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We have studied quantum systems on finite-dimensional Hilbert spaces and found that all these

systems are connected through local transformations. Actually, we have shown that these transfor-

mations give rise to a gauge group that connects the hamiltonian operators associated with each

quantum system. This bridge allows us to connect different quantum systems, in such way that

studying one of them allows to understand the other through a gauge transformation. Furthermore,

we included the case where the hamiltonian operator can be time-dependent. An application for

this construction it will be achieved in the theory of control quantum systems.

I. INTRODUCTION

In this work, we have developed a procedure to con-

nect a given pair of quantum systems via a local trans-

formation. We describe specifically a map among the

respective Hilbert spaces that connect its vector objects

(which represent quantum states) and its hamiltonian

operators. We will studied the case in which the corre-

sponding Hilbert spaces are finite-dimensional, but this

results can be enunciated for infinite, but countable,

dimensional Hilbert spaces. This correspondence is a

useful tool to map quantum systems in order to study

one of them through the other one.

At the end of 20th century, R. Feynman asked the fol-

lowing question: What kind of computer are we going to

use to simulate physics? [...] I present that as another

interesting problem: to work out the classes of different

kinds of quantum mechanical systems which are really

intersimulatable −which are equivalent− [...] The same

way we should try to find out what kinds of quantum

mechanical systems are mutually intersimulatable, and

try to find a specific class, or a character of that class

which will simulate everything [1].

We will prove that any two quantum systems on re-

spective Hilbert spaces which are finite dimensional are

connected via a gauge transformation. This includes

the case in which any of its corresponding hamiltonian

may be time dependent. We intend to open a way to
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establish the equivalence class previously mentioned by

Feynman [1]. The rest of the article is organized as

follows: we present a brief mathematical description

of a general quantum system in a denumerable Hilbert

space are described in section II. A motivation of the

problem is described in section III. The formal aspects

of the equivalence between quantum systems is shown

in section IV. An application of these formal ideas in

the control quantum systems area is exposed in section

VI, is a particular approach in adiabatic A reduction

algorithm for a sum of hamiltonian operators is pre-

sented in section VII and finally the conclusions and

final comments are presented in section VIII.

II. QUANTUM SYSTEM ON A

DENUMERABLE HILBERT SPACE

We will start by reviewing the basics aspects of quan-

tum systems. Starting to finite numerable Hilbert

space, let us consider a general quantum system Q

which can be described in a certain n−dimensional

Hilbert space Hn. The deterministic temporal evolu-

tion of a quantum system is driven by a hamiltonian

operator H (eventually time-dependent) defined on Hn

[2]. This operator modifies the vector state |ψ(t)⟩ at

time t ∈ T ⊆ R, by the equation

i∂t|ψ(t)⟩ = H|ψ(t)⟩, (1)

where ∂t represents the partial time derivative, leaving

the possibility that such states may depend on other in-

dependent quantities. Note that a partial time deriva-

tive is used because |ψ(t)⟩ can be dependent of other
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quantities. The equation (1) is written in natural units,

e.g. ℏ = 1. Note that if the solution of (1) depends on

time only or just other quantities that also depend on

time, the partial derivative should be changed to to-

tal derivative dt. In this paper the implementation of

partial time derivative will be the same.

A solution of (1) is expressed as a t−parametrized

curve on Hn:

|ψ⟩ : T −→ Hn. (2)

Using an orthonormal fixed basis of n−states:

βββ={|ψk⟩}k∈In , where In = {1, · · · , n} is the set of the

first n natural numbers, it is possible to represent the

equation (1) and its solution (2). The inner product

defined in the Hilbert space Hn allow us to express the

state of the system at time t, |ψ(t)⟩, in terms of its

coordinates in the basis βββ as

φk(t) := ⟨ψk|ψ(t)⟩, ∀k ∈ In. (3)

Note that the bra-ket notation is used to denote the

inner product in Hn, ⟨⋆|∗⟩ : Hn ×Hn −→ C. Thus, we
have a time-parametrized curve on Cn

φφφ : T −→ Cn, (4)

where φφφ is written in terms of the coordinates of |ψ⟩ in
base βββ

φφφ = (φ1, · · · , φn)
t, (5)

where t is the matrix transposition. Both curves (2)

and (4) refers to the same quantum system but differ-

ent spaces Hn and Cn, respectively. The expression (3)

associates each element of the basis βββ of Hn to one ele-

ment of the canonical, or standard, basis of Cn, i.e. a set

of vectors {eeek}k∈In such that eeek = (0, · · · , 1(k), · · · , 0).
In summary each |ψk⟩ corresponds only to eeek, for each

k ∈ In.

Also, the complex vector curve (4) satisfies another

version of the equation (1), given by

i∂tφφφ(t) =HφHφHφ(t), (6)

whereHHH∈Cn×n is a complex matrix that represents the

hamiltonian operator H in the basis βββ and whose ma-

trix elements are denoted by

Hkl = ⟨ψk|H|ψl⟩ (7)

In this manuscript, we refer to the hamiltonian opera-

tor, or hamiltonian matrix simply as hamiltonian.

III. PROMOTING THE GENERAL PROBLEM

We are interested in finding a connection between a

given pair of quantum systems (Q,Q′) whose states be-

longs to their respective Hilbert spaces. Firstly we con-

sidered that they have the same dimension, namely n.

In such case, we take two basis (βββ,βββ′) associated with

the pair of Hilbert spaces (Hn,H
′
n) that allows us to ob-

tain two hamiltonian matrices (HHH,HHH ′) both in Cn×n.

The dynamics of each quantum system is regulated by

two equations similar to (6). We denoted its solutions

by φφφ and φφφ′, both in Cn, which are the respective wave

functions associated to each Hilbert space basis βββ and

βββ′, defined by the expression (3), (4) and (5). In general

terms, we expected that φφφ and φφφ′ be related by

φφφ′ = ωφωφωφ. (8)

in principle ωωω is an non−singular matrix in order to ob-

tain the inverse connection. Also, this connection must

be a linear in order to preserve the linear structure of

equation (6). On the other hand, we consider a con-

nection between its hamiltonians HHH and HHH ′ through a

certain map that depends on ωωω, denoted by

HHH ′ = ΩΩΩωωω(HHH). (9)

For diagonalizable hamiltonian matrices (HHH,HHH ′) which

have the same spectrum, they are connected by a sim-

ilarity transformation: HHH ′ = ωωωHHHωωω−1, but this case is

very restrictive. In order to include a more general situ-

ation between any pair of quantum systems, we need to

study other options for a general mapping ΩΩΩωωω beyond

the similarity transformation. We will see that it is

even possible to connect quantum systems even in the

case in which its hamiltonians do not share the same

spectrum. This article goes a lot further, exploring the

idea of how different the hamiltonian operators can be

connected, so that, if one of them is soluble we can use

said solution to obtain the solution of the other via this

mapping.

However, we want to clarify that this problem can-

not be completely solved using the idea of quantum

pictures, e.g. Schrödinger, Heisenberg and Interaction,

formalised by Dirac [4]. We must to emphasize that in

these cases: when going from one picture to another

we are dealing with the same quantum system, in fact
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the term picture perfectly reflects the idea of seeing the

same quantum system, but from another frame or per-

spective. Now, this article pretend to argue, that given

two quantum systems Q and Q′ (eventually different)

with Hamiltonian operators HHH and HHH ′ there is a map-

ping this two quantum systems. This much more than

a change of picture or representation of the same quan-

tum system, since it necessarily implies the existence

not only of the mentioned images but also the possibil-

ity of connecting very different quantum systems.

IV. FORMAL ASPECTS OF EQUIVALENT

QUANTUM SYSTEMS

We considered a map ΩΩΩωωω, given a nonsingular matrix

ωωω, which transforms a matrix HHH ∈ Cn×n as

ΩΩΩωωω(HHH) = ωωωHHHωωω−1 + i(∂tωωω)ωωω
−1, (10)

where ωωω(t) is a t−differentiable non−singular matrix of

n × n, i.e. ωωω : T −→ GL(n,C), also ΩΩΩωωω ∈ Cn×n. The

map ΩωΩωΩω (10) is composed by a similarity transforma-

tion of HHH, defined by ωωω, plus another time-dependent

term. We will prove that the collection of this trans-

formations {ΩΩΩωωω : ∀ωωω ∈ GL(n,C)} form a group of local

(gauge) transformations, with the composition of maps

as a single associative binary operation. The locality of

the transformation is due to the t−dependence of ωωω.

This kind of mapping was studied in previous works

from a pure mathematical point of view for applications

to differential equations in complex variables with sin-

gular operators [5–7]. For a physical point of view the

same kind of mapping was presented in [8–10] in order

to solve particular quantum systems. Respect to that,

in this section we studied the possibility to connect any

pair of hamiltonian (H,H ′) operators defined on their

respective n−dimensional Hilbert spaces (Hn,H
′
n); this

hamiltonians are represented by the matrices (HHH,HHH ′)

eventually time dependent. We proved that there is a

non singular matrix ωωω, t−dependent and differentiable,

that connect HHH and HHH ′ in this way

HHH ′ = ΩΩΩωωω(HHH). (11)

If we composed two transformations ΩΩΩωωω ◦ ΩΩΩωωω′ with ωωω

and ωωω′ are nonsingular, we see that

ΩΩΩωωω ◦ ΩΩΩωωω′ = ΩΩΩω.ω.ω.ωωω′ . (12)

From expression (12) we see that if

[ω, ωω, ωω, ω′] = 000 =⇒ [ΩωΩωΩω,ΩΩΩωωω′ ] (13)

Using the properties of composition (12) and (13), we

present an expression for the inverse map ΩΩΩωωω−1 . First

of all, we have trivially

ΩIΩIΩI = III, (14)

where III is the identity matrix. If we consider the com-

posed transform ωωω′′ = ω. ωω. ωω. ω′ such that ω. ωω. ωω. ω′ = III = ωωω′. ω. ω. ω

then from (13) we have

ΩωΩωΩω ◦ ΩΩΩωωω′ = III = ΩΩΩωωω′ ◦ ΩΩΩωωω. (15)

From (15) we obtain a unique inverse of ΩΩΩωωω given by

[
ΩωΩωΩω

]−1
= ΩΩΩωωω−1 . (16)

For more details of the properties of composition (12)

and inverse transformation (16) see Appendix.

We demonstrated that for any pair of n × n, even-

tually t−dependent and differentiable, matrices HHH and

HHH ′ there exist a non-singular n × n, t−dependent and

differentiable matrix ωωω that connect them. For that we

can define the following equivalence relation:

HHH ′ ∼HHH ⇐⇒ ∃ ωωω :HHH ′ = ΩΩΩωωω(HHH). (17)

For more details about that expression (17) is a well-

defined equivalence relation see Appendix. From the

equivalence relation (17) then ωωω satisfies the differential

equation:

i∂tωωω =HHH ′ωωω −ωHωHωH. (18)

First of all, the solution of (18) exists for the trivial

cases HHH = 000 and HHH ′ = 000, i.e. we denoted by ωωω1 and ωωω2

the respective solutions for each case

i∂tωωω1 =HHH ′ωωω1, (19)

i∂tωωω2 = −ωωω2HHH. (20)

We can obtain (ωωω1,ωωω2) as iterative nonsingular solu-

tions [16]. The existence of solutions for equations (19)
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and (20) implies that ωωω1 and ωωω2 connect HHH ′ ∼ 000 and

000 ∼ HHH, respectively. This implication is true from the

definition of the equivalence relation. From the exis-

tence of solutions for (19) and (20) then we have

∃ ωωω1 :HHH ′ = ΩΩΩωωω1
(000) ⇐⇒HHH ′∼ 000, (21)

∃ ωωω2 : 000 = ΩΩΩωωω2
(HHH) ⇐⇒ 000 ∼HHH, (22)

and from transitivity of the equivalence relation (17) we

have HHH ′ ∼HHH. This means that there is a given ωωω that

HHH ′ = ΩΩΩωωω(HHH).

We express the solution ωωω as a function of the solu-

tions of (19) and (20), (ωωω1,ωωω2), respectively. We say

that a solution ωωω built in this way is a transitive so-

lution, or composite solution. This name will be clear

in the construction procedure of the solution ωωω. From

(21) and (22) we see that the transitivity solution is

constructed from the composition of transformations

HHH ′ = ΩΩΩωωω1
(000) and 000 = ΩΩΩωωω2

(HHH) as follows

HHH ′ = ΩΩΩωωω1
(((ΩΩΩωωω2

(HHH)))) (23)

from the composition rule (12) applied to (23)

HHH ′ = ΩΩΩωωω1ωωω2
(HHH) (24)

where the transitive solution is given by

ωωω = ωωω1ωωω2. (25)

We have demonstrated that for any pair of this kind

of matrices (HHH,HHH ′), there is a nonsingular matrix ωωω

that connects HHH and HHH ′ through the map ΩωΩωΩω, given by

the expression (10), this is

HHH ′ = ΩωΩωΩω(HHH). (26)

Suppose now that this pair of matricesHHH andHHH ′ are

the hamiltonian operators of the following differential

equations

i∂tφφφ =HHHφφφ, i∂tφφφ
′ =HHH ′φφφ′, (27)

finally, from (26) and (27) we have

φφφ′ = ωωωφφφ. (28)

In summary, the connection between HHH and HHH ′ can be

found at the level of the solutions of (27), i.e. ωωω con-

nects both hamiltonian matrices via HHH ′=ΩωΩωΩω(HHH) (26)

and also both solutions via φφφ′ = ωωωφφφ (28).

An important aspect of ΩωΩωΩω mapping lies in the pos-

sibility of introducing an interaction for the starting

hamiltonian HHH. In particular, if ωωω commutes with HHH,

then from (10) we have HHH ′=HHH + i(∂tωωω)ωωω
−1, and the

second term can be interpreted as an interaction oper-

ator HiHiHi := i(∂tωωω)ωωω
−1. In this case, from [HHH,ωωω] = 0

then [HHH,ωωω−1] = 0 and if also HHH is time independent,

∂tHHH = 0, then [HHH, ∂tωωω] = 0, and finally [HHH,HHHiii] = 0.

Note that, if the hamiltonian operators (HHH,HHH ′) are

both hermitian, then ωωω is unitary and HiHiHi = i(∂tωωω)ωωω
−1

is also hermitian. On the other hand, if (HHH,ωωω) are her-

mitian and unitary, respectively, then HHH ′ is also hermi-

tian. We can compute exactly the evolution operator

associated to HHH ′ in a multiplicative factorization way

[12, 13].

The role of ωωω can be the interpreted as a modification

of the hamiltonian spectrum ofHHH, even though it is de-

generate, e.g. there are at least two different eigenvec-

tors φφφi and φφφj are associated to the same eigenvalue,

λi=λj , it is possible to choose ωωω such that the cor-

responding eigenvalues associated with the mentioned

eigenvectors are not the same λ′i ̸=λ′j . The interaction

HiHiHi is the responsible for shifting the spectrum of the

departure hamiltonian HHH. This brings the possibility

to control the separation width between two eigenval-

ues, e.g. energy gap, in order to encode information

and implement a qubit [14, 15].

In order to expose the presented ideas we contem-

plate the following non trivial example. In order to

show explicitly what is the arrival hamiltonian HHH ′

connected to the departure hamiltonian HHH through ωωω

using (10) we considered a two-dimensional Hilbert

spaces named H2, isomorphic to C2. Using the set

of 2 × 2 matrices B={σµ}µ=0, ··· , 3 where σ0 is the

identity matrix and {σk}k=1,2,3 are the Pauli matri-

ces. The set B is a basis of C2×2, thus we can ex-

press HHH,ωωω ∈C2×2 as a linear combination of the the

elements of B, where {(hµ, ωµ)}µ=0, ··· , 3 are its coor-

dinates respectively. From [ωωω,HHH ] =000 then ωk= ξ ·hk
for each k=1, 2, 3. Note that ωωω is in general time de-

pendent and HHH is time independent, thus ξ must be a

function of time and the commutative condition of ωωω

and HHH In order to obtain a compact expression is use-

ful to call hhh=(h1, h2, h3) then the coordinates of HHH ′,
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{h′µ}µ=0, ··· , 3, are given by

h′0 = h0 +
1
2 i ∂t ln[det(ωωω)]

h′k = hk

[
1 +

ξ ω̇0 − ξ̇ ω0

i det(ωωω)

] (29)

where det(ωωω) = ω2
0 − ξ2h · hh · hh · h and h · hh · hh · h =

∑3
i=1 h

2
i . The

expressions (29) are the corresponding coordinates of

HHH ′ in basis B, which are accessible from HHH via ωωω as an

additive perturbation HiHiHi = i(∂tωωω)ωωω
−1.

V. BASIS-INDEPENDENT SCHEME

There is a generalization of this kind of mapping be-

tween hamiltonian operators defined on a denumerable

Hilbert space.

In the previous section we have dealt with operators

represented by matrices, in a base of elements of a cer-

tain Hilbert space. Once the aforementioned base was

specified, there was no explicit record of it. This is an-

other of the reasons why we will now do a treatment

that does not require specifying a basis and at the time

of doing so the nomenclature will be able to express

it explicitly. We have used bold notation to denote

matrices and vectors, now we will return to normal ty-

pography to refer to operator over the Hilbert space

and its abstract vector elements are denoted using the

bra-ket Dirac’s notation [2, 4].

The ideas developed in Section IV in order to con-

nect any two hamiltonians via a transformation (10)

can be expressed now using the bra-ket notation. Given

two hamiltonian operators (H,H ′), on two isomor-

phic Hilbert spaces (H,H′), associated to a differen-

tial equation of the form (1), it can be found a time

dependent mapping given by the invertible operator

ω :H−→H′ which connects the solutions of the respec-

tive Schrödinger equation of the form (1) and the afore-

mentioned hamiltonian are related by

|ψ′⟩ = ω|ψ⟩

H ′ = Ωω(H) := ωH ω−1 + i (∂tω)ω
−1.

(30)

If the natural units are not used, will be able to define

a similar map Ωω, by multiplying the second term on

the right side of by ℏ.

In the general case these hamiltonians (H,H ′) are

not necessarily self-adjoint nor time-independent, the

evolution operator of each quantum systems (U,U ′) are

related according to U ′(t, s) = ω(t)U(t, s)ω−1(s), for

all t, s ∈ R. In Figure 1 a commutative diagram shows

how is the composition of this transformation. In case

of (H,H ′) are self-adjoint operators we have

U ′(t, s) = ω(t)U(t, s)ω†(s). (31)

where in this case ω is an unitary operator.

A useful metaphor is to consider the launch of an ab-

stract object between two points, corresponding to the

two hamiltonians H,H ′ and the throw is regulated by

ω. If ω is a unitary operator, then Ωω is an endo-

morphism over the space of the self-adjoint operators

(each of those are defined over the respective Hilbert

spaces that have the same dimension n). Following the

metaphor if the throw procedure is unitary then the

starting and finishing point will be self-adjoining. This

situation corresponds to a mapping two closed quantum

systems.

In this sense the operator H will be called the depar-

ture hamiltonian, wile the operator H ′ will be consid-

ered as the target or arrival hamiltonian. Respectively

the corresponding quantum systems Q and Q′ inherit

such attributes and will be considered as the departure

and arrival quantum systems.

|φ(s)⟩ |φ(t)⟩

|φ′(s)⟩ |φ′(t)⟩

U (t,s)

ω(s) ω(t)

U ′
(t,s)

Figure 1. This commutativity diagram shows how is the compo-

sition of transformations between equivalent quantum systems.

The commutativity comes from the existence of the inverse of

ω(x) or the inverse of U(y, z) for all x, y, z.

Until now we have considered the equivalence of

quantum systems on Hilbert spaces with the same di-
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mension or cardinality. We go one step further proving

the equivalence of all quantum systems on a countable

and finite-dimensional Hilbert space. Without loss of

generality, we considered two Hilbert spaces (Hn,Hn′)

where n<n′, and now the associated hamiltonian oper-

ators (H,H ′) have different dimension (n, n′), respec-

tively. We can construct another hamiltonian H̃ over

Hn′ , associated with hamiltonian H over the lower di-

mensional Hilbert space Hn, defined by

H̃ij =

{
Hij , (i, j) ∈ In × In

0, (i, j) /∈ In × In.
(32)

In such case, we know that there is a non-singular ω,

now such that H ′=Ωω(H̃). This operator H̃ corre-

sponds to a new quantum system on a Hilbert space

H̃n′ . We have completed the Hilbert space Hn with a

number of (n′−n) states, such that the resulting Hilbert

space H̃n′ and Hn′ have the same cardinality n′.

Now we present a physical interpretation of this pro-

cedure and some comments about the nature of this

redundant states. These additional states are collected

in a set, namely ααα =
{
|αk⟩: k ∈ In′ − In

}
must be re-

dundant in the sense in which they are incorporated

in order to form a Hilbert space H̃n′ , but they must

not interact with the states of the Hilbert space Hn it-

self. This states do not modify the original dynamics on

Hn. The states of ααα (or ααα−states) and the states of Hn

are mutually inaccessible. If the quantum system was

prepared in one of this ααα−state, then the future state

of this system cannot be left the initial state. Con-

versely, if the quantum system was prepared in a state

that belongs to Hn, then the future state of this sys-

tem cannot be left Hn in order to go to ααα. If we want

that the dynamics on H̃n′ corresponds to the dynamics

on Hn. In this way, the role ααα−states will be to com-

plete the dimensionality of Hn and take it from n to n′

in a dynamically innocuous form. For all these reasons

ααα−states and the states of Hn are mutually inaccessible

and all ααα−states are mutually inaccessible as well.

Let’s see how these mentioned interpretations con-

cerning the relations between the ααα−states and the

states of Hn and the ααα−states themselves, implies

the hamitonian H̃ from (32). For any | h ⟩∈Hn

and |αi⟩, |αj⟩ ∈ααα, where i̸=j, the conditional proba-

bilities associated to the transitions |αi⟩7−→| h ⟩ and

| h ⟩7−→|αi⟩, are equal to zero. These two transition

probabilities reveals the mutual inaccessibility between

ααα and Hn. On the other hand, the conditional prob-

abilities associated with the transition |αi⟩7−→|αi⟩ are

also equal to zero and reveals the mutual inaccessibility

of all ααα−states themselves. These conditional proba-

bilities come from the square modulus of complex ma-

trix elements of the evolution operator. Finally, given

that the close relationship between this operator and

the hamiltonian, implies the exact form of the hamil-

tonian H̃ from (32). In Fig. 2 we have summarized

the previous comments on the forbidden transitions be-

tween the states of Hn and ααα.

HnHnHn ααα
hhh

hhh′ αiαiαi

αjαjαj

Figure 2. (Color online) This diagram shows works the mu-

tually inaccessible relation for the ααα−states and the states of

Hn. Those transitions with zero probability are indicated by the

crosses (in red).

The linear combination of the elements of ααα, or linear

span, contain the states that belong to H̃n′ but does not

belongs to Hn, this is the complement of Hn in order

to generate H̃n′ , namely span(ααα) = H̃n′ \Hn. For illus-

trative purposes Fig. 3 shows how is this composition.

VI. CONTROL IN QUANTUM SYSTEMS

A remarkable field to apply the presented tools is

control theory of quantum systems, in order to imple-

ment a quantum simulator conceived as a controllable

system whose aim is to mimic the static or dynamical

properties of another quantum system [17]. Empha-

sizing the controllability of a given quantum system,

the mapping defined in (30) can be useful to drive the

evolution of this system. There are many approaches

to control quantum systems, the formalism in this sec-

tion it starts by choosing the desired state trajectory
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H̃n′H̃n′H̃n′

HnHnHn

αn+1αn+1αn+1αn′αn′αn′

Figure 3. (Color online) This diagram shows how is the com-

position of H̃n′ from Hn and a set of (n′−n) redundant states.

and then engineers a control that transport the system

along this trajectory.

Let’s consider quantum system governs by a time de-

pendent hamiltonian H(t), rigorously speaking this is

a time-indexed family of self-adjoint operators on the

hilbert space H. Suppose that for each time t its point

spectrum is the set {λn(t)}n∈I of eigenvalues, in this

case all are different, where I is a denumerable set such

that card(I)=dim(H). Also there is an instantaneous

basis of orthonormal eigenvectors of H(t) with respect

to the inner product ⟨⋆|∗⟩ : H×H −→ C [2, 3], named

βββt={|φn(t)⟩}n∈I . The orthonormality of βββt is expressed

through the inner product ⟨φm|φn⟩=δmn, for all t∈T ,

where δmn is the Kroenecker delta which is 1 if m=n,

and 0 otherwise.

In general, there is a correspondence to each eigen-

value λn(t) and its eigenspace because by definition

Hn,t=
{
|φt⟩∈H:H(t)|φt⟩=λn(t)|φt⟩

}
, for λm(t)̸=λn(t)

then Hm,t ∩ Hn,t = {0}. The hole point spectrum is

called non-degenerate, i.e. there are no linearly inde-

pendent eigenvectors associated with the same eigen-

value. As all eigenvalues are different, mathematically

means that dim(Hn,t)=1 for each n and t, and physi-

cally means if there is no transition between elements

of two proper spaces we will have the guarantee that

the system will be dominated by a unique eigenvalue.

Given that βββt is a basis for each time t, therefore

|φ(t)⟩=
∑

n∈I

ξn(t)|φn(t)⟩ (33)

is a proposed solution of (1) for this time dependent

hamiltonian. The functions {ξn(t)}n∈I are obtained re-

placing the proposed solution in the equation (1)

i∂tξn=λnξn − i
∑

k∈I

⟨φn|∂tφk⟩ξk, (34)

where the time dependence was omitted in order to

simplify the notation. In particular, for an initial

condition |φ(0)⟩∈Hm,0 then for n ̸=m: ξn(0)=0, but

∂tξn(0)= −⟨φn|∂tφm⟩
∣∣
t=0

which is non zero in gen-

eral. For this reason, even if the system was ini-

tially belongs to the eigenspace Hm,0, it cannot be

guaranteed that a posteriori the state of the quan-

tum system will remain in the same eigenspace, tran-

sitions will inevitably take place. If it is intended

to control the system so that it remains in a certain

eigenspace then let’s see how to express ⟨φn|∂tφm⟩
in another way, since it quantifies the rate of the

mentioned transitions. From H|φm⟩=λm|φm⟩, then

∂tH|φm⟩+H|∂tφm⟩=∂tλm|φm⟩+λm|∂tφm⟩, closing on

the left with the bra ⟨φn| where n̸=m, finally

⟨φn|∂tφm⟩ = ⟨φn|∂tH|φm⟩
λm−λn

. (35)

If ⟨φn|∂tφm⟩≃0 for n ̸=m the approximate

solution of (34) for each n∈I is given by

ξn(t)≃ exp
{
i
∫ t

0

(((
−λn(s)+i⟨φn(s)|∂sφn(s)⟩

)))
ds
}
ξn(0),

replacing each coordinate ξn(t) in (33) an approx-

imately solution of (1) is obtained. If ⟨φn|∂tφm⟩
is exactly equal to zero, it corresponds to a non-

interaction between states characterised by each states,

represented by these instantaneous eigenvector. Only

the state corresponds to n=m evolves in a non trivial

way and decoupled of the rest of states. The quantity∫ t

0
i⟨φn(s)|∂sφn(s)⟩ds, which appears in addition to

the familiar dynamical phase −
∫ t

0
λn(s)ds governs

the temporal evolution of the state of the system and

is also real, see the demonstration in Appendix A2,

for this reason can be interpreted as another phase.

The relevance of this quantity is such that has its

own name, called the Berry phase [18]. This kind of

particular phases appears also in classical physics and,

given that there is an underlying geometric structure,

these are called geometric phases [19].
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In order to inhibit the mentioned transitions looking

the expression (35) the time variation of the hamilto-

nian is done slowly enough with respect to the difference

of the corresponding eigenvalues. The slowly variation

of the hamiltonian is related to a quasistatic process or

misnamed in the literature an adiabatic process. There

is a connection between the rate of variation of H in

order to control the system state permanence in a par-

ticular eigenspace Hm,t for a sufficient large time t, in

this respect. In this section, let’s remember that it is

intended that the state trajectory is along the instan-

taneous eigenstates of the reference hamiltonian H.

The above discussion shows that in the natural (i.e.

uncontrolled) behaviour of the system it is not the pos-

sible guarantee non-transitions between eigenspaces of

H to do unless the process is quasistatic, but this prob-

lem could be approached in another scenario or quan-

tum basis.

In this section we have been consider an orthonormal

basis named dynamical basis βββt={|φn(t)⟩}n∈I which

contains the instantaneous eigenvectors of H(t) and

the other scenario will be built on the static or fixed

basis βββ={|ψn⟩}n∈I , to write down an unitary opera-

tor ω=
∑

n∈I ωn|ψn⟩⟨φn|, for simplicity the time depen-

dence was omitted for each bra ⟨φn(t)|. Note that each

term in the operator ω is another operator, |ψn⟩⟨φn|,
associates each ket |ψ⟩ to a new ket |ψn⟩⟨φn|ψ⟩ we in-

terpret as the vector multiplied by the scalar. Given

that ω is unitary then ωn=e
ifn where fn is a real quan-

tity, in other words is the argument or the phase of the

complex number ωn. Including the case that fn is a

function of time and mapping the hamiltoninan H via

Ωω we get

Ωω(H) = ωH ω† + i(∂tω)ω
†

=
∑

n∈I

(((
λn + i⟨∂tφn|φn⟩ − ∂tfn

)))
|ψn⟩⟨ψn|

+
∑

(m,n)∈I2

m̸=n

i ei(fm−fn)⟨∂tφm|φn⟩ |ψm⟩⟨ψn|,

(36)

where I2 := I × I. Note that ⟨∂tφm|φn⟩=− ⟨φm|∂tφn⟩
thus the first sum in (36) can be drive the state of the

system in order to satisfied the desired control goal, if

fn≡0 for each n∈I. Nevertheless the second sum in (36)

leads to transitions between states of the system. Any

attempt to suppress these transitions requires taking

the approximation ⟨φm|∂tφn⟩ ≃ 0 for all m ̸= n and,

given (35), this is equivalent to taking the quasistatic

approximation.

Based on the decomposition of the Ωω mapping for a

sum of two operators A, B and a generic ω all over H

Ωω(A+B) = Ωω(A) + ωB ω−1. (37)

Its demonstration follows directly from the definition of

the map Ωω (30). Is possible to find another hamilto-

nian named H̃ such that Ωω(H + H̃) can be drive the

state of the original system whose hamiltonian is H

Ωω(H+H̃)=
∑

n∈I

(((
λn + i⟨∂tφn|φn⟩

)))
|ψn⟩⟨ψn|. (38)

The details of this procedure are in the Appendix A2.

The idea that we have been pursuing is looking for a

hamiltonian H̃ such that added to our original hamil-

tonian H which provides an evolution like would be

achieved if an adiabatic process were valid for H via

Ωω(H+H̃).

In addition to those readers invaded by the anxiety

that comes from waiting to finish reading this article to

arrive at the aforementioned Appendix A2, here is an-

other shortcut to the closed expression for the additive

hamiltonian H̃

H̃ =
∑

n∈I

(((
∂tfn + i⟨∂tφn|φn⟩

)))
|φn⟩⟨φn|+

∑

n∈I

i|∂tφn⟩⟨φn |,
(39)

the first sum corresponds to a diagonal operator and the

second sum corresponds to a non-diagonal operator.

Note that the phases {fn}n∈I in the operator ω for

our exposition are identically zero, but this is not the

case in other contexts. In [20] the operator ω is defined

considering a particular static basis defined from the

dynamical basis evaluated in t = 0, i.e. βββ:=βββ0, and the

phases are fn(t)=
∫ t

0

(((
−λn(s)+i⟨φn(s)|∂sφn(s)⟩

)))
ds.
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There is another equivalent expression for H̃

H̃ =
∑

n∈I

(
∂tfn

)
|φn⟩⟨φn|+

∑

(m,n)∈I2

m̸=n

i
⟨φm|∂tH|φn⟩
λn−λm

|φm⟩⟨φn|,
(40)

again, the first sum corresponds to a diagonal opera-

tor and the second sum corresponds to a non-diagonal

operator.

The methodology which was described is called an

adiabatic shortcut and in particular we have argued the

transitionless driving protocol, for a clearly mathemati-

cal explanation see [20] and for an equivalent approach,

called counter-diabatic see [21]. While in [22] is possible

to find and use a time invariant operator to solve (1)

via a similar reverse engineering protocol. Remark that

transitionless driving is one of the adiabatic shortcut

protocols [20], but there are many others summarized

in [23, 24].

On the other hand, the transformation under Ωω of

H multiplied by a number u ∈ C is

Ωω(uH) = uΩω(H)− i(u− 1)(∂tω)ω
−1. (41)

The transformation under Ωω of a finite sum of hamil-

tonian operators is given

Ωω

((( N∑

k=1

Hk

)))
=

N∑

k=1

Ωω(Hk)− i(N − 1)(∂tω)ω
−1.

Another result of Ωω is the invariance under a partic-

ular linear combination. If the departure hamiltonian

H is given by a convergent linear combination of hamil-

tonians {Hk}k∈J , where J is a denumerable index set,∑
k∈J uk=u, when u can be time dependent, then

Ωω

(((∑

k∈J

ukHk

)))
=

∑

k∈J

uk Ωω(Hk)− i(u− 1)(∂tω)ω
−1,

in particular, if u ̸= 0 the parameters {wk}k∈J can be

rewritten as uk = uwk and conclude that

Ωω

(((∑

k∈J

wkHk

)))
=

∑

k∈J

wk Ωω(Hk), (42)

because {wk}k∈J satisfied
∑

k∈J wk=1. In other words,

can be considered as weights. The expression (42) is

preserved even if the weights are signed wk≥0 for all

k∈J , in this case is called a convex combination. This

quantities called weights {wk}k∈J are eventually re-

sponsible to control the time spend to simulate each

part of the convex sum [3, 11]. In this context, the in-

variance under convex combination allows to transform

each hamiltonian control problem {wk, Hk}k∈J into an-

other {wk,Ωω(Hk)}k∈J but preserving the weights.

VII. SWALLOWING ALGORITHM

Inspired in the algorithm presented in [25] conformed

by a sequence of unitary transformation, there is a

possibility to reduce a sum of N hamiltonian oper-

ators from one hamiltonian operator by a finite se-

quence of operators {ωk}k=1, ··· ,N non necessarily uni-

tary and its implementation of the corresponding se-

quence {Ωωk
}k=1, ··· ,N .

Once more, based on the decomposition of the Ωω

mapping exposed in (37), if also demand that Ωω(A)=0

we can reduce (37) to Ωω(A + B)=ωB ω−1. Suppose

we are interested in studying the temporal evolution

of a quantum systems whose hamiltonian is
∑N

j=1Hj

using the following procedure, we can swallow each

term of this sum sequentially. As these are bounded

Hamiltonian operators, then it will be lawful to de-

mand for an invertible operator ω1 that Ωω1
(H1)=0,

what is achieved if ω1 satisfies i ω̇1=−ω1H1. Therefore

Ωω1

(((∑N
j=1Hj

)))
=
∑N

j=2H
(1)
j , with H

(1)
j :=ω1Hj ω

−1
1 .

It can be seen that Ωω1
takes a sum of N hamiltoni-

ans and returns a sum of N − 1 hamiltonians which

none of these are exactly any of those original sum but

are equivalent via a similarity transformation given by

ω1. This procedure can be repeated N − 1 times until

leaving a single hamiltonian or taking one more step

the N -step and concluding the swallowing task leaving

an identically null hamiltonian.

Firstly we define the similarity transformations of the

hamiltonians for each j, k ∈ {1, · · · , N}

H
(k)
j :=ωk · · ·ω1Hj(ωk · · ·ω1)

−1,

H
(0)
j :=Hj ,

(43)

where the second expression denotes the starting point,
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H
(0)
j , of each hamiltonianHj to initialize the algorithm.

We have used a compact notation ωk · · ·ω1 to denote

the ordered composition of this operators.

Secondly, we suppose a sequence of invertible opera-

tors {ωk : k = 1, · · ·, N} such that

Ωωk

(
H

(k−1)
k

)
= 0. (44)

Finally, before giving an account of the swallowing

algorithm, let us note the following recurrence relation-

ship that will be useful to construct it

H
(k)
j = ωkH

(k−1)
j ω−1

k (45)

Then we can think of a protocol of N−1 steps (or N

steps if we want total swallowing) so that, using (37),

(43), (44) and (45) we can say that k-step is given by

Ωωk···ω1

(∑N

j=1
Hj

)
=

∑N

j=k+1
H

(k)
j (46)

for each k=1, · · ·, N . The left member is designed to

swallow k addends, so for the original N addends will

remain N−k.

Let’s see the proof by finite induction on k. The first

step k = 1 is true from (37) with A=H1 y B=
∑N

j=2Hj ,

(43) and (44). Taking the k-step in (46) and apply

Ωωk+1
then

Ωωk+1

(
Ωωk···ω1

( N∑

j=1

Hj

))
= Ωωk+1

( N∑

j=k+1

H
(k)
j

)

Ωωk+1ωk···ω1

( N∑

j=1

Hj

)
= Ωωk+1

(
H

(k)
k+1

)
+

+

N∑

j=k+2

ωk+1H
(k)
j ω−1

k+1

Ωωk+1···ω1

( N∑

j=1

Hj

)
=

N∑

j=k+2

H
(k+1)
j

(47)

which is exactly the statement which appear in (46) but

for the (k+1)-step.

Inasmuch as the map Ωω is invertible, then the pre-

sented protocol connection is in both ways: from a sum

of N -hamiltonians and a unique hamiltonian and vice

versa. We have omitted the existence of this reverse

procedure from the title of the section, since it is a di-

gestive process that does not evoke good mental images

or pleasant sensations for the reader of this work.

VIII. FINAL OBSERVATIONS

The aim of present work it was to prove that there

is a way to modify the behavior of a known quantum

system, in order to get information of another quantum

system that, at least, has a difficulty to be resolved

directly.

Even when the state space of each Hilbert space has

different cardinality, it is still possible to establish a

link via a local transformation. This connection could

be used including an eventually t−dependence of any

of these hamiltonian operators.

In summary, we have shown how for a given pair

of quantum systems, finite-dimensional Hilbert spaces

and its respective hamiltonian: (H, H) and (H′, H ′)

they could be linked via gauge (local) transformations

ω, that allow us to obtain H ′ from H, via Ωω.

In addition, this method allows us to address a new

problem from another known one, using a non-local

modulation (ω) of the well-known solution |φ⟩, follow-
ing (30). We have not only shown that this is feasible

to do through formal and constructive proof of the ex-

istence of that ω. But also we have indicated what is

the right way to do it: should be across a linear and

local (i.e. time-dependent) operation.

Respect to the simulation of a quantum system Q′ we

search for some other system that imitates the behavior

of Q as well as possible. In other words, we must per-

form a casting call of quantum systems or actors which

can be very limited, because it is a hard task to find

another Q one to simulate Q′. We wanted to use this

equivalence between quantum systems to simulate an-

other quantum system connected with Q′. But when

we said another, we want to say any other quantum sys-

tem which is connected with Q′ through ω. The map

Ωω applied to a given hamiltonian H in (10) works as

makeup that allows any actor Q, to simulate the first

quantum system Q′, a priori, if Q is connected with

Q′ through ω. Following the metaphor, the equivalence

between this quantum systems expands that catalogue

of actors that can make a good performance in order

to mimic another quantum system and becoming that

casting call, a priori more efficient.
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Given that the equivalence relation ∼ defines an

equivalent class, see Appendix, the set of all transfor-

mations forms a guild of actors capable of simulating,

a priori, any quantum system of such systems conglom-

erate, which can be fully explored by such set of trans-

formations. In particular, the subset of mapping wich

ω unitary forms a conservative guild of actors capable

of simulating quantum systems with selfadjoint hamil-

tonian.

Regarding to control theory of quantum systems we

have shown that there is a strong connection with our

mapping Ωω since it can be implemented to design tem-

poral evolutions required a priori from a primal hamil-

tonian H(t). We have dealt with the case of an or-

thonormal basis of eigenvectors of H(t) whose point

spectrum is non-degenerate transferring this problem

to a static basis also orthonormal. From the concrete

ω can be seen that both bases, dynamical and statical

are bi-orthonormal, i.e. ⟨ψn|φm⟩=δnm. This property

allows to guarantee the original identification between

each vector of the dynamical basis with the correspond-

ing eigenvalue also for the statical basis. This can be

generalized introducing a more general ω operators.

A final comment in this regard could be the imple-

mentation of the formal equivalence between quantum

and classical systems proposed in [26] in order to sim-

ulate quantum systems through specific circuits. The

advantage of using such classical systems is that their

controllability is simpler than for quantum systems in

general, in order to adequately guide its temporal evo-

lution. This implementation open the possibility to ex-

pands this catalogue of actors capable of simulating the

quantum system Q even more with classical actors, who

usually do not play that role.

Further applications of this methodological connec-

tion could be applied to perform computer simulation

of quantum systems in a new way.
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APPENDIX

A1. SOME STRUCTURAL PROPERTIES OF MAP ΩωΩωΩωA1. SOME STRUCTURAL PROPERTIES OF MAP ΩωΩωΩωA1. SOME STRUCTURAL PROPERTIES OF MAP ΩωΩωΩω

• MAPPING COMPOSITION

We composed two transformations Ωω ◦ Ω′
ω with ω

and ω′ are nonsingular and then prove that

Ωω ◦ Ωω′(H) = Ωωω′(H). (A.1)

for all H. We calculate directly Ωω ◦ Ωω′(H), denoting

it by □□□ = Ωω ◦ Ωω′(H)

□□□=Ωω(((ω
′Hω′−1+i(∂tω

′)ω′−1)))

=ω
[
ω′Hω′−1+i(∂tω

′)ω′−1
]
ω−1+i(∂tω)ω

−1

=ω ω′H(ω ω′)−1+iω(∂tω
′)(ω ω′)−1+i(∂tω) (ω

′ω′−1)ω−1

=ω ω′H(ω ω′)−1+iω(∂tω
′)(ω ω′)−1+i(∂tω)ω

′(ω ω′)−1

=ωω′H(ω ω′)−1+i∂t(ω ω
′)(ω ω′)−1

□□□=Ωωω′(H).

This completes the demonstration of (A.1):

Ωω◦ Ωω′= Ωωω′ and expression (12) is satisfied.

• INVERSE MAPPING

We calculate explicitly Ωω−1(H) and then prove that

Ωω−1(H) = Ω−1
ω (H), (A.2)

for all H. Let’s calculate the left hand of (A.2)

Ωω−1(H) = ω−1Hω + i(∂tω
−1)ω

= ω−1Hω + i(∂tω
−1)ω

Ωω−1(H) = ω−1Hω − iω−1∂tω.

http://www.fidesol.org
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Finally we check directly that Ωω−1 is equal to Ω−1
ω ,

if for all H we take 777 = Ωω ◦ Ωω−1(H) and calculate

777 = Ωω(ω
−1Hω − iω−1∂t ω)

= ω(ω−1Hω − iω−1∂tω)ω
−1 + i(∂tω)ω

−1

= ω ω−1Hω ω−1 − iω ω−1(∂tω)ω
−1 + i(∂tω)ω

−1

= H − i(∂tω)ω
−1 + i(∂tω)ω

−1

777 = H,

where ∂t(ω
−1ω)=000 then ∂t(ω

−1)ω = −ω−1∂t ω. This

completes the demonstration of (A.2): Ωω−1 = Ω−1
ω

and expression (16) is satisfied.

• AN EQUIVALENCE RELATION DEFINED BY Ωω

We say that the map Ωω defined an equivalence rela-

tion between the space of operators defined on isomor-

phic Hilbert spaces. For a given two hamiltonian oper-

ators (H,H ′) we can define a relation between them

H ′ ∼ H ⇐⇒ ∃ω : H ′ = Ωω(H), (A.3)

where Ωω(H) := ωHω−1+i(∂t ω)ω
−1 and ω is a nonsin-

gular operator. The relation (A.3) between two opera-

tors H ′ ∼ H is an equivalence in the sense that for all

operators H,H ′, H ′′ the following properties are true:

(RRR) H∼H (reflexivity)

(SSS) H∼H ′ =⇒ H ′∼H (symmetry)

(TTT ) H ′′∼H ′ ∧ H ′∼H =⇒ H ′′∼H (transitivity)

The first assertion (RRR) is true from the identity oper-

ator ω = I and by definition ΩI(H) = H. The asser-

tion (S) is also true from the existence of the inverse

operator ω−1 and construct through (A.2) the inverse

connection H ′ ∼ H. The last assertion (T ) is true from

the composed transformation of non singular operator

ω = ω′′ω′ and (A.1), such that H ′′ = Ωω′′(H ′) and

H ′ = Ωω′(H), then H ′′ = Ωω′′(Ωω′(H)) = Ωω(H). Fi-

nally, we arrive to H ′′ ∼ H.

A2. SOME REQUIRED ADDITIONAL PROOFSA2. SOME REQUIRED ADDITIONAL PROOFSA2. SOME REQUIRED ADDITIONAL PROOFS

We start to prove (34), from

|φ(t)⟩=
∑

n∈I ξn(t)|φn(t)⟩, taking the partial time

derivative and use the Schrödinger equation (1)∑
n∈I i(∂tξn) |φn⟩ + i(ξn) |∂tφn⟩=

∑
n∈I λnξnφn then

close from the left with a bra ⟨φk| and using the

orthonormal character of the dynamical basis βββt finally

obtain i∂tξk + i
∑

n∈I ξn⟨φk|∂tφn⟩=λkξk. Note that

⟨φm|φn⟩=δmn for all t, then ⟨∂tφm|φn⟩= −⟨φm|∂tφn⟩.
Finally we get ⟨φn|∂tφn⟩∗=⟨∂tφn|φn⟩= −⟨φn|∂tφn⟩,
then

∫ t

0
i⟨φn(s)|∂sφn(s)⟩ds is a real quantity.

In order to arrive at (36) we start from

Ωω(H) = ωH ω† + i(∂tω)ω
†,

=
∑

n∈I

(((
λn + i(∂tωn)ω

∗
n

)))
|ψn⟩⟨ψn|

+
∑

(m,n)∈I2

iωmω
∗
n⟨∂tφm|φn⟩ |ψm⟩⟨ψn|,

Ωω(H) =
∑

n∈I

(((
λn − ∂tfn

)))
|ψn⟩⟨ψn|

+
∑

(m,n)∈I2

i ei(fm−fn)⟨∂tφm|φn⟩ |ψm⟩⟨ψn|,

and extracting the term that corresponds to n=m of

the double sum, finally obtain (36).

To prove (39) the procedure is as follows: us-

ing (37) Ωω(H+H̃)=ωHω†+Ωω(H̃) and using the

defined operator ω then ωHω†=
∑

n∈I λn |ψn⟩⟨ψn|,
so it only remains to find a hamiltonian H̃ so

that from the requirement established by (38) then

Ωω(H̃)=
∑

n∈I i (((⟨∂tφn|φn⟩))) |ψn⟩⟨ψn|. Finally obtain

this additive hamiltonian H̃ via the inverse mapping

of (Ωω)
−1 using (A.2) we calculate

H̃ = Ωω−1

(((∑

n∈I

i (((⟨∂tφn|φn⟩))) |ψn⟩⟨ψn|
)))
,

=
∑

n∈I

i ω†
[
(((⟨∂tφn|φn⟩))) |ψn⟩⟨ψn|

]
ω + i∂t(ω

†)ω,

H̃ = i
∑

n∈I

|∂tφn⟩⟨φn|+
(((
⟨∂tφn|φn⟩−i∂tfn

)))
|φn⟩⟨φn|,

which is exactly (39).
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