal studies (Bacon et al. 2004). A meta-analysis by 
Lin et al. (2015) showed that exercise interventions increase 
cardiorespiratory fitness (CRF) and improve lipid profiles, 
including lower triglyceride levels and higher HDL levels. 
The specific outcomes of AE trials, however, are confounded 
by the heterogeny of factors such as age, sex, and health 
status of participants, as well as the type of exercise pro-
gram used (Kodama et al. 2007; Lin et al. 2015). In the 
context of brain health, there has been a growing interest 
in examining the relationship between PA or AE and the 
health of white matter (WM). However, the findings from 
various studies have been inconsistent, yielding diverse 
results (Sexton et al. 2016). Some studies have reported 
positive correlations between greater PA engagement and 
increased WM volumes, improved WM microstructure, and 
lower volume and intensity of WM lesions (Sexton et al. 
2016). Conversely, other studies have presented negative 
results (Burzynska et al. 2014; Marks et al. 2011; Tian et al. 
2014a, b). Regarding WM microstructure, cross-sectional 
studies have suggested that higher levels of PA are associ-
ated with increased global and local fractional anisotropy 
(FA) in the corpus callosum, superior longitudinal fascicu-
lus, and arcuate fasciculus (Gow et al. 2012; Johnson et al. 
2012; Liu et al. 2012). However, a randomized controlled 
trial (RCT) involving healthy sedentary older adults did 
not find significant changes in WM integrity following a 
1-year AE intervention, despite improvements in aerobic 
fitness related to increased WM integrity in frontal and 
temporal lobes (Voss et al. 2013). Similarly, more recent 
RCTs investigating the effects of AE programs, lasting 3 ses-
sions per week for 3 or 6 months in healthy older adults, did 
not yield significant results related to WM microstructure 
(Clark et al. 2019; Sexton et al. 2020). These inconclusive 
findings may be influenced by the heterogeneity of exer-
cise program parameters (FITT-VP: Frequency, Intensity, 
Time, Type, Volume, and Progression) and individual char-
acteristics, such as sex and genetics, which can influence 
the impact of AE on WM in late-life (Stillman et al. 2020). 
Based on the findings from several systematic reviews, AE 
interventions have demonstrated positive effects on execu-
tive function, attention, and speed, with a small-to-moderate 
effect size (Barha et al. 2017; Colcombe and Kramer 2003; 
Northey et al. 2018; Stillman et al. 2020). Understanding 

the underlying cardiovascular factors influencing these out-
comes is of utmost importance.

While cognitive training (CT) has shown effectiveness in 
improving cognitive performance within trained domains 
for older adults, its transfer to non-trained domains is lim-
ited (Sprague et al. 2019; Wassenaar et al. 2019). Existing 
evidence has linked cardiovascular risk factors to cognitive 
performance and risk of dementia (Baumgart et al. 2015; 
Iadecola 2014; Qiu et al. 2005), but direct effects of CT on 
these variables remain lacking. Nevertheless, CT has shown 
effects on the brain structure and function of healthy older 
adults (Belleville and Bherer 2012; McPhee et al. 2019), 
with recent interventional studies suggesting that both sin-
gle and multi-domain CT interventions can improve WM 
integrity (Wassenaar et al. 2019). In single-domain CT trials 
assessing memory training's effect on WM microstructure 
in older adults, control groups showed widespread dete-
rioration (decreased FA and increased MD), while train-
ing groups showed no such decline after 8 and 10 weeks 
of intervention (Engvig et al. 2012; de Lange et al. 2016, 
2017). Conversely, findings from 12-week multi-domain 
CT programs have been inconsistent compared to control 
groups (Chapman et al. 2015; Cao et al. 2016; Lampit et al. 
2015). In a longer 6-month multi-domain CT interven-
tion, improvements in WM microstructure (increased FA 
and decreased MD) were observed in the corpus callosum 
genus of older adults but not in the control group (Lövdén 
et al. 2010). Although heterogeneity of these results has been 
related to the FITT-VP parameters of the cognitive programs 
and sample characteristics of these trials, authors highlight 
the potential benefits of CT in the frontal and medial brain 
regions for mitigating age-related WM microstructure 
decline (McPhee et al. 2019).

Recent evidence suggests that the combination (COMB) 
of AE and CT may have complementary and additive effects 
on cognition and brain health (Joubert and Chainay 2018; 
Ten Brinke et al. 2020). This hypothesis led to increased 
interest on the mechanisms involved in the potential COMB-
related benefits such as growth factors and inflammatory 
profiles (Anderson-Hanley et al. 2012; Castells-Sánchez 
et al. 2022; Rahe et al. 2015). While AE interventions have 
shown positive effects on lipid profiles and blood pressure 
(Fagard 2001; Kodama et al. 2007; Lin et al. 2015), sug-
gesting that a combined AE and CT intervention (COMB) 
could yield similar results, to our knowledge no studies have 
explored the impact of COMB-related changes on cardio-
vascular variables. Additionally, there is limited evidence 
regarding the effects of COMB training on WM microstruc-
ture. Lövdén et al. (2012) observed a trend for decreased 
MD in the right hippocampus in healthy older men after 
4 months of COMB training, whereas those in the walking 
program only did not show significant changes. Similarly, 
Takeuchi et al. (2020) reported a significant decrease in MD 
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in multiple frontal and subcortical brain areas after 12 weeks 
of COMB training in healthy older adults compared to those 
in single working memory or AE groups. Further research is 
needed to fully understand the benefits of COMB training, 
its underlying mechanisms, and the potential moderating 
effects of variables such as age, sex, and genetics (Joubert 
& Chainay 2018).

“Projecte Moviment” is a randomized controlled trial 
(RCT) investigating the impact of a high-frequency (5 days 
per week), short-term (12 weeks) program involving aerobic 
exercise (AE), computerized cognitive training (CCT), and 
their combination in healthy, physically inactive older adults 
(Castells-Sánchez et al. 2019). The findings on cognition, 
psychological status, physical activity, molecular biomark-
ers, and brain volume outcomes have been previously pub-
lished in Roig-Coll et al. (2020) and Castells-Sánchez et al. 
(2022). Our study offers a unique opportunity to compare 
and disentangle the effects of physical activity and cognitive 
training within a unified framework, exploring the potential 
additive effects of their combined intervention on cardiovas-
cular risk factors and brain structure and functions. Moreo-
ver, we aim to investigate the underlying mechanisms and 
mediating factors, enabling the personalization of interven-
tions to maximize their benefits.

Methods

Study design

“Projecte Moviment” is a multi-center, single-blind RCT 
developed between November 2015 and April 2018 by 
the University of Barcelona in collaboration with Institut 
Universitari d’Investigació en Atenció Primària Jordi Gol, 
Hospital Germans Trias i Pujol and Institut Guttmann. 

Participants were assigned to four parallel groups: an AE 
group, a CCT group, a COMB group and a waitlist con-
trol group. Interventions lasted 12 weeks, and the assess-
ments were conducted at baseline and trial completion. 
This research project was approved by the responsible eth-
ics committees (Bioethics Commission of the University 
of Barcelona -IRB00003099- and Clinical Research Ethics 
Committee of IDIAP Jordi Gol -P16/181-) following the 
Declaration of Helsinki and was registered in ClinicalTri-
als.gov (NCT031123900). This research paper follows the 
previously published protocol (Castells-Sánchez et al. 2019) 
and complements previously published results (Castell-
Sánchez et al. 2022; Roig-Coll et al. 2020).

Participants

Healthy adults aged 50–70 years were recruited using lists 
of patients of general physicians and volunteers from pre-
vious studies, as well as via advertisements and oral pres-
entations in health care centers, local community centers 
and the local media in the Barcelona metropolitan area. 
Sample size estimation considered previous studies (Col-
combe and Kramer 2003; Erickson et al. 2011;) and was 
performed using PASS 14 Power Analysis and Sample 
Size Software (Castells-Sánchez et al. 2019). Participants 
were informed and screened with a phone call and on-site 
interview. If they met the inclusion and exclusion criteria 
(see Table 1), they were selected and gave written informed 
consent prior to study commencement. After the baseline 
assessment, participants were randomly assigned to four 
parallel groups, an AE group performing physical activity, 
a CCT group using the Guttmann Neuropersonal Trainer 
online platform (GNPT®, Spain; Solana et al. 2014, 2015), 
a COMB group combining both training programs, and a 
waitlist control group. The allocation sequence was designed 

Table 1  Inclusion and exclusion criteria for Projecte Moviment

MMSE (Blesa et al. 2001); MoCA 5-min (Wong et al. 2015); GDS-15 (Martínez et al. 2002)

Inclusion criteria Exclusion criteria

Aged 50–70 years Current participation in any cognitive training activity or during last 6 months > 2 h/
week

≤ 120 min/week of physical activity during last 6 months Diagnostic of dementia or mild cognitive impairment
Mini-mental state examination (MMSE) ≥ 24 Diagnostic of neurological disorder: stroke, epilepsy, multiple sclerosis, traumatic 

brain injury, brain tumor
Montreal cognitive assessment 5-min (MoCA 5-min) ≥ 6 Diagnostic of psychiatric illness current or during last 5 years
Competency in Catalan or Spanish  Geriatric depression scale (GDS-15) > 9
Adequate visual, auditory and fine motor skills  Consumption of psychopharmacological drugs current or during last 5 years; or more 

than 5 years throughout life 
Acceptance of participation in the study and signature 

of the informed consent 
History of drug abuse or alcoholism current or during last 5 years; or more than 

5 years throughout life; > 28 men and > 18 women unit of alcohol/week
History of chemotherapy
Contraindication to magnetic resonance imaging
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by a statistician and consisted of a random combination of 
sex, age and years of education, allowing for balanced group 
allocations accounting for these demographics. The inter-
vention team was aware of the allocation, but the assessors 
remained blind. Extended details are included in Castells-
Sánchez et al. (2019).

Interventions

Interventions were home-based, scheduled five days per 
week for 12 weeks and applied as individual programs. 
Participants were monitored during the intervention: they 
received phone calls every two weeks, a mid-point visit after 
six weeks of the intervention, and a final visit. The partici-
pants were asked about their level of compliance, interfering 
events, satisfaction, motivation, and difficulty level. They 
also registered the training frequency and adverse events 
occurring during the intervention in a follow-up diary. The 
AE and the COMB group were asked to record the intensity 
at which they performed the exercise based on BRPES val-
ues the Borg Rating of Perceived Exertion Scale (BRPES; 
Borg 1982). The BRPES offers a broad range of values and 
exertion labels, making it easier to differentiate between per-
ceived effort levels, especially between "very light" (9–10) 
and "somewhat hard" (13–14). This is particularly useful for 
our sedentary (non-sportive) sample unfamiliar with exer-
cise-related perception and vocabulary. Participants were 
trained to monitor their activity in a diary, registering the 
activity's date and duration, any adverse events occurring, 
and the intensity of the walking using BRPES values. CCT 
compliance was registered in the GNPT online platform. 
We ensured that all sources of compliance information were 
coherent and allowed us to obtain the level of adherence.

Participants allocated to the AE group followed a progres-
sive brisk walking program. They started (week 1) walk-
ing 30 min per day at BRPES 9–10 intensity; the follow-
ing week (week 2), the duration was increased to 45 min 
per day; during the remaining ten weeks, they had to walk 
45 min per day at BRPES 12–14. Participants allocated to 
the CCT group performed 45 min sessions of multi-domain 
computerized cognitive training using the GNPT software 
platform. Cognitive tasks targeted executive function, vis-
ual and verbal memory and sustained, divided and selective 
attention. The GNPT platform adjusted the task demand for 
each participant based on their baseline cognitive profile 
and the scores of the activities. Participants allocated to the 
COMB group conducted the brisk walking program and 
the CCT following the same instructions. They had to per-
form AE and CCT separately, in a single continuous bout 
of 45 min for each intervention and without any order or 
timepoint restriction. Participants allocated to the waitlist 
control group were on the waiting list for 12 weeks and were 
asked not to change their regular lifestyle. After the RCT, 

they were offered to enroll in one of the treatments, but their 
data after the intervention were not included in the analysis. 
The protocol for each intervention condition is explained in 
more detail in Castells-Sánchez et al. (2019).

Assessment/outcomes

Cardiovascular risk factors

Demographic characteristics and medical history were col-
lected by nurses in the Primary Health Care Centers. They 
registered cardiovascular health variables, including history 
and treatment of diabetes, hypertension, dyslipidemia and 
current smoking status.

Anthropometric and  cardiovascular measures Weight and 
height were measured using standardized anthropometric 
procedures without shoes in an upright standing position. 
Body mass index (BMI) was calculated as weight (kg) 
divided by the square of height  (m2). Waist circumference 
(cm) was measured at the mid-point between the bottom 
of the rib cage and the iliac crest. After resting for 5 min, 
heart rate (beats/min) and systolic and diastolic blood pres-
sures (mmHg) were measured using an automated machine 
(Omron M2 Basic). Participants sat comfortably with their 
arms resting on the table at heart level. Two measurements 
were taken for at least 1 min, and their average was used.

Blood sample biomarkers Following an overnight fast, 
phlebotomy was conducted between 8:00 and 9:30 to deter-
mine the hemogram and lipid profiles. Blood samples were 
obtained from the antecubital vein and collected in EDTA 
tubes for plasma analyses. Tubes were immediately trans-
ferred to the Dr Robert Primary Health Center and Labo-
ratori Clínic Metropolitana Nord, Germans Tries i Pujol, 
Gerència Territorial Metropolitana Nord, Institut Català 
de la Salut, where the samples were processed upon arrival 
following standard operating procedures. Serum concentra-
tions of glucose (mg/dL), triglycerides (mg/dL), total cho-
lesterol (mg/dL), HDL (mg/dL) and low-density lipoprotein 
(LDL) (mg/dL) were determined and selected for this paper.

Neuroimaging: DTI acquisition and preprocessing

MRI data were collected at the Hospital Germans Trias 
i Pujol using a 3 T Siemens Magnetom Verio Symo MR 
B17 (Siemens 243 Healthineers, Erlangen, Germany). 
The scanning protocol included high-resolution 3-dimen-
sional T1-weighted images acquired in the transverse plane 
(TR = 1900 ms, TE = 2.73 ms, 192 slices, FOV = 230 mm; 
0.9 × 0.9 × 0.9  mm  isotropic  voxel). DTI images were 
acquired in the transverse plane, AP phase encoding 
direction (TR = 10,200 ms, TE = 89 ms, FOV = 230 mm; 
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2.0 × 2.0x2.0 mm isotropic voxel; number of directions = 64, 
b-value = 1000 s/mm2,  b0 value = 0 s/mm2). DTI and T1 
images were visually inspected for artefacts. From an ini-
tial sample of 82 participants, images of 12 subjects were 
not acquired for personal or technical issues, and 20 were 
excluded for movement artefacts in the DTI.

First, data were eddy-corrected, and the diffusion gra-
dient vectors (bvecs) were rotated accordingly using FDT 
(FMRIB’s Diffusion Toolbox), part of FSL (FMRIB's Soft-
ware Library) (Behrens et al 2003, 2007). Moreover, Bias 
Field Correction (BFC) was estimated, and DTI data were 
corrected using the Brain Suite Package (http:// brain suite. 
org/) to correct the EPI distortions. Next, the FDT’s DTIFIT 
function was applied to the corrected DTI images to fit a 
diffusion tensor model at each voxel to obtain the FA and 
MD images.

We used TBSS, part of FSL (Tract-Based Spatial Statis-
tics; Smith et al. 2006), to perform statistical analyses on the 
FA and MD images. TBSS performed non-linear registra-
tion (using FNIRT) of the FA images to the MNI standard 
space and generated a mean FA skeleton representing the 
center of the WM tracts common to the whole sample. Each 
subject’s FA image was projected onto the skeleton to obtain 
the individual FA skeleton images registered in the common 
space. Only tracts with an average FA ≥ 0.2 across the sam-
ple were considered. In addition, FA maps representing the 
pre-to-post changes were created for each individual. The 
same steps were applied to the MD maps. Finally, pre-test 
and post-test global mean estimates of FA and MD were 
also extracted and exported to SPSS for statistical analyses.

Physical activity

Physical activity levels were assessed with the Spanish-val-
idated short version of the Minnesota Leisure Time Physi-
cal Activity Questionnaire (MLTPAQ; Ruiz Comellas et al. 
2012). Participants reported the frequencies and durations of 
several activities—sportive walking, sport/dancing, garden-
ing, climbing stairs, shopping walking and cleaning house—
during the last month. We obtained energy expenditure for 
each activity by transforming monthly hours of activities 
into units of Metabolic Equivalent of Tasks (METs). We 
calculated the METs spent in Sportive Physical Activity 
(S-PA) by adding the categories of sportive walking and 
sport/dancing.

Cardiorespiratory fitness

CRF was evaluated by conducting the Rockport 1-Mile 
Test, which consisted of walking one mile on a treadmill 
while adjusting their speed to be as fast as possible without 
running. We registered average speed during the test, time 
to complete the mile, and heart rate at the end of the test. 

Maximal aerobic capacity  (VO2max) was estimated with the 
standard equation developed by Kline et al. (1987) and using 
the following variables: weight, age, sex, time to complete 
the mile, and heart rate at the end of the test.

Cognitive performance

An extensive neuropsychological battery was administered 
in a single session of 60–90 min in the same order for all 
participants and before the CRF test or any type of exercise 
to exclude the acute effect of the exercise on cognitive per-
formance. Tests included in the battery obtained measure 
of multiple cognitive functions grouped by a theoretically-
driven approach (Strauss and Spreen 1998; Lezak et al. 
2012): Flexibility (Trail Making Test B-A time; Tombaugh 
2004), Fluency (letter and category fluency; Peña-Casanova 
et al. 2009), Inhibition (interference-Stroop Test; Golden 
2001), Working Memory (backward-WAIS-III; Wechsler, 
2001), Visuospatial Function (copy accuracy-Rey Osterri-
eth Complex Figure; Rey 2009), Language (Boston Naming 
Test-15; Goodglass et al. 2001), Attention (forward span, 
digit symbol coding and symbol search WAIS-III; Wechsler, 
2001), Speed (Trail Making Test-A; Tombaugh 2004; copy 
time-Rey Osterrieth Complex Figure; Rey 2009), Visual 
Memory (memory accuracy-Rey Osterrieth Complex Figure; 
Rey 2009) and Verbal Memory (total learning and recall-
II Rey Auditory Verbal Learning Test; Schmidt 1996). The 
measures were transformed into six general domains: (1) 
executive function, (2) visuospatial function, (3) language, 
(4) attention-speed, (5) memory and (6) global cognitive 
function. Extended details can be found in Supplementary 
Table 1.

Statistical analyses

Statistical procedures were performed using IBM SPSS Sta-
tistics 24. First, the distribution of raw scores was assessed 
for normal distribution (i.e., outliers, skewness). Then, we 
calculated pre-to-post change scores, compared baseline 
scores between groups and performed cross-time partial 
correlations to detect potential confounds and ceiling effects.

The intervention effect (i.e., change between baseline 
and follow-up) on cardiovascular risk factor variables and 
global FA and MD were examined for each group using 
paired-sample t-tests. In order to test the specificity of the 
effects, we performed linear regression models using a 
dummy codification for the treatment variable (AE vs con-
trol, CCT vs control and COMB vs control). The models 
included changes in each cardiovascular risk factor vari-
able and the global FA and MD as dependent variables and 
the baseline outcome score, sex, age, years of education 
and the treatment variables (AE vs control, CCT vs control 
and COMB vs control) as independent variables. In the 

http://brainsuite.org/
http://brainsuite.org/


 European Journal of Applied Physiology

1 3

models with cardiovascular risk factors, we also adjusted 
for BMI, current smoking status and use of dyslipidemia, 
diabetes and hypertension medication.

We employed partial correlation to assess whether 
the previously reported significant intervention-related 
changes in S-PA and CRF observed in the AE and COMB 
groups (Roig-Coll et al. (2020) were related to cardiovas-
cular risk factors and global FA and MD changes. The 
analysis was controlled for sex, age, years of education. 
We also controlled for BMI in cardiovascular risk factor 
correlations.

We used the PROCESS Macro for SPSS (Hayes 2017) 
to analyze the moderating effect of age and sex on inter-
vention-related cardiovascular risk factors and global 
FA and MD changes. We also used the PROCESS macro 
to perform mediation analyses to assess whether these 
changes mediated the cognitive benefits observed in the 
AE and COMB groups (Roig-Coll et al. 2020). For media-
tion analyses, we introduce the treatment variable (condi-
tion vs control) as the independent variable, changes in 
cognitive functions with significant intervention-related 
changes as the dependent variables and cardiovascular risk 
factors and in global FA and MD changes as mediators 
while controlling for baseline performance score, age, sex 
and years of education (BMI was only introduced in the 
cardiovascular risk factor models). These analyses con-
sidered the bias-corrected 95% confidence intervals (CIs) 
based on 5000 bootstrapped samples, and the significance 
of mediation was indicated if the CIs did not overlap with 
0 (Hayes 2017).

Neuroimage analyses

The tract-wise non-parametric inference was computed 
using the FSL’s randomise tool (Winkler et al. 2014) on 
the preprocessed FA and MD images based on 5000 per-
mutations. The following models were considered for FA 
and MD maps separately: (1) One-way ANOVA including 
the baseline maps for the four groups (AE, CCT, COMB 
and control) to assess potential baseline differences; (2) 
within-group paired t-test to assess pre-to-post changes 
for each group (AE, CCT, COMB and control); (3) two-
sample t-test comparing pre-to-post changes in FA and 
MD in each intervention group compared to that in the 
control group (i.e., AE vs control; CCT vs control; COMB 
vs control); (4) partial correlations between changes in the 
FA and MD and changes in CRF and S-PA in the AE and 
COMB groups. Age, sex and years of education were used 
as covariates in all models. Statistical significance < 0.05 
was accepted. For multiple comparisons across space, we 
used the family-wise error rate (FWE) correction.

Results

Participants

A total of 109 participants completed the baseline assess-
ment and 92 completed the intervention (intention to treat 
sample, ITT) (see Fig. 1). As we published in the “Projecte 
Moviment” Protocol (Castells-Sánchez et al. 2019), we 
conducted analyses in the Per Protocol (PP) sample which 
included 82 participants (62% female; age = 58.38 ± 5.47) 
with a level of adherence > 80% (see Table  2). There 
were no significant differences in demographic variables 
between the groups of the ITT sample and between the ITT 
and the PP samples (see Supplementary Tables 2 and 3).

The PP sample showed no significant baseline between-
group differences in demographic, cardiovascular risk fac-
tors, global FA and MD, physical and cognitive scores, 
except for Non-Sportive PA and current smoking status 
(see Table 2 and Supplementary Tables 4 for extended 
details). Therefore, current smoking status at baseline was 
included as a covariate in further analyses. Whole brain 
voxel-wise analysis did not show significant between-
group differences in diffusivity measures at baseline.

Intervention‑related changes in cardiovascular risk 
factors

Within-group analyses showed significant changes between 
baseline and follow-up. We found significant decrease 
in BMI (t(22) = 2.12; p = 0.046), HDL (t(22) = 2.33; 
p = 0.029), waist circumference (t(24) = 4.13; p < 0.001) 
and diastolic blood pressure (t(24) = 2.46; p = 0.022) 
for the AE group, significant decrease in triglycerides 
(t(20) = 2.14; p = 0.045) and systolic blood pressure 
(t(22) = 2.40; p = 0.026) for the CCT group, and signifi-
cant decrease in BMI (t(18) = 2.11; p = 0.049) and total 
cholesterol (t(18) = 2.24; p = 0.038) for the COMB group. 
There was also a significant increase in diastolic blood 
pressure (t(14) = -2.29; p = 0.038) for the waitlist control 
group (see Supplementary Table 5).

Contrasts between each intervention and waitlist con-
trol group for cardiovascular risk factors outcomes are 
reported in Table  3. Compared to the waitlist control 
group, we found significant AE-related changes in BMI, 
waist circumference and diastolic blood pressure, signifi-
cant CCT-related changes in triglycerides and diastolic 
blood pressure, and significant COMB-related changes in 
BMI and diastolic blood pressure.
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Intervention‑related changes in WM integrity

There were no significant changes in global FA and MD 
between baseline and follow-up for any of the AE, CCT, 
COMB and waitlist control groups, while there was a ten-
dency of reduced global MD (t(13) = 2.020; p = 0.064) in 
the COMB group (Supplementary Table 6). TBSS analysis 
revealed significant clusters within the WM skeleton with 
decreased MD when comparing the baseline with the fol-
low-up maps in the COMB group in several areas, includ-
ing the right sub-global extranuclear WM, right precentral 
gyrus, and right cingulate gyrus (see Fig. 2 and Table 4). 
TBSS analysis did not show any significant changes in FA 

and MD between baseline and follow-up in AE, CCT and 
waitlist control groups.

Results of linear regression models which tested sig-
nificant changes in global FA and MD between each 
intervention group compared to control showed a signifi-
cant reduction in MD only in CCT compared to control 
(SMD = − 0.34; p = 0.032) (See Supplementary Table 7 
for extended details). TBSS analysis reported significant 
intervention-related changes in the FA and the MD only in 
the COMB group compared to waitlist controls in several 
areas. The main FA significant clusters correspond to the 

Fig. 1  Flow chart
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Table 2  Participants characteristics at baseline

AE aerobic exercise, BMI body max index, CCT  computerized cognitive training, COMB combined training, WAIS-III Wechsler adult intelli-
gence scale
Mean (SD);  X2 = chi square; H = Kruskall Wallis H test; F = Anova test
See Supplementary Tables 4 for more cognitive, physical, cardiovascular risk factors, global FA and MD outcomes at Baseline

Total
Mean (SD)

AE
Mean (SD)

CCT 
Mean (SD)

COMB
Mean (SD)

Control
Mean (SD)

Group comparison

n total/n females 82/51 25/13 23/16 19/14 15/8 Χ2(3) = 3.20,  p = 0.361
Age (years) 58.38 (5.47) 58.40 (5.12) 57.91 (5.31) 60.32 (5.54) 56.60 (5.97) H(3) = 3.53,  p = 0.317
Years of education 12.52 (5.57) 12.44 (5.75) 12.04 (4.94) 12.37 (5.43) 13.60 (6.72) H(3) = 0.28,  p = 0.963
Vocabulary subtest (WAIS-III) 44.14 (8.30) 43.92 (9.53) 44.26 (7.16) 44.53 (8.02) 43.80 (8.98) F(3,77) = 0.03,  p = 0.993
BMI (kg/m2) 28.63 (4.96) 28.14 (5.53) 28.13 (4.26) 28.37 (4.42) 30.49 (5.70) H(3) = 1.72,  p = 0.632
Diabetes (n) 10 2 2 1 5 Χ2(3) = 7.79,  p = 0.051
Hypertension (n) 17 3 6 4 4 Χ2(3) = 1.88, p = 0.597
Dyslipidemia (n) 30 8 8 7 7 Χ2(3) = 0.92, p = 0.821
Current smokers (n) 9 3 6 0 0 Χ2(3) = 9.59, p = 0.022*
Use of cholesterol, diabetes and/

or hypertension medication (n)
22 6 6 5 5 Χ2(3) = 0.43, p = 0.933

Table 3  Comparison of intervention-related changes (vs. the control group) in cardiovascular risk factors for each intervention group

Covariates: sex, age, years of education, BMI, baseline, smoking status, use of cholesterol, diabetes and/or hypertension medication
AE aerobic exercise, BMI body mass index, CCT  computerized cognitive training, COMB combined training, HDL high density lipoprotein, LDL 
low density lipoprotein
SMD = β
*p < 0.05, **p < 0.01

AE vs control
B (95% CI), SMD, p value

CCT vs control
B (95% CI), SMD, p value

COMB vs control
B (95% CI), SMD, p value

BMI (kg/m2) − 0.51, (− 0.99, − 0.03), 
SMD = − 0.32, p = 0.039*

− 0.24 (− 0.73, 0.25), 
SMD = − 0.15, p = 0.327

− 0.57, (− 1.08, − 0.05), 
SMD = − 0.34, p = 0.031*

Glucose (mg/dL) − 5.70, (− 22.48, 11.08), 
SMD = − 0.11, p = 0.500

− 11.20, (− 28.60, 6.20), 
SMD = − 0.21, p = 0.203

− 6.10, (− 23.82, 11.62), 
SMD = − 0.11, p = 0.494

Triglycerides (mg/dL) − 13.44, (− 34.99, 8.12), 
SMD = − 0.13, p = 0.218

− 24.40, (− 46.69, − 2.11), 
SMD = − 0.23, p = 0.032*

− 19.43, (− 42.91, 4.04), 
SMD = − 0.18, p = 0.103

Total cholesterol (mg/dL) 2.07, (− 13.16, 17.29), 
SMD = 0.04, p = 0.787

− 2.93, (− 18.66, 12.80), 
SMD = − 0.06, p = 0.711

− 8.92, (− 25.26, 7.40), 
SMD = − 0.17, p = 0.279

HDL (mg/dL) 0.33, (− 2.89, 3.55), SMD = 0.03, 
p = 0.837

0.34, (− 2.90, 3.58), SMD = 0.03, 
p = 0.834

1.59, (− 1.87, 5.05), SMD = 0.15, 
p = 0.363

LDL (mg/dL) − 2.60, (− 17.23, 12.03), 
SMD = − 0.06, p = 0.724

0.41, (− 14.43, 15.26), 
SMD = 0.01, p = 0.956

− 8.54, (− 24.14, 7.06), 
SMD = − 0.17, p = 0.278

Waist circumference (cm) − 4.90, (− 8.10, − 1.70), 
SMD = − 0.42, p = 0.003**

− 1.21, (− 4.56, 2.15), 
SMD = − 0.10, p = 0.474

− 1.50, (− 5.07, 2.07), 
SMD = − 0.12, p = 0.404

Systolic blood pressure (mmHg) − 5.42, (− 13.69, 2.86), 
SMD = − 0.20, p = 0.196

− 6.40, (− 14.79, 2.00), 
SMD = − 0.24, p = 0.133

− 5.61, (− 14.50, 3.29), 
SMD = − 0.19, p = 0.213

Diastolic blood pressure (mmHg) − 7.55, (− 12.84, − 2.26), 
SMD = − 0.42, p = 0.006**

− 6.30, (− 11.64, − 0.95), 
SMD = − 0.35, p = 0.022*

− 6.15, (− 11.81, − 0.49), 
SMD = − 0.32, p = 0.034*

Resting heart rate (beats/min) 1.61, (− 2.98, 6.21), SMD = 0.09, 
p = 0.485

− 0.16, (− 4.87, 4.56), 
SMD = − 0.01, p = 0.947

0.69, (− 4.15, 5.53), SMD = − 0.04, 
p = 0.775
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right subgyral of the frontal lobe, other minor clusters placed 
in the left subgyral and globus pallidus of the temporal lobe 
(see Fig. 3 and Table 5). The only MD significant cluster 
correspond to right sub-global extranuclear WM.

Relation between cardiovascular risk factors 
and WM integrity with physical activity outcomes

Our previous study reported significant intervention-related 
changes in S-PA and CRF levels in the AE and COMB 
groups (Roig-Coll et al. 2020). Our current study found no 
significant relationship between the increased S-PA and 
CRF levels and the changes in cardiovascular risk factors 
and the global FA and MD for the AE and COMB groups. 
TBSS analysis did not resulted in any significant correlation 
between increased CRF and S-PA levels and the FA and MD 
changes.

The moderation effects of sex and age

Moderation analyses showed that age did not significantly 
moderate the effects of the intervention on the cardiovascular 
risk factors and the global FA and MD in any group. In the 
AE group, sex (women = 1, men = 0) moderated the effects 
of intervention on systolic pressure (β = − 16.47, t = − 2.69, 
p = 0.009), LDL levels (β = 28.22, t = 2.47, p = 0.016) and 
waist circumference (β = − 5.81, t = − 2.44, p = 0.017). In 
the COMB group, sex also moderated the effects of the 
intervention on systolic (β = 15.76, t = 2.23, p = 0.029) and 
diastolic pressure (β = 9.67, t = 2.13, p = 0.037). In the CCT 
group, sex also moderated the change in waist circumfer-
ence (β = 6.06, t = 2.49, p = 0.012). Sex did not significantly 
moderate the effects of the intervention on global FA and 
MD in any group.

Fig. 2  Significant changes in MD map in COMB group between 
baseline and follow-up (i.e., effect of time). In blue-light blue clus-
ters with significant decrease of MD (MNI coordinates: 26, − 7, 18). 
Statistical maps are represented in radiological convention superim-

posed on an MNI152 template. The threshold for significance was 
set at p < 0.05 corrected for multiple comparisons across space using 
family-wise error rate (FWE)

Table 4  Intra-group 
intervention related changes in 
WM integrity in COMB group: 
clusters with significant MD 
changes between baseline and 
follow-up

The threshold for significance was set at p < 0.05 corrected for multiple comparisons across space using 
family-wise error rate (FWE). Extent threshold cluster size < 10
COMB combined training, MD mean diffusivity, R right, WM white matter

Anatomic label Tailarach (JHU tracts) Coordinates MNI x, y, 
z (mm)

MAX Cluster size

MD
 Sub-global extranuclear WM R 26, − 7, 18 0.958 3297
 Frontal lobe, precentral gyrus WM R (32% 

superior longitudinal fasciculus)
43, − 9, 26 0.951 46

 Limbic lobe, cingulate gyrus WM R 15, − 37, 37 0.95 23
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Fig. 3  Significant changes in FA ad MD in COMB group compared 
to the waitlist control group (i.e., interaction between the effects of 
time and group allocation). In red-yellow, clusters with significant 
increase in FA (MNI coordinates: 28, − 14, 26). In blue-light blue, 
clusters with significant decrease of MD (MNI coordinates: 26, − 7, 

18). Statistical maps are represented in radiological convention super-
imposed on an MNI152 template. The threshold for significance was 
set at p < 0.05 corrected for multiple comparisons across space using 
family-wise error rate (FWE)

Table 5  Intervention related changes in WM integrity: clusters with significant FA and MD changes between COMB vs control groups

COMB combined training, FA fractional anisotropy, L left, MD mean diffusivity, R right, WM white matter
The threshold for significance was set at p < 0.05 corrected for multiple comparisons across space using family-wise error rate (FWE). Extent 
threshold cluster size < 10

Anatomic label Tailarach (JHU tracts) Coordinates MNI x, y, z 
(mm)

MAX Cluster size

FA
 Frontal lobe, subgyral WM R (corticoespinal tract 18%) 28, − 14, 26 0.989 21,467
 Left brainstem, midbrain − 18, − 30, − 2 0.951 61
 Temporal lobe, subgyral WM L (uncinate fasciculus 8%) − 37, − 8, − 20 0.95 20
 Temporal lobe, subgyral WM L (inferior longitudinal fasciculus 13%) − 41, − 10, − 25 0.95 18
 Lateral globus pallidus WM L − 27, − 18, − 8 0.95 14
 Temporal lobe, subgyral WM L (inferior longitudinal fasciculus 13%) − 41, − 10, − 25 0.95 10

MD
 Sub-global extranuclear WM R 26, − 7, 18 0.989 35,827



European Journal of Applied Physiology 

1 3

Mediation effects on intervention‑related cognitive 
benefits

We applied mediation analyses to examine whether changes 
in cardiovascular risk factors and global FA and MD medi-
ated the relationship between the intervention and the 
improvement in cognitive domains as reported in Roig-Coll 
et al. (2020). These improvements included the Executive 
Function (Working Memory) and Attention-Speed (Atten-
tion) for the AE group and the Attention-Speed (Attention 
and Speed) for the COMB group. Change in waist circum-
ference in the AE group was found to mediate the inter-
vention-related improvement in working memory (Path C’: 
B = 1.00, SE = 0.33, p = 0.003; 95% CI 0.35, 1.66; Path AB: 
B = − 0.25, SE = 0.14, 95% CI − 0.55, − 0.01). Mediation 
analyses showed no effect of the global FA and MD on the 
cognitive benefits for any group.

Discussion

This paper presents the findings of the “Projecte Moviment” 
randomized control trial regarding the neuroprotective effect 
of AE, CCT and their combination (COMB) on cardiovas-
cular risk factors and WM integrity outcomes in healthy 
physically inactive late-middle-aged adults.

In our study, participants in the AE group showed sig-
nificant intervention-related changes in cardiovascular 
risk factors but not in WM integrity. Following a 12-week, 
5-day-per-week, 45-min-per-day brisk walking program 
our participants in the AE group decreased in BMI, waist 
circumference and diastolic blood pressure. This finding 
is consistent with literature suggesting that PA improves 
metabolic profile and cardiovascular health (Bacon et al. 
2004; Fagard 2001; Nystoriak & Bhatnagar 2018; Pinckard 
et al. 2019). It also underlines the benefits of a low-cost 
high-impact lifestyle intervention on healthy aging, which 
might lead to long-term molecular, structural, and functional 
long-term neuroprotective benefits (Stillman et al. 2016). In 
our previous cross-sectional studies, we reported a positive 
relationship between physical exercise and an inflammatory 
profile, brain volume, and cognition (Castells-Sánchez et al. 
2020, 2021); however, we could not replicate the molecu-
lar and brain volume imaging findings after implementing 
the RCT (Castells-Sánchez et al. 2022). Similarly, although 
previous cross-sectional studies (Gow et al. 2012; Johnson 
et al. 2012; Liu et al. 2012) showed that higher PA levels 
are related to increased global FA and local FA levels in 
the corpus callosum, superior longitudinal fasciculus and 
arcuate fasciculus, several RCT failed to find significant 
changes on WM microstructure (Clarck et al. 2019; Sexton 
et al. 2020; Voss et al. 2013). Therefore, it seems that longer 
interventions are needed to detect greater changes in brain 

WM microstructure. In fact, the parameters of the activity, 
specifically duration, may be a critical aspect of an exercise 
intervention. It is also indicated (Lin et al. 2015; Stillman 
et al. 2020) that exercise neuroprotective effects might be 
modified by health status, sex and age, highlighting that 
people with significant cardiovascular risk factors (type 2 
diabetes, metabolic syndrome, etc.), with less than 50 years, 
and men showed more benefits. This may also explain the 
absence of changes in lipid profile and WM integrity in our 
healthy late-middle-aged sample overrepresenting women 
(62%) unlike other trials with clinical population (over-
weight, obese or metabolic syndrome) (Cho et al. 2011; 
Erickson et al. 2022; Kraus et al. 2002; Pettman et al. 2009).

Participants in the CCT group exhibited a significant 
change in the global MD compared to the waitlist control 
group. Although the intragroup differences between baseline 
and follow-up were not statistically significant, there was a 
trend towards decreased MD in the CCT group and a slight 
increase in MD in the waitlist control group. These find-
ings align with existing literature (Cao et al. 2016; de Lange 
et al. 2016; Engvig et al. 2012), which suggests that CCT 
may maintain, rather than alter WM integrity, highlighting 
its potential positive role in preserving WM microstructure. 
Surprisingly, the participants in the CCT group also showed 
a significant reduction in triglycerides and blood pressure. 
One potential explanation for these changes is that taking 
part in a lifestyle behavior project could have motivated 
participants to make additional modifications in their daily 
routines. In future studies, it may be worthwhile to explore 
the impact of diet explicitly on these outcomes. Moreo-
ver, it is also interesting to investigate how cardiovascular 
status at baseline can influence the effectiveness of these 
interventions.

As a significant finding of our study, we observed that the 
combined AE and multimodal CCT (COMB intervention) 
led to improvements in anthropometric measures, including 
BMI and diastolic blood pressure, as well as WM integrity, 
with increased local FA and decreased local MD, in compar-
ison to the control group. These findings are particularly val-
uable given the scarcity of such studies. Notably, our results 
reinforce previous research, which also reported decreased 
local MD in the temporal lobe (Lövdén et al. 2012), frontal 
lobe, and subcortical areas (Takeuchi et al. 2020), supporting 
the benefits of our combined training approach in preserving 
brain structures and cognitive functions, such as memory, 
attention-speed, and executive function (Anderson-Hanley 
et al. 2012; Fabre et al. 2002; Roig-Coll et al. 2020). It is 
worth highlighting that the cardiovascular benefits observed 
in the COMB group were similar to those seen in the AE 
group, but only the COMB group showed further (local) 
improvement in WM integrity. Additionally, the lack of sig-
nificant improvements in local WM integrity after single 
CCT suggests that the physiological benefits derived from 
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AE may enhance the effect of CCT on WM. These findings 
underscore the potential additive effects of combining AE 
and CCT, highlighting the value of our COMB intervention 
for both cardiovascular health and brain structure.

Our study found that changes in PA and CRF for the AE 
and COMB groups (as previously reported in Roig-Coll 
et al. 2020) were not related to changes in the cardiovascular 
risk factors and the global and local diffusivity parameters. 
Findings from Voss et al., (2013), which reported a signifi-
cant correlation between an increase in CRF and an increase 
in FA following a 1-year AE program, suggest that a mini-
mum intervention duration may be a key parameter of the 
program for physical exercise intervention-related benefits.

We found no significant moderating effect of age on the 
changes in cardiovascular risk factors and WM integrity. 
This lack of effect could be attributed to our participants' 
relatively young and limited age range, as brain health tends 
to decline more in older and clinical populations, potentially 
showing a larger intervention effect in those groups (Erick-
son et al. 2014). However, we did observe significant sex 
differences in moderating intervention-related changes. 
Women showed greater reductions in waist circumference 
and diastolic pressure following AE, while men exhibited a 
more significant reduction in LDL levels. It's important to 
interpret moderation results for the CCT and COMB groups 
with caution due to potential biases in sex representation in 
those groups. Nonetheless, our findings are consistent with 
existing literature suggesting that sex plays a relevant role 
as a moderator of AE's neuroprotective effects. This is likely 
due to sex-specific adaptations in the respiratory, musculo-
skeletal, and cardiovascular systems, as well as the influence 
of sex hormones on these physiological processes (Barha 
and Liu-Ambrose 2018; Barha et al. 2019; Castells-Sánchez 
et al. 2020, 2021, 2022).

To provide further evidence regarding the mechanisms 
underlying the cognitive benefits observed in AE (Execu-
tive and Attention-Speed) and in COMB groups (attention-
speed) (Roig-Coll et al. 2020) in this sample, we investigated 
the potential mediating effects of changes in the cardiovascu-
lar risk factors and the global FA and MD. We found that the 
relationship between AE and working memory was mediated 
by the waist circumference. Specifically, AE improved work-
ing memory but waist circumference as a mediator dimin-
ished the benefit. Further research is needed to understand 
better the biological mechanisms involved in the AE-related 
cognitive benefits.

Limitations

Our results may be influenced by methodological factors, 
such as the brief duration of the intervention and the small 
sample size reducing the power to detect mediation effects 

(Stillman et al. 2016). Future studies should use larger sam-
ples and ensuring unbiased representation of age and sex. 
Moreover, they should examine how diet patterns influence 
cardiovascular risk factors and anthropometric and blood 
sample measures.

We must also acknowledge potential ceiling effects in our 
study. For example, larger variance in cardiovascular health 
at baseline would allow to assess its effect on AE, CCT and 
COMB benefits as well as its relationship with changes in 
WM integrity.

Finally, we employed a single-acquisition of DTI scans 
to reduce participant fatigue and maintain compliance; how-
ever, such approach does not allow more advanced correc-
tions for susceptibility-related distortions.

Conclusion

In conclusion, this study provides evidence of the clinical 
relevance of lifestyle interventions, such as AE and CCT, 
and the potential additive advantages of combining them. 
The AE program was successful in improving anthropo-
metric measures related to cardiovascular health, while the 
CCT was partially successful in maintaining WM integrity. 
However, when AE and CCT were applied in combination 
(COMB), the AE-related benefits could boost the CCT’s 
neuroprotective effect leading to improved local WM integ-
rity in frontal and temporal structures, usually affected in 
pathological aging. This strongly suggests that COMB inter-
vention could have a strong effect on the WM microstruc-
ture even in short interventions. Finally, our study further 
elaborated on how individual characteristics, such as sex 
may impact intervention-related benefits, thus emphasizing 
more personalized approaches.
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