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A B S T R A C T   

Despite the recent popularity of predictive processing models of brain function, the term prediction is often 
instantiated very differently across studies. These differences in definition can substantially change the type of 
cognitive or neural operation hypothesised and thus have critical implications for the corresponding behavioural 
and neural correlates during visual perception. Here, we propose a five-dimensional scheme to characterise 
different parameters of prediction. Namely, flow of information, mnemonic origin, specificity, complexity, and 
temporal precision. We describe these dimensions and provide examples of their application to previous work. 
Such a characterisation not only facilitates the integration of findings across studies, but also helps stimulate new 
research questions.   

1. Introduction 

Over the last few decades, the conceptualisation of brain function in 
terms of predictive processing has gained considerable momentum. 
Despite its early roots more than a century ago, cognitive accounts that 
consider the dynamic interaction between incoming sensory informa
tion and prior knowledge are now being regarded as powerful frame
works to explain brain function. At their core, all predictive processing 
accounts rest on the notion that top-down predictions are contrasted 
with bottom-up inputs, which can then be used to improve future pre
dictions. From the study of dendritic communication to models of social 
interactions, predictive processing has the potential to explain human 
cognition and behaviour across very different hierarchical levels. 

However, the operationalisation of the concept of “prediction” is 
instantiated in different ways to match the respective field of study or 
experimental paradigm. Some of these instantiations deviate substan
tially from each other which can severely harm attempts at integrating 
insights from different studies. In this opinion piece, we argue that a 
careful characterisation of the type of predictive processing evoked by 
each study is necessary. Such characterisation would be highly benefi
cial, especially when searching for neural and behavioural correlates of 
predictions. To this end, we identified at least five non-orthogonal di
mensions along which different types of predictions can be described, 

incorporating factors like the nature of the information carried by the 
predictions, and how and when predictions are initiated during visual 
perception (Fig. 1). 

2. Multidimensional characterisation 

2.1. Flow of information 

Consider a train travelling along a track. Here we have information 
about the speed and direction of motion, with the content of our pre
dictions relating to the moment-to-moment sensory changes our visual 
system will experience. This provides an example of recursive pre
dictions (sometimes known as perceptual predictions) which are im
plicit, obligatory, and constant, thus turning our perceptual experience 
into a recursive interaction between predictions and inputs. Despite the 
input dynamically changing, the time lag between these elements is 
treated as negligible in practice (Ortiz-Tudela et al., 2023; Smith and 
Muckli, 2010), creating an ongoing loop between predictions and per
ceptions. In contrast, we can also anticipate the presence of some new, 
distinct information that is not present in the current perceptual expe
rience (sometimes known as mnemonic predictions). One example of 
such sequential predictions would be those evoked through learned 
cue-item relationships (e.g., Kok et al., 2014), where predictions have a 
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concrete onset triggered by the cue, and a time lag is assumed to pass 
until the expected item appears. The cue-item predictive relationship 
can be generalised to sequences, where each item predicts the next, but 
still with an assumed time delay (e.g., Clarke et al., 2022). Rather than 
implicit and continuous, sequential predictive processes are explicit and 
finite. 

2.2. Mnemonic origins 

Predictions are drawn from previous experience, and therefore, the 
nature of that mnemonic information will impact the information 
conveyed by predictions, as well as the neural substrates engaged in 
their generation (Ortiz-Tudela et al., 2023). One salient distinction 
regarding mnemonic content is between semantic and episodic infor
mation. On one hand, memory-guided predictions can reflect more 
episodic-like information, being linked to a specific spatiotemporal 
context and with the source likely being the medial temporal lobe and 
parietal cortex (Clarke et al., 2022; Gunseli and Aly, 2020; Hindy et al., 
2016; Kok et al., 2014; van Kesteren et al., 2012). Such predictions may 
provide perceptually rich information as they relate to real experienced 
situations. On the other hand, predictions related to our general se
mantic knowledge of the world may be more abstract and gist-like (van 
Kesteren et al., 2012) thus depending on ventral temporal and prefrontal 
regions (Gorlin et al., 2012; Ortiz-Tudela et al., 2023). In between these 
two extremes, we would find predictions based on neither semantic nor 
episodic information. One example would be predictions based on 
lower-level statistical regularities such as co-occurrences of perceptual 
features, which might still provide perceptually rich information. For 
example, predicting that a straight line will continue to be straight once 
a partially occluding object disappears. Such predictions are based on 
learned statistical regularities, but without a clear episodic or semantic 
origin. 

2.3. Specificity 

Predictions can also differ in terms of whether they relate to one 
specific expected input, for example, a specific image of a specific tiger, 

whether they reflect a collection of expected inputs, for example, any 
tiger but not a specific image, or cases where predictions are weak but 
corresponding to a large number of potential expected inputs. Statistical 
learning paradigms often require participants to learn to expect a spe
cific stimulus following a cue (Clarke et al., 2022; Hindy et al., 2016; 
Kok et al., 2014); conversely, entering a kitchen will activate a large 
range of semantically congruent concepts we might expect to encounter 
(Quent et al., 2021; van Kesteren et al., 2012). This dimension is re
flected in Bayesian predictive accounts through the distribution of 
priors. At one end of the dimension, predicting a single, known input, 
will be characterised as a precise (i.e., sharp) prior. If multiple inputs are 
predicted (e.g., three possible orientations of visual gratings are equally 
likely), this will result in a more imprecise prior, represented at an in
termediate position on the dimension. When there are a large number of 
equally predictable candidates, this would result in a more flat prior and 
constitute the other end of the dimension. This dimension has parallels 
with contextual priors discussed by Quent et al. (2021), within the 
PIMMS framework (Henson and Gagnepain, 2010) which further out
lines the potential implications of different priors for declarative mem
ory processes. 

2.4. Complexity of reactivated information 

Predictions are used by the brain to explain (away) inputs which are 
intrinsically noisy in a process known as disambiguation. Such disam
biguation can occur at different levels of the processing hierarchy, 
indicating that the information that is useful for predictive processing 
can be relatively low or high level. These different levels of information 
fed-back by predictions will relate to the precise cortical site of reac
tivation (Henson and Gagnepain, 2010; Clarke et al., 2022; Hindy et al., 
2016). For instance, predictions concerning low-level information such 
as the orientation of visual gratings are likely to be represented in pri
mary visual cortex rather than higher-level visual regions. Conversely, 
predictions about object information are more likely to be represented in 
higher levels of the visual hierarchy (Gorlin et al., 2012; Ortiz-Tudela 
et al., 2023). 

Fig. 1. Multidimensional characterisation. A) The parameters that can influence prediction during visual perception and B) how such parameters map onto specific 
experiments. 
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2.5. Temporal precision 

Predictions might not only relate to the anticipated content but can 
also provide temporal information about the onset of that content. 
Predictions relating to precise temporal information can be important 
for enabling efficient actions, such as when playing tennis (recursive 
prediction, perceptual), and experimental paradigms involving naviga
tion or sequential stimuli (sequential predictions, episodic) with specific 
temporal dynamics (Clarke et al., 2022; Hindy et al., 2016; Kok et al., 
2014). In contrast, predictions can also signal that something specific 
will happen in the future but provide imprecise information about when. 
For example, going to a restaurant we might have a specific expectation 
that we will see a menu, but we will have imprecise information about 
the timing. The neural mechanism driving precise temporal predictions 
can also be very different. For example, while the hippocampus might be 
particularly important for representing anticipated future states with 
temporal precision (Eichenbaum, 2017), this same mechanism would 
not be expected to support temporally precise recursive predictions. 

3. Conclusion 

The broad use of prediction across different studies creates serious 
problems when aggregating findings to build new theories, or when 
assessing empirical support for existing ones. Here we propose a five- 
dimensional scheme to help circumvent these problems by providing a 
framework to highlight the similarities and differences across studies 
and theories. For instance, we should probably not expect the neural 
implementation of an episodically originated, sequential, single-input, 
temporally precise and high complexity prediction (such as turning a 
corner on a street you walked along yesterday, predicting to see a spe
cific building come into view) to be similar to that of a semantically 
originated, sequential, multi-input, temporally imprecise and high- 
complexity prediction (such as walking into a novel bathroom at a 
restaurant). Moreover, directly testing for these similarities and differ
ences could be key to asserting whether predictive processing principles 
hold across domains. A parametric manipulation of at least some of these 
dimensions might further reveal the point at which dimensions break 
down or reveal new connections between dimensions. 

Although we acknowledge that these dimensions are not fully 
orthogonal to each other, we argue that they allow the characterisation 
and comparison of the different ways prediction is most frequently used 
in the cognitive literature (Fig. 1). Moreover, in the light of new evi
dence, additional dimensions may be needed to fully account for future 
instantiations of predictions and expectations. Here, we highlight the 
variety of ways predictions are conceived of and argue that careful 
consideration of the parameters of prediction is needed to avoid un
warranted generalisations of conclusions across studies, domains, and 
populations. 

Finally, predictions during visual perception do not operate in 
isolation but have consequences for various cognitive domains. For 
example, the specificity and mnemonic origins dimensions are most 
relevant to models which aim to account for the relationship between 
predictions and declarative memory functions (Henson and Gagnepain, 
2010), while arguably all dimensions can influence memory-guided 
decision making (Shohamy and Adcock, 2010). In addition, predictive 

processing accounts of motor action planning (e.g., a goalkeeper pre
dicting the trajectory of a football to move and attempt to catch the ball; 
Ridderinkhof and Brass, 2015) will rely on recursive and temporally 
precise predictions. In contrast, predictive models of Schizophrenia that 
include a decreased response to unpredicted rewards (e.g., Katthagen, 
Kaminski, Heinz, Buchert, & Schlagenhauf, 2020), might concern spe
cific and sequential predictions which are very different from recursive 
semantic ones. The multidimensional characterisation of predictions 
presented here can help to guide new research questions that target 
not-yet-explored combinations of parameters and provide new per
spectives on how predictions can help shape future cognition and 
behaviour. 
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