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Lipkin-Meshkov-Glick model: Dynamical aspects

J. Khalouf-Rivera ,1,2,* J. Gamito ,3 F. Pérez-Bernal ,2,4 J. M. Arias ,3,4 and P. Pérez-Fernández 1,4

1Departamento de Física Aplicada III, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain
2Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación,

Universidad de Huelva, Huelva 21071, Spain
3Departamento de Física Atómica, Molecular y Nuclear, Facultad de Física, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

4Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain

(Received 22 February 2023; accepted 7 June 2023; published 26 June 2023)

The standard Lipkin-Meshkov-Glick (LMG) model undergoes a second-order ground-state quantum phase
transition (QPT) and an excited-state quantum phase transition (ESQPT). The inclusion of an anharmonic term
in the LMG Hamiltonian gives rise to a second ESQPT that alters the static properties of the model [Gamito et al.,
Phys. Rev. E 106, 044125 (2022)]. In the present work, the dynamical implications associated to this new ESQPT
are analyzed. For that purpose, a quantum quench protocol is defined on the system Hamiltonian that takes an
initial state, usually the ground state, into a complex excited state that evolves on time. The impact of the new
ESQPT on the time evolution of the survival probability and the local density of states after the quantum quench,
as well as on the Loschmidt echoes and the microcanonical out-of-time-order correlator (OTOC) are discussed.
The anharmonity-induced ESQPT, despite having a different physical origin, has dynamical consequences
similar to those observed in the ESQPT already present in the standard LMG model.
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I. INTRODUCTION

The use of toy models has been fundamental for impor-
tant advances in all branches of physics. These are nontrivial
models but still simple enough to be solved analytically and
they can be used either to look into limiting situations in
complex systems or to check and better understand different
approximation techniques. Some relevant examples of solv-
able models are Elliott’s rotational su(3) model [1] and the
interacting boson model [2–5] in nuclear physics, the Rabi
[6,7], Jaynes-Cummings [8], and Dicke models [9] in quan-
tum optics, or the Lipkin-Meshkov-Glick (LMG) model in
many-body physics [10–12], just to mention a few of them.
In many cases, such models were originally introduced in
a particular branch of physics and they were later used in
completely different fields. In particular, the LMG model was
originally proposed to test many-body approximations such
as the time-dependent Hartree-Fock or perturbation methods
in nuclear systems [10–12], but it has demonstrated to be
very useful for the study of quantum phase transitions (QPTs)
[13–16] and has been realized experimentally with optical
cavities [17], Bose-Einstein condensates [18], nuclear mag-
netic resonance systems [19], trapped atoms [20–23], and
cold atoms [24]. For instance, the LMG model has been used
to test the possible existence of excited-state quantum phase
transitions (ESQPTs) [25] and relations between ESQPTs and
quantum entanglement [26,27], or quantum decoherence [28].
The ESQPT concept was introduced in [29] and an excellent
review on this topic has been recently published [30].
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It is worth noting that phase transitions are well defined for
macroscopic systems, however, the same ideas can be applied
in mesoscopic systems where one can observe phase transition
precursors even for moderate system sizes [31]. When dealing
with mesoscopic systems, the study of their mean-field or
large-size limit is a valuable reference to connect the precur-
sors with the nonanaliticities expected in a QPT. Toy models,
such as the LMG model, are simple enough to be solved for a
large number of particles, allowing for a clear connection with
the aforementioned large-size limit.

This work is part of a more complete study on the anhar-
monic LMG (ALMG) model. The additional anharmonic term
induces, in addition to the already known ESQPT [28,32],
an anharmonicity-induced ESQPT that needs to be well un-
derstood. In a previous publication [33], the static aspects
of both the ground-state QPT and the two ESQPT’s in the
ALMG model were characterized. A mean-field analysis in
the large-N limit was performed and different observables
were used to characterize the different quantum phase tran-
sitions involved: The energy gap between adjacent levels, the
ground-state QPT order parameter, the participation ratio, the
quantum fidelity susceptibility, and the level density. In this
work, we concentrate on the influence of the two ESQPTs on
the dynamics of the ALMG model. With this aim, a quan-
tum quench protocol that consists of an abrupt change in
one of the control parameters in the ALMG Hamiltonian is
defined. Then, the local density of states (LDOS, also known
as strength function) together with the evolution of the system
after the quench are studied using the time evolution of the
survival probability, Loschmidt echoes, and an out-of-time-
order correlator (OTOC).
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The present paper is organized as follows. In Sec. II, the
ALMG model is introduced, its algebraic structure reviewed,
and the relevant matrix elements for the calculations in the
u(1) basis are explicitly given. Section III is devoted to the
analysis of a quantum quench protocol. Particularly, the time
evolution of the survival probability when the system under-
goes a quantum quench is discussed to understand how this
quantity is influenced by the presence of the ESQPTs in the
system. In Sec. IV, the ESQPTs impact on the evolution of an
OTOC is explored. Finally, some conclusions are presented in
Sec. V.

II. THE MODEL

The LMG model can be used to describe one-dimensional
spin-1/2 lattices with infinite-range interactions [10–12]. For
an array of N sites, the Hamiltonian is written in terms of
collective spin operators Ŝβ = ∑N

i=1 ŝi,β with β = x, y, z and
where ŝi,β is the β component of the spin operator for a
particle in site i. Therefore, the usual LMG Hamiltonian is
written as

Ĥ = (1 − ξ )(S + Ŝz ) + 2ξ

S

(
S2 − Ŝ2

x

)
, (1)

with S = N/2. The operator Ŝx can be written in terms
of the usual ladder operators Ŝ+ and Ŝ−, defined as
Ŝ± = Ŝx ± ıŜy, and ξ ∈ [0, 1] is a control parameter that
drives the system from one phase to the other one. In-
deed, from an algebraic point of view, the Eq. (1) LMG
Hamiltonian presents a u(2) algebraic structure with two
limiting dynamical symmetries: u(2) ⊃ u(1) and u(2) ⊃
so(2) [34]. Each dynamical symmetry is associated with
a different phase of the physical system. For ξ = 0 the
system reduces to the u(1) dynamical symmetry and this

phase is usually referred to as the normal (or symmetric)
phase, whereas for ξ = 1 the so(2) dynamical symmetry is
realized and the corresponding phase is called the deformed
(or broken-symmetry) phase [34].

Inspired by the works in Refs. [35–37], we have included
in the Eq. (1) Hamiltonian a second-order Casimir operator of
u(2), S2

z ,

Ĥ = (1 − ξ )(S + Ŝz ) + 2ξ

S

(
S2 − Ŝ2

x

)
+ α

2S
(S + Ŝz )(S + Ŝz + 1) . (2)

Again, the Hamiltonian depends on the ξ control param-
eter which drives the system between phases. In addition,
a new control parameter, α, is introduced. The purpose of
this work is to explore the influence of this new term and
the corresponding control parameter on the dynamics of the
system. It is worth noticing that for α = 0, the original Hamil-
tonian, Eq. (1), is recovered, and for α different from zero, the
ξ = 0 limit is transformed from a truncated one-dimensional
harmonic oscillator to an anharmonic oscillator. That is the
reason why Hamiltonian (2) is referred to as the anharmonic
LMG model. Moreover, we observe that the so(2) limit is not
longer recovered for ξ = 1 unless α is zero.

The Hilbert space for this system has dimension 2N , but
due to the conservation of the total spin, [Ŝ2, Ĥ ] = 0, we
can focus on the sector of maximum irrep of the system, so
the total spin quantum number S = N/2 through the work.
This leads to a drastic reduction of Hilbert space dimen-
sion that now becomes N + 1. However, the basis for the
Hilbert space given by the subalgebra u(1), |S, Mz〉 with Mz =
−N/2, . . ., 0, . . ., N/2 (the projection of the total spin S on the
z direction), is used along this work. The matrix elements of
Hamiltonian (2) in the u(1) basis are given by

〈S, M ′
z|Ŝz|S, Mz〉 = MzδM ′

z,Mz ,

〈S, M ′
z|Ŝ2

z |S, Mz〉 = M2
z δM ′

z,Mz ,

Ŝ2
x = 1

4
(Ŝ2

+ + Ŝ2
− + Ŝ+Ŝ− + Ŝ−Ŝ+),

〈S, M ′
z|Ŝ+Ŝ− + Ŝ−Ŝ+|S, Mz〉 =

[
N

(
N

2
+ 1

)
− 2M2

z

]
δM ′

z,Mz ,

〈S, M ′
z|Ŝ2

+|S, Mz〉 =
√

N

2

(
N

2
+ 1

)
− Mz(Mz + 1)

√
N

2

(
N

2
+ 1

)
− (Mz + 1)(Mz + 2)δM ′

z,Mz+2 ,

〈S, M ′
z|Ŝ2

−|S, Mz〉 =
√

N

2

(
N

2
+ 1

)
− Mz(Mz − 1)

√
N

2

(
N

2
+ 1

)
− (Mz − 1)(Mz − 2)δM ′

z,Mz−2 . (3)

In addition, Hamiltonian (2) conserves parity (−1)S+Mz and
the operator matrix can be split into two blocks, the first one
including even parity states and the second one with odd parity
states, with dimensions N/2 + 1 and dimension N/2 for an
even N value.

A complete mean-field analysis of the semiclassical limit
for Hamiltonian (2) has been carried out using spin coherent

states in Ref. [33], revealing for α < 0 a second-order ground-
state QPT as well as two critical lines corresponding to two
ESQPTs and both marked by a high density of states. A
recently published work by Nader and collaborators focuses
on a general LMG Hamiltonian that can be easily connected
with our ALMG realization [38]. One of these high density of
states critical lines was already known for the LMG model
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FIG. 1. Illustration of the tangent method discussed in the text for α = −0.6. Energy spectrum of the system in the plane ε × ξ where the
two ESQPT critical lines are highlighted with red and yellow dashed lines. The dashed blue line is the tangent for the ground-state curve εgs(ξ )
at the point ξ1. This shows schematically the graphical determination of the critical quench ξ1 → ξ2 for a given initial state. In general, the
intersection of the tangent line with the critical lines provides the critical ξ2 value for which the system reaches the ESQPT critical energy after
the quench. The dashed blue line stands for the tangent for the highest excited-state curve.

[28,32]. Here, we pay heed to the other one, that we call
anharmonicity-induced ESQPT critical line [33]. Particularly,
it is worth exploring whether this critical line is of a similar
nature as the other one and to what extent it has an impact on
the system dynamics. For this purpose, the dynamics of the
system is studied by means of the survival probability once the
system undergoes a quantum quench and an out-of-time-order
correlator (OTOC).

III. QUENCH DYNAMICS

The evolution of the system described by Hamiltonian (2)
after a quantum quench should be sensitive to the presence of
ESQPTs [28,38–41]. We explore the ESQPT influence on the
system dynamics with a quantum quench protocol, starting
from an eigenstate of the Hamiltonian, typically the ground
state, and following the system evolution once a control pa-
rameter in Ĥ is abruptly modified. The quenching brings the
system to an excited state that evolves with time. The analysis
of the ensuing system dynamics is a valuable tool to detect
and explore ESQPTs in physical systems [28,39]. Let us just
note that, from a mathematical point of view, this quenching
analysis can be put in relation to the survival probability or a
particular realization of the Loschmidt echo.

The Hamiltonian in Eq. (2) depends on two control param-
eters, ξ and α. In general, for negative α values, there exist two
different ESQPTs and each one of them has a critical energy
line marked by a high level density [33,38]. Since we are inter-
ested in characterizing both ESQPTs, a fixed value of α < 0 is
selected and the time evolution of the system is explored after

an abrupt change in the control parameter ξ . The aim is to
study how the system dynamics is modified by the existence
of two critical lines. In the followed quantum quench protocol,
the system is initially prepared in a certain normalized eigen-
state |�0〉 of Ĥ1 = Ĥ (ξ1). At time t = 0 a quantum quench
takes place, changing ξ from ξ1 to ξ2. Thus, the Hamiltonian
for the system is now given by Ĥ2 = Ĥ (ξ2) and the initial
state, |�0〉, is no longer an eigenstate of Ĥ2 and, consequently,
evolves with time in a non trivial way. The probability ampli-
tude of finding the evolved state, |�0(t )〉, in the initial state,
|�0〉, can be evaluated easily. The expression for this proba-
bility amplitude, denoted as a(t ), is a(t ) = 〈�0|�0(t )〉. The
survival probability, F (t ), also called nondecay probability or
fidelity, is given by the absolute square of a(t ),

F (t ) = |a(t )|2 = |〈�0|�0(t )〉|2 = |〈�0|e−ıĤ2t |�0〉|2 . (4)

Since our goal is to evince the effect on the system dynam-
ics of the external quench when reaching one of the ESQPTs’
critical lines, the determination of suitable ξ2 values is very
important, since the quenched system has to reach the cor-
responding critical energies. This can be achieved using the
method of the tangent, developed in Ref. [40]. In Fig. 1, a
typical evolution of the energy levels, ε, of the Hamiltonian
in Eq. (2) is plotted as a function of the control parameter
ξ , for a value of α = −0.6. In this figure, there is a change
in the ground state at around ξ = 0.2 that corresponds to the
ground-state QPT. In addition, two lines of high level density
in the excitation spectra are immediately apparent (separatri-
ces, see Ref. [33]). These lines mark the critical energy of
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the ESQPTs and separate the phases in such transitions. In
the case shown in this figure, the separatrices occur at the
critical energies εc1 = ξ (yellow dashed line) and εc2 = 0.4
(red dashed line). A detailed discussion on this structure,
including their dependence of the control parameters in the
mean-field limit, can be found in Ref. [33], where the static
properties of the ALMG model are presented. From Fig. 1,
it is clear that for analyzing the three phases one has to start
from the deformed phase ξ > ξc = 0.2. Due to the structure of
our Hamiltonian, changing ξ from an initial value ξ1 implies
that the system is excited along a straight line tangent to the
energy line at ξ1. Thus, if the initial state is the ground state
|�0〉 = |gs〉 for a particular ξ1 value (ξ1 > 0.2), one needs to
find the value of the ξ parameter, ξ2, for which the tangent
of the initial energy level ε1(ξ ) at ξ1 crosses the critical line
εc(ξ ) at ξ2 in the plane ε × ξ . This is illustrated in Fig. 1 for
the case in which the eigenstate |�0〉 = |gs〉 is the ground state
of H1 = H (ξ1). It is worth noticing that, within the range of
values defined for ξ , using this method it is not possible to
cross both ESQPTs lines from a given initial state. Indeed,
for those values of ξ above the value of the critical ξc for the
QPT, it is only possible to reach the first ESQPT, εc1 = ξ , (it
can be seen plotting the tangent to the ground-state line). It is
worth mentioning that if one uses the same tangent method
starting from the symmetric phase (ξ < ξc = 0.2), one can
reach the second ESQPT critical line, εc2 = 0.4, (yellow line),
but it would be impossible to explore properly its impact
on the dynamics of the system since one is forced to move
over the first ESQPT critical line (red dashed line). Conse-
quently, the tangent method from the system ground state is
suitable for the study of the first ESQPT (red dashed line), but
not the second one (yellow dashed line).

Let us first examine the εc1 = ξ critical line (red dashed
line), that can be reached using the tangent method from the ξ1

ground state. On the one hand, the energy of the corresponding
initial ground state is εgs(ξ1) and the equation for the tangent
line at ξ1 for the curve described by the ground state of
the system in the ε × ξ plane reads εt = m(ξ − ξ1) + εgs(ξ1),
where m is the slope of the tangent to the ground-state curve at
ξ1. On the other hand, the line of the first ESQPT (red dashed
line) is εc1 = ξ . Therefore, both lines cross at

ξ2 = ξc1 = m ξ1 − εgs(ξ1)

m − 1
, (5)

where εgs(ξ1) = 〈gs|Ĥ1|gs〉/N (ground-state energy per par-
ticle at ξ1) and the slope m of the tangent line is ob-
tained making use of the Hellman-Feynman theorem in
Eq. (2). Indeed, m = 〈gs|Ĥ ′|gs〉/N = dεgs(ξ )/dξ |ξ=ξ1 , where
Ĥ ′ = 2

S (S2 − Ŝ2
x )2 − (S + Ŝz ).

A similar analysis can be performed for the anharmonicity-
induced critical line. However, as we noticed above, the
tangent to any point along the ground-state line with ξ > ξc

never crosses the second critical line (dashed yellow line) for
the range of values of ξ considered in this model. Hence, to
explore this separatrix one should start from a more appropri-
ate Ĥ1 eigenstate. In particular, we have selected the highest
excited state (denoted as |�∗〉). As with the ground state, the
most excited state of our system is well-defined in the thermo-
dynamic limit by a coherent state [42]. Then, our initial state is

now |�0〉 = |�∗〉 of Ĥ1. Let us denote the slope of the tangent
to the energy line of the highest state at ξ1 as m2. Then, this
tangent line will reach the anharmonicity-induced ESQPT line
given by εc2 = ε0 which is a constant. In the α = −0.6, the
value of ε0 = 0.4 was computed with a mean-field formalism
[33]. Therefore, the value for the critical ξ , ξc2, reads

ξc2 = m2 ξ1 + ε0 − ε�∗ (ξ1)

m2
, (6)

where ε�∗ (ξ1) = 〈�∗|Ĥ1|�∗〉/N and m2 = 〈�∗|Ĥ ′|�∗〉/N =
dε�∗ (ξ )/dξ |ξ=ξ1 is the slope of the corresponding tangent
line.

Once a way of crossing both ESQPT lines is available, the
dynamic evolution of the system and the effect of crossing an
ESQPT line can be examined. This can be accomplished com-
puting the survival probability F (t ) Eq. (4). Results for F (t ) as
a function of time are shown in Fig. 2 for N = 300, α = 0 (left
column) and −0.6 (center and right columns) and different
initial states (either the ground state |�0〉 = |gs〉 in the left
and central columns or the most excited state |�0〉 = |�∗〉 in
the right column) for selected ξ values. The α = 0 case in
the leftmost panels is included for the sake of completeness
and reference. The panels in this column depict the time
evolution of the survival probability for decreasing values of
ξ2, starting always from the ground state |gs〉 for ξ1 = 0.6.
The calculated ξ2 at the crossing with the ESQPT is ξc = 0.3.
In general, the survival probability has a regular oscillatory
behavior except in the region close to the ESQPT critical
energy, ξ2 = 0.3, where the system undergoes an ESQPT and
the survival probability suddenly drops down to zero and starts
to oscillate randomly with small amplitudes. Once the critical
energy for the ESQPT is crossed, the survival probability
starts to oscillate in a regular way again. This phenomenon
was reported for the first time in Ref. [28]. In the central and
rightmost columns the same observable is plotted including a
nonzero anharmonic term (α = −0.6).

In the panels of the second column of Fig. 2, the survival
probability is depicted for decreasing values of ξ2 and starting
always from the ground state of a Hamiltonian with ξ1 = 0.6
and α = −0.6. Due to the negative α value, the system un-
dergoes two ESQPTs, displayed in the spectrum by means of
critical lines with a noteworthy accumulation of energy levels
(see Fig. 1). One of the two critical lines (red dashed line)
can be traced back to the ESQPT already present in the α = 0
case [25]. However, the second one (yellow dashed line) is
linked to the presence of the anharmonic term in the Hamil-
tonian [33]. The nature and physical interpretation of the
anharmonicity-induced ESQPT is different from the already
known ESQPT associated with the ground-state QPT. Hence,
in principle, there is no a-priori reason for both behaving in
the same way. However, as we see if we compare the results
for the critical ξc values in the different columns, the results
obtained for the α = 0 and the anharmonic cases are similar.
The survival probability is oscillatory and regular except once
ξ2 is close to ξc, the critical value for the first or second ES-
QPT. In all cases, when ξ2 = ξc, the quenched system reaches
the critical energy and the survival probability suddenly drops
down to zero and oscillates randomly with a small amplitude
(red curves). This is similar to what happens in the α = 0 case.
Once ξ2 is smaller than ξc, a periodic oscillatory decaying

064134-4



EXCITED-STATE QUANTUM PHASE TRANSITIONS IN … PHYSICAL REVIEW E 107, 064134 (2023)

0.25

0.5

0.75

1

F
(t
)

ξ2=0.5

 α=0, |ψ0>=|gs>

ξ2=0.5

α= −0.6, |ψ0>=|gs>

ξ2=0.6

α=−0.6, |ψ0>=|ψ∗>

0.25

0.5

0.75

1

F
(t
)

ξ2=0.4 ξ2=0.3 ξ2=0.5

0.25

0.5

0.75

1

F
(t
)

ξ
c
=0.300

ξ
c
=0.241 ξ

c
=0.255

0 10 20 30 40

t

0.25

0.5

0.75

1

F
(t
)

ξ2=0.1

0 10 20 30 40

t

ξ2=0.1

0 10 20 30 40 50

t

ξ2=0.1

FIG. 2. Survival probability F (t ) as a function of time (t) for a system size N = 300. The leftmost column includes F (t ) results for α = 0
and the middle and rightmost columns for α = −0.6. The initial state for the leftmost and middle columns is the ξ1 = 0.6 Hamiltonian ground
state, |�0〉 = |gs〉, and the initial state for the rightmost column is the ξ1 = 0.7 Hamiltonian highest excited state, |�0〉 = |�∗〉, to reach the
second critical line of the energy spectrum. Different quantum quenches are shown for different values of ξ2. There are some critical values
for ξ2, ξc, for which the system is settled in the critical energy of an ESQPT (third row) and the survival probability drops down to zero (with
small random fluctuations).

behavior is observed in F (t ). As explained above, the quench
from the ground state never reaches the second ESQPT line.
For that purpose, one has to start from a different initial state.
Thus, to explore how F (t ) is affected by the second ESQPT,
the quantum quench is performed using as an initial state the
highest excited state of the system, |�∗〉, for a given value
of ξ1. In this way, the second critical line (yellow dashed
line) for the ESQPT is accessible after the quench. In the
panels of the right column of Fig. 2, the survival probability
for decreasing ξ2 values is plotted for an initial state equal
to the highest excited state of the Hamiltonian with ξ1 =
0.7 and α = −0.6. For this parameter selection, the second
critical line is reached at ξc = 0.255. In this column, again,
results are very similar to the ones obtained in the preceding
cases. The fidelity F (t ) oscillates regularly while ξ2 > ξc2,
but when the ξ2 parameter gets close to the critical value,
ξc2 = 0.255, the survival probability drops down to zero and
randomly oscillates with a small amplitude. Once the critical
line is crossed, F (t ) recovers an oscillatory decaying periodic
behavior, but at a certain time, this periodic oscillatory be-
havior becomes distorted. The reason for this phenomenon
is that the tangent line to the highest excited-state curve at
ξ1 in the plane ε × ξ remains very close to the critical line
εc2 = 0.4 after the quench for lower values of ξ2 up to 0. One
should note that when starting from the highest excited state

the first ESQPT critical line is not accessible after the quench
(see Fig. 1).

If we denote the eigenstates of Ĥ (ξi, α) with i = 1, 2 as
|ψ j (ξi )〉 with j = 0, 1, . . . , N/2, then we can write the initial
state |�0〉 in the basis of Ĥ2 = Ĥ (ξ2, α) eigenfunctions as
|�0〉 = ∑

j Cj |ψ j (ξ2)〉 and then

F (t ) = ∣∣〈�0|e−ıĤ2t |�0〉
∣∣2

=
∣∣∣∣∣∣
∑

j

|Cj |2e−iE jt

∣∣∣∣∣∣
2

=
∣∣∣∣
∫

dEe−iEtρ0(E )

∣∣∣∣
2

, (7)

where Ej is the energy of the jth Ĥ2 eigenstate and
ρ0(E ) = ∑

j |Cj |2δ(E − Ej ), called the strength function or
local density of states (LDOS) [43,44], is the energy distribu-
tion of |�0〉 weighted by the Cj components.

From Eq. (7) it is clear that the fidelity F (t ) is the abso-
lute value of the LDOS Fourier transform squared and this
quantity can provide some clues on the F (t ) time dependence
for the quench at the critical values ξc, denoted in red in
the third row of Fig. 2. In Fig. 3 we plot the LDOS for the
same cases included in Fig. 2, hence in the first column, we
show the LDOS for the ground state of Ĥ1 = Ĥ (ξ1 = 0.6, α =
0) for different Ĥ2 cases, all of them with α = 0. In the
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FIG. 3. LDOS |〈ψ j (ξ2)|ψ0〉|2 as a function of the normalized excitation energy ε j (arb. units) for systems with ξ1 = 0.6 and α = 0.0 (left
column), ξ1 = 0.6 and α = −0.6 (middle column), and ξ1 = 0.7 and α = −0.6 (right column) (N = 300 in all cases). The chosen states are the
ground state |ψ0〉 = |gs(ξ1)〉 (left and middle columns) and the most excited state with even parity |ψ0〉 = |�∗(ξ1)〉 (right column), expressed
in all cases in the basis of eigenstates of the Hamiltonian Ĥ (ξ2, α), being ξ2 the quench parameter. The cases that correspond to a critical value
of ξ2 (third row) are plotted using red color.

second and third columns we depict the LDOS for initial states
that are the ground state of Ĥ1 = Ĥ (ξ1 = 0.6, α = −0.6) and
the most excited state of Ĥ1 = Ĥ (ξ1 = 0.7, α = −0.6). The
LDOS for the critical quench values are depicted in red. It
can be clearly seen that, for all columns, in the critical control
parameter cases the LDOS is nonzero at the ESQPT critical
energy and has a clear local minimum at this energy value.
The Fourier transform of such LDOS produces the particular
time dependence shown in the panels of the Fig. 2 third row.

Another quantity of interest, inspired on Loschmidt’s ob-
jections to Boltzmann H theorem, is the Loschmidt echo
[45,46]. This quantity, considered a probe to the sensibility of
a system dynamics under perturbations, is used to benchmark

the reliability of quantum processes [47]. It was shown to
be a valid QPT detector [48] and, more recently, it has been
used to check the influence of the ESQPT on the dynamics
of the LMG model [49]. Consider an initial wave function,
|ψ〉, which evolves a time t under a Hamiltonian Ĥ1, |ψ (t )〉 =
e−iĤ1t |ψ〉. We can reverse the time evolution with another
Hamiltonian Ĥ2, eiĤ2t e−iĤ1t |ψ〉. The squared overlap of the
resultant state with the initial state |ψ〉 is the Loschmidt echo
(LE), denoted as M(t ) [46,50],

M(t ) = |〈ψ |eiĤ2t e−iĤ1t |ψ〉|2 . (8)
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Another physical interpretation of this quantity is possible,
since Eq. (8) is the distance between the same initial state once
it is evolved for a time t with two different Hamiltonian oper-
ators. One of the properties of ground-state and excited-state
QPTs is that, near the critical region, states are quite sensitive
to perturbations. A way to quantify this effect is computing
the LE for the eigenstates of the system Ĥ1 = Ĥ (ξ, α) with a
time-reversal under Ĥ2 = Ĥ (ξ + δ, α),

Mj (t ) = |〈ψ j (ξ, α)|eiĤ (ξ+δ,α)t |ψ j (ξ, α)〉|2 , (9)

where |ψ j (ξ, α)〉 is the jth eigenstate of Ĥ1 and δ is a small
perturbation. The LE, as well as its long-time average value,
detects the ESQPT in the LMG model without anharmonicity
[49].

In Fig. 4 we plot Mj (t ) for several eigenstates of a system
with ξ = 0.3 and α = −0.6. The total number of bosons
is N = 300, the system has been perturbed with δ = 0.01,
and only states with even parity are considered. Results are
shown for j = 0, 20, 48, 82, 103, and 120. The two states
with energies closest to ESQPTs critical energies ( j = 48 and
103) are plotted in red. As expected, the ground state j = 0
perform small oscillations with a single frequency around a
value close to one, with a maximum value equal to one. Other
states far from the critical region, as j = 20, 82, and 120,
have a more complex oscillation pattern, not harmonic, with a
larger amplitude and without reaching unity in the considered
time range. However, in the case of eigenstates close to the
critical energy, j = 48 and 103, M(t ) is only one for t = 0
and the oscillations of the LE are of a much more irregular
nature, something similar to what happens for the fidelity F (t )
in Fig. 2.

As shown in Ref. [49], the time averaged value of the LE
for the jth eienstate, M j , is a convenient probe to detect an
ESQPT. This quantity is defined as

M j = lim
T →∞

1

T

∫ T

0
dt M(t ) =

∑
k

∣∣cδ
jk

∣∣4
, (10)

where cδ
jk are the coefficients of the jth eigenfunction of the

Hamiltonian operator Ĥ (ξ + δ, α), expressed in the basis of
eigenstates of Ĥ (ξ, α): |ψ j (ξ + δ, α)〉 = ∑

k cδ
jk |ψk (ξ, α)〉.

The LE time averaged value is equal to the inverse of the
participation ratio (PR) [51] of |ψ j (ξ + δ, α)〉 computed using
the basis {|ψk (ξ, α)〉}. In Fig. 5 we plot the time averaged
LE versus the normalized excitation energy for all even parity
states of the system studied in Fig. 4. The states included in
Fig. 4 have been marked using red pluses for critical ones
( j = 48 and 103) and blue crosses for others ( j = 20, 82,
and 120). M j has local maxima located for the eigenstates
close to the critical energies, as it was observed in the LMG
model without anharmonicity [49]. Hence, the time averaged
LE detects the new ESQPT associated to the anharmonic term
in the LMG Hamiltonian and confirms that this quantity is a
good ESQPT probe.

IV. ESQPTs AND OTOC

Out-of-time-order correlators (OTOCs), that appeared for
the first time in the 1960s in the context of superconductivity
[52], are a four-point temporal correlation function able to
measure the entanglement spread in a quantum system from

FIG. 4. Loschmidt echoes for a system with ξ = 0.3, α = −0.6,
N = 300, and a perturbation across the control parameter ξ of
δ = 0.01. From top to bottom we display Mj (t ) for the jth state
with even parity: 0, 20, 48, 82, 103, and 120. The states closer to
the ESQPTs are plotted in red.

the degree of noncommutativity in time between operators.
Since then, after a long period of relative inactivity, there
has been a tremendous frenzy around this concept on various
fronts [53]. They returned to the limelight with the proposal of
OTOCs as a viable quantum chaos indicator, due to its expo-
nential increase at early times in certain systems [54–57], and
to diagnose the scrambling of quantum information [58–61].
Besides, OTOCs are sensitive probes for quantum phase tran-
sitions [62–68]. Despite the fact that the experimental access
to out-of-time-order correlators is hindered by the unusual
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FIG. 5. Time-averaged of M(t ) versus the normalized excitation
energy ε for the same system introduced in Fig. 4. The highlighted
states (red plus symbols for transition states and blue crosses for
others) correspond to the states studied in Fig. 4.

time ordering of its constituents operators that precludes the
measurement using local operators, several approaches using
different experimental platforms have successfully provided
OTOC results [23,69–75].

Given two operators, Ŵ and V̂ , it is possible to probe the
spread of Ŵ (t ) with V̂ through the expectation value of the
square commutator

Cw,v (t ) = 〈[Ŵ (t ), V̂ (0)]†[Ŵ (t ), V̂ (0)]〉, (11)

where Ŵ (t ) = eıĤtŴ e−ıĤt is the operator Ŵ in the Heisen-
berg’s representation [53,76–79]. The expectation value is
usually computed in the canonical ensemble. However, in
recent works, it has also been computed over given ini-
tial states or over the system eigenstates (microcanonical
OTOC) [77,78]. The squared commutator Eq. (11) can be
rewritten as Cw,v (t ) = Aw,v (t ) − 2Fw,v (t ). The first term is
a two-point correlator, Aw,v (t ) = 〈Ŵ †(t )V̂ †(0)V̂ (0)Ŵ (t )〉 +
〈V̂ †(0)Ŵ †(t )Ŵ (t )V̂ (0)〉 and the out-of-time order appears in
Fw,v (t ), the real part of a four-point correlator,

Fw,v (t ) = 
[〈Ŵ †(t )V̂ †(0)Ŵ (t )V̂ (0)〉]. (12)

Without loss of generality, if we consider operators that are
unitary, then Eq. (11) reads Cw,v (t ) = 2 − 2Fw,v (t ).

In a recent LMG model study, the ESQPT effects on the
microcanonical OTOC and the OTOC following a quantum
quench were explored for Ŵ = V̂ = Ŝx/S [64]. The time
evolution of the OTOC after a sudden quench was analyzed
and it was concluded that the equilibrium value (the long
time average value) of this observable can be used as a good
marker for the ESQPT because it behaves as an order pa-
rameter, able to distinguish between the phases below and
above the ESQPT, respectively. Our goal here is to analyze
how the OTOC behaves once the ALMG system goes through
the anharmonicity-induced ESQPT line. This study is of
relevance since the physical nature of this ESQPT is different
from the one of the already known ESQPT for the usual LMG

model. Moreover, the possibility of using an OTOC as an
order parameter for both ESQPTs is considered.

We have used in our analysis the microcanonical OTOC
[77,80], defined as

Fn(t ) = 
[〈n|Ŵ †(t )V̂ †(0)Ŵ (t )V̂ (0)|n〉] , (13)

where the state |n〉 is the nth eigenstate of the Hamiltonian
Eq. (2), whose energy is En. This state is computed for a given
set of Hamiltonian parameters, ξ and α.

Following Ref. [64], we have first selected Ŵ = V̂ = Ŝx/S
as the OTOC operators. The reason behind this election is
twofold. On the one hand, the expectation value of the Ŝx

operator is known to be an order parameter for the QPT in the
LMG model, and it has also been shown in previous works
that it behaves as an order parameter for the ESQPT [81]. On
the other hand, the Ŝx operator is related with the breaking of
parity symmetry in the spectrum eigenstates [43]. However,
the obtained results (not shown) indicate that in this case the
Fn(t ) equilibrium value only detects the occurrence of the first
ESQPT, independently of its nature, and not the second one.
We decided to explore other possibilities such as Ŵ = Ŝy/S,
V̂ = Ŝx/S or Ŵ = Ŝ+/S, V̂ = Ŝ−/S. In both cases we obtain
the expected results, with equilibrium values sensitive to the
anharmonicity-induced ESQPT in the symmetric phase and to
the two ESQPTs in the broken symmetry phase.

Numerical solutions for the time evolution of the OTOC
Eq. (13) with V̂ = Ŝ−/S and Ŵ = Ŝ+/S are presented in
Fig. 6. These are results for a selected set of positive parity
states of a system with size N = 300 that are obtained by the
diagonalization of the Hamiltonian Eq. (2). The time evolution
of the microcanonical OTOC is depicted for different initial
states and ξ = 0.5 with either α = 0 (left-column panels) or
α = −0.6 (right-column panels). Despite the different oper-
ators included in the OTOC, a quite similar phenomenology
to that pointed out in Ref. [64] is observed. However, it is
worth emphasizing that if we kept V̂ = Ŵ = Ŝx/S, once the
first critical energy is crossed, the time average value of the
OTOC is zero as Fn(t ) oscillates around zero.

The behavior of the microcanonical OTOC, Fi(t ), depends
on the region of the spectrum in which the system is located.
Particularly, Fi(t ) develops a regular behavior, with small
amplitude oscillations around a positive value. This value de-
creases until the Fi(t ) oscillates around zero, when the critical
energy value is reached. For the states close to the ESQPT
critical energy (red color curves), not only Fi(t ) oscillates
around zero, but it also behaves in a highly irregular way, as in
Ref. [64]. This is a feature shared by both columns in Fig. 6,
though in the right column panels the second and fourth panel
correspond to critical energies for the two ESQPTs that arise
in this case.

Let us now to discuss in more detail the left column
(α = 0). Recall that in this case there is just one ESQPT
located in the mean-field limit at energy ε = ξ , its value
for these plots is ε = ξ = 0.5. We have selected the ground
state and four other positive parity eigenstates, i = 0, 30, 58,
100, and 140 in Figs. 6(a), 6(c), 6(e), 6(g), and 6(i), respec-
tively. The state with the closer energy to the critical ESQPT
energy is i = 58—Fig. 6(e)—where the ESQPT precursors
are clearly manifested. In the cases with energies below the
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FIG. 6. Time evolution of the microcanonical OTOC, Fi(t ), for selected positive parity eigenstates of an ALMG model with a system size
N = 300. In all panels ξ = 0.5, the left column panels refers to Fi(t ) for α = 0 and the right column panels include results for α = −0.6.
OTOCs for different initial states are shown: For the left column from top to bottom; (a) |i = 0〉 (ground state), (c) |i = 30〉, (e) |i = 58〉, (g)
|i = 100〉, and (e) |i = 140〉. For the right column from top to bottom: (b) |i = 0〉 (ground state), (d) |i = 74〉, (f) |i = 95〉, (h) |i = 115〉, (j)
|i = 140〉. There are some energies in which the eigenstate is settled at the critical energy of an ESQPT. These are the cases for panels (e) in
the left column and (d) and (h) in the right column, highlighted using a red color.

critical energy Fi(t ) > 0. However, as can be seen in Fig. 6(e),
once the critical energy for the ESQPT is reached, the OTOC
oscillates randomly around zero. For energies larger than the
critical energy—left Figs. 6(g) and 6(i)—the Fn(t ) display
high and low frequency oscillations around a zero mean value.
Therefore, the steady-state value of Fn(t ) will be equal to zero
for these states. As one goes up in energy in the spectrum, the
same kind of oscillatory behavior is observed, with smaller
amplitudes.

There are some new features arising in the right column
panels, that include Fi(t ) results for the α = −0.6 anhar-
monic case. As previously mentioned, in this case there are
two critical ESQPT lines that in the mean-field limit lie at
ε = 1 + α = 0.4 and ε = ξ = 0.5. We show the results for
the two eigenstates with local minimum PR values i = 74 and
115 in Figs. 6(d) and 6(h). Again, the Fi(t ) OTOC oscillations
at the critical lines are markedly irregular. These two states

have been highlighted using red color. The other three values
included in the right column of Fig. 6 are i = 0 (ground state),
95, and 140. In the region between the two critical lines,
the envelope for Fi(t ) has a sine-like oscillatory behavior
around zero, so its steady-state value equals zero. Once the
second critical line is crossed and the system energy increases,
Fi(t ) presents again an oscillatory behavior around positive
values, as can be clearly seen in Fig. 6. It is worth pointing
out that the characteristic times of the different microcanon-
ical OTOCs span a wide range of frequencies. In particular,
Fig. 6(f) exhibits a much longer period (smaller frequency)
than the rest of the panels. The oscillatory frequency of the
four-point correlator can be traced back to energy differences
between pairs of states of different parity [68]. Therefore,
whenever different parity eigenstates are degenerate, the
stationary value of the OTOC has a nonzero contribution. This
occurs at energies less than the critical energy of the first
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FIG. 7. (a) Correlation energy diagram of the even parity states ALMG model as a function of the the control parameter ξ with α = −0.6.
Each energy level is colored according to the steady-state value of the microcanonical OTOC, F j , where j takes the values i = 0, 1, . . . , N/2. A
vertical line marks the results for the ξ = 0.5 case whose F j are depicted in the right panel. Panel (b): Steady-state value of the microcanonical
OTOC, F j , as a function of the re-scaled excitation energy ε for even parity states of a system with control parameters ξ = 0.5 and α = −0.6.
Both panels: Calculations for a system with size N = 400.

ESQPT and above the critical energy of the second ESQPT.
The OTOC associated with eigenstates whose energies are
either just under the critical energy of the first ESQPT or
above the critical energy of the second ESQPT have small
frequencies due to the small energy differences because the
degeneracy starts splitting. A similar small-frequency OTOC
can be observed for energies in between both ESQPTs—as
shown in Fig. 6(f). In this case, positive- and negative-parity
states are nondegenerate. However, there are states whose
energy gaps with the adjacent states of opposite parity are very
close. In such cases, some OTOC frequencies can again be
very small, and thus the correlator may exhibit a long-period
oscillation around zero, depending on the value of the matrix
elements of the operators V̂ and Ŵ .

It is worth noticing that, in the anharmonic case, the two
ESQPT critical lines cross at ξ = 0.4, as we can observe in
Fig. 1. Since the case depicted in Fig. 6 is for ξ = 0.5, going
up in energy from the ground state the first ESQPT found is
the anharmonic one (not present in the simple LMG model).
We have checked, although it is not shown here, that similar
results are obtained if we consider a value of ξ such that the
two critical lines have not crossed yet (ξ value between 0.2
and 0.4). This is interesting because, regardless the physical
origin of the critical line, once the first ESQPT critical line
is crossed, the microcanonical OTOC starts oscillating around
zero until the second ESQPT critical energy is crossed. This
has an immediate consequence on the steady-state value of
Fi(t ) for V̂ = Ŝ−/S and Ŵ = Ŝ+/S, that can be taken as a re-
liable order parameter. This is not the case for Ŵ = V̂ = Ŝx/S.
It is true that this choice of operators marks correctly the
transition once the first critical line is crossed, but it is not

sensitive to the second ESQPT critical line, irrespective of the
physical origin.

The steady state of the microcanonical OTOC Fi(t ) is
defined as

F i = lim
T →∞

1

T

∫ T

0
Fi(t )dt . (14)

Results for this quantity can be found in Fig. 7. In the left
panel we depicted the correlation energy diagram for a system
with size N = 400 as a function of the ξ parameter for a
fixed anharmonicity parameter value α = −0.6. Each point
is colored according to the corresponding F i value. From
this figure it is clear how the stationary limit of the OTOC
provides a convenient order parameter for the two ESQPTs in
the ALMG model, with abrupt changes whenever the system
gets through critical energies. The right panel of the same
figure [Fig. 7(b)] includes the stationary OTOC results for the
eigenstates of an ALMG model with system size N = 400
and control parameters ξ = 0.5 and α = −0.6 as a func-
tion of the re-scaled energy the rescaled excitation energy
εn = (En − Egs)/N . This corresponds to the results marked
with a vertical line in Fig. 7(a). The energy dependence of
this quantity can be anticipated from the observation of the
behavior of Fi(t ) depicted in Fig. 6. Indeed, as pointed out
previously, the main feature of Fi(t ) is that it is an oscillatory
function. However, the value around which it oscillates is dif-
ferent from zero only in the region below (above) the critical
energy of the first (second) ESQPT that is encountered when
one goes up in energy in the spectrum. Once the first ESQPT
critical line is crossed, regardless of its physical origin, the
oscillations are around zero. This leads to the conclusion that
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F i is different from zero in the region below the first critical
line and it is equal to zero in the region of the spectrum above
that first ESQPT critical line. However, it is worth noticing
that for particular values of the control parameters there could
be nonzero instances of F i. These nonzero values are isolated,
akin to accidental degeneracies and are not associated to a
critical energy, thus are easily distinguishable from the sudden
change associated with the occurrence of an ESQPT.

In light of these results, it is clear that ESQPTs have a
strong impact on the OTOC dynamics, notwithstanding they
can be mapped to a stationary point or the asymptotic behavior
of the PES in the semiclassical description of the system.
Thus, the findings given in Ref. [64] are confirmed in this
respect. However, concerning the use of F i as an order pa-
rameter, we have found that to be sensitive to both ESQPT
lines the Ŵ and V̂ operators cannot be the same.

V. CONCLUSIONS

The ALMG model presents, in addition to the ground-state
QPT and its known ESQPT, a second ESQPT. In this work,
we have analyzed the impact of both ESQPT critical lines
on the dynamical evolution of the survival probability, the
Loschmidt echo and the OTOC. We have found that both
ESQPTs, despite of having different physical origins, lead to
a dramatic change in the survival probability evolution after a
quantum quench. Particularly, it has been shown that the sur-
vival probability gives information about system relaxation:
For a certain critical quench, related to the ESQPT energy, the
system behaves in a unique way that allows one to recognize
the critical lines separating regions in which the system is in
a different phase. In addition, it has been explained that due
to the way we are introducing the quantum quench it does not
allow to reach with the same procedure the two ESQPT lines
that appear in the anharmonic Lipkin model. Consequently,
an alternative way for characterize one ESQPT has been pro-
posed. This method starts from the most excited Hamiltonian
eigenstate (instead of the ground state). Both calculations are
complementary and allow us to study the two ESQPT lines.
In both cases, the survival probability drops down to zero
(with small random fluctuations) when reaching an ESQPT
line. This behavior was explained with the help of the LDOS.

We show that other quantity whose evolution is
greatly affected by the presence of an ESQPT is the LE

(see Figs. 4 and 5). The time-dependence of the LE is quite
different if the evolved state is close to the critical energy.
Beyond the temporal evolution, the time-averaged LE has
been proved to be a convenient ESQPT detector in the ALMG
model too, since this quantity displays local maxima in the
critical ESQPT energy values.

An additional way of characterizing the dynamical evolu-
tion of the system is the study of an OTOC. In this work, such
a study has been done using the microcanonical scheme and
has revealed that the new ESQPT, that is, the one generated
by the anharmonicity term, also has noticeable effects on the
evolution of the OTOC. However, it is difficult to determine
sharply if the system has reached the critical ESQPT energy,
since there is a wide region close to the critical energy where
the system is affected by the corresponding ESQPT. Finally,
we have concluded that the normalized steady-state value for
Fi(t ), F i, can be used as an order parameter to mark the two
ESQPTs that occur in the ALMG, despite the different nature
of the two cases.
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