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Simple Summary: The framework for assessing the loss of access to critical infrastructure is
presented, taking into account surface elevation and different types of critical facilities. Two types
of analysis were performed—ex post to quantify the immediate damage and ex ante to provide
information for precautionary measures. The framework provides detailed information on the
population’s loss of access to each type of facility; we propose the use of network statistics to quantify
and explain the consequences of flooding. To account for the possibility of accessing buildings
from different sides, the notion of a multiedge facility is introduced. The simulations with randomly
generated flood events, using a probability model estimated from observations, were performed as
part of the ex ante assessment.

Abstract: This work presents a framework for assessing the socio-physical disruption of critical
infrastructure accessibility using the example of Greater Jakarta, a metropolitan area of the Indonesian
city. The first pillar of the framework is damage quantification based on the real flood event in 2020.
Within this pillar, the system network statistics before and shortly after the flood were compared.
The results showed that the flood impeded access to facilities, distorted transport connectivity, and
increased system vulnerability. Poverty was found to be negatively associated with surface elevation,
suggesting that urbanization of flood-prone areas has occurred. The second pillar was a flood
simulation. Our simulations identified the locations and clusters that are more vulnerable to the
loss of access during floods, and the entire framework can be applied to other cities and urban areas
globally and adapted to account for different disasters that physically affect urban infrastructure.
This work demonstrated the feasibility of damage quantification and vulnerability assessment relying
solely on open and publicly available data and tools. The framework, which uses satellite data on the
occurrence of floods made available by space agencies in a timely manner, will allow for rapid ex post
investigation of the socio-physical consequences of disasters. It will save resources, as the analysis
can be performed by a single person, as opposed to expensive and time-consuming ground surveys.
Ex ante vulnerability assessment based on simulations will help communities, urban planners, and
emergency personnel better prepare for future shocks.

Keywords: access to critical facilities; flood; physical–social vulnerability assessment; GIS; network
statistics; 2020 Jakarta flood

1. Introduction

Cities, as places with a high concentration of population and resources, have been
playing a major role in the advancement of disaster management systems. In modern
society, cities are gaining an increasingly important role. The projections estimate that, by
2050, at least 68% of the world’s population will live in cities [1]. We might soon see a rise of
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megacities with population counts exceeding dozens of millions of people [2]. This exposes
an even larger population to the risk of experiencing extreme events. Urban infrastructure
is crucial to the operation of a city and required for an efficient emergency response.
Risk-reduction strategies should ensure the safety of infrastructure to make it possible
for facilities, such as hospitals, educational institutes, police, fire stations, communication
systems, energy systems, as well as transportation systems, to continue providing services
when they are needed the most [3].

This paper considered the city as a complex self-regulating system [4] consisting of
a number of components that are so complex that we view them as systems within a
system. Urban infrastructure together with social organization represent an ensemble of
such systems; therefore, we define a city as a hybrid social–physical system or a network,
where all components are embedded into its simplified topological structures. The basis
of the network in this framework is roads. Although this simplistic framework cannot
account for off-road travel, it is able to generate near-accurate results, because it is known
that the movement in cities in the course of disasters and after disasters happens to a large
degree on the roads [5].

The growth of cloud computing, big data analytics, and AI infrastructure, as well as the
IoT, coupled with the massive expansion of transportation infrastructure, is making critical
components of cities more interdependent and more vulnerable to attack [6]. Over-reliance
on various sensors and centralized data collection and decision-making mechanisms can
lead to serious problems in the event of a minor power outage or cyberattack, so the more
complex a city is, the more vulnerable it is [7]. The emergence of megacities will bring even
more problems, because the more edges the system has, the more likely it is to become
unstable, and this transition will be sudden and catastrophic [8].

All of this significantly increases the interest of researchers, policy-makers, and prac-
titioners in the vulnerability of urban systems to crises and disasters. Special attention is
given to floods. Floods occur when water levels in rivers, lakes, ponds, reservoirs, aquifers,
and estuaries exceed critical values and water overflows onto land. A flood event can also
occur when the sea surges on coastal lands above the average sea level. Although flooding
is a natural phenomenon that is important for the life cycle of a number of organisms,
including human beings, uncontrolled urbanization of floodplains has led to huge prob-
lems with material and financial losses and has cost many human lives [9]. Satellite and
airborne remote sensing systems can provide much of the information needed to delineate
flood-prone areas, assess damage, and feed models that can forecast the vulnerability of
inland and coastal areas to flooding [10].

We attempted to quantify the damage to the socio-physical system of the city caused
by a real flood case and to assess the vulnerability of critical infrastructure and communities
to future disasters. Jabodetabek, the Jakarta metropolitan area in Indonesia, also known as
Greater Jakarta, was the geographical focus of this research. We quantified losses from the
January 2020 major flood, which resulted in the displacement of sixty-thousand inhabitants
and the death of eighty people (see Figure A1 in Appendix A).

The major problem of the Jakarta metropolitan area is that a significant portion of
it is low-lying [11]; large populated areas are located below sea level, which seems to be
the result of uncontrollable urbanization [12]. In the case of the January 2020 flood, heavy
rainfall intensity coincided with high tides. The water was pushed into low-lying areas
from the side of the ocean and from the upland areas, which caused a severe flood. The
drainage system did not manage the inflow, and flooding occurred even in the higher-lying
areas. This hazard caused power outages and transportation system collapse.

The paper raises three major questions:

Research Question 1

How did the 2020 flood in Greater Jakarta affect the urban structure? What types of
objects and facilities suffered the most? What percentage of the population was left without
access to services?
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Research Question 2

What is the relationship between the loss of access, poverty, and elevation in Greater
Jakarta?

Research Question 3

What is the spatial socio-physical vulnerability of Greater Jakarta to the future disrup-
tion of access to services due to flooding?

The structure of the paper is as follows. This Section 1 presents a brief literature review
with a description of a flood-related situation in Jakarta. Section 2, Materials and Methods,
lists the data sources and discusses the peculiarities of the data collection and cleaning,
as well as the data reliability, and then, explains the authors’ methodological framework.
Section 3, Results, discusses the results of this research and their limitations. Section 4,
Discussion, outlines the way forward. The paper ends with Section 5, Conclusions.

1.1. Vulnerability, Robustness, Resilience, and Antifragility

The risk of catastrophes is related to a power-law distribution, where the probability
of an event typically varies as a power of its size [13]. The power law also governs the
outcome of disasters [14]. A hazard that leads to catastrophic events is characterized by
its frequency distribution and its severity distribution. It is impossible to predict the exact
timing and magnitude of a future disaster event. Taking this into account, one should focus
on preparedness, rather than on forecasting [15–18]. When a disaster hits, the affected
community needs immediate help to save as many lives as possible, and later, it needs
resources to recover quickly. When the community is prepared, it is less vulnerable and,
therefore, more resilient [16].

Researchers still struggle to clearly define the system characteristics related to its ability
to withstand shocks. Vulnerability is usually understood as the degree of susceptibility to
the negative effects of disasters [19]. If a system is vulnerable, it can be easily damaged and
lose some of its functionality. In other words, it is “the potential to suffer loss or harm” [20].
The transition of a system from a vulnerable state to a robust state means that it is no longer
as easy to break or damage the system. The system becomes more resistant to stress. The
accumulated damage from a hazard, however, can still cause too much stress and move
the whole system into a broken state. The question is how quickly this will happen. In
this framework, resilience is the ability of a system to withstand the damage of the flood
and continue to provide access to critical services for the population. Resilience is a vague
concept with dozens of definitions, which vary widely. It is usually understood as the
ability of a system to recover quickly from damage, which is fundamentally different from
robustness.

There are two main dimensions of resilience definitions—the disaster and crisis man-
agement view and the hybrid social–physical perspective. This paper deals with the social–
physical dimension. Studying socio-technical systems, i.e., the combination of physical
systems research with the study of communities and individuals, allows for a relatively
holistic approach. The roots of this approach lie in the practices of the post-World War
II era, when large restoration projects were initiated. Current research on socio-technical
systems focuses on the networks of information and action, required for their sustainability
[21]. In this approach, physical and social systems are interdependent: without technology,
society faces limits; without the society, technology is useless.

In addition to being resilient and robust, the system can be antifragile. Not only does it
withstand impacts and recover quickly, it goes beyond that. It actually becomes stronger as
a result of the stress it is subjected to [15,22]. In this paper, we focused on the vulnerability
and robustness stages, paving the way for further exploration of the resilient and antifragile
dimensions.
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1.2. City as a Hybrid Social–Physical Network

Infrastructure is widely considered as a multilayer network and is studied jointly [23].
Interconnectedness is observed, for example, between the layers of oil and gas infrastructure
(fuel and supply, compression stations), electric power (power plants, supply, substations),
communications (end office, switching office), emergency services (fire stations, ambulances
and hospitals, police stations), transportation, and water (reservoir substations).

The main focus of research on hazard-prone interconnected infrastructure is on robust-
ness and resilience. The degree of interconnectedness can have different effects on resilience
depending on the characteristics of the network. If the network of transport routes represent
negative influences, such as contagion, then a dense network can cause cascading effects
[23]. On the other hand, if the network links represent the desired reachability of nodes,
then a dense network is good at resilience [24]. In addition, critical infrastructure and
cascading failures are the subject of a dedicated line of research [25–30]. Possible scenarios
for improving the robustness and resilience of networks were proposed in [31,32] and [33].
The authors in [34] reviewed the resilience metrics and measurements of transportation
infrastructure.

Currently, there is a limited number of papers that consider the urban system as a
whole, which implies examining not only transportation or critical infrastructure, but also
communities, socio-economic topographical characteristics, and urban space. One of the
research lines proposes and develops a network approach that represents each of the urban
system elements as a network [35–37]. A detailed account of recent literature was presented
in the line of research in [38–41].

1.3. Percolation as a Robustness Measure of the Network

Percolation theory from statistical physics and mathematics has inspired many re-
searchers in network science to apply it to their studies of the robustness properties of
various networks. The inverse percolation transition helps to identify the impact of node
failures on the overall integrity of a network [42]. In classical applications, the Giant
Connected Component (GCC) is used as an indicator of the state of network functional-
ity. One can find research focused on the analysis of multimodal transportation systems
[43], critical facilities [5], power grids [44], and universal models of resilience potentially
applicable to different types of networks [45,46]. In addition to studying robustness to
failure, researchers are looking for optimal attack strategies and post-failure recovery and
restoration approaches. For instance, using percolation theory in complexity science, it is
possible to generate a classification of fragility and service geographical distribution imbal-
ances in cities [47]. The authors analyzed the robustness of road networks and services in
fifty-four cities relying solely on publicly available data. They believe that it is possible to
develop objective methods for measuring urban resilience, but there is more work to do [47].
Another study considers different infrastructure failures jointly, rather than in isolation
[43]. The authors believe that given today’s cyber–physical threats, intentional targeted
attacks on top of random failures during ongoing crises will exacerbate the severity of a
situation. They analyze the urban transport network of networks and develop a framework
for assessing its resilience. They found that it is more important to maximize robustness,
rather than efficiency, as the network with maximized efficiency is more vulnerable to
compounded crises and cascading failures.

Applying GCC analysis to real networks, however, one should demonstrate dis-
tinguished accurateness, as it is generally known that spatial networks with real-world
topologies differ significantly in their properties from randomly generated networks. Re-
cent studies have moved away from the idea of using the GCC to assess network robustness
and resilience to flooding [5,48], since the GCC plays only a limited role in the people’s
access to critical services. The major drawback of GCC research is that it ignores those
inhabitants who sit outside of a targeted giant component. One, however, cannot exclude
parts of the urban population when planning an emergency response, for example. All
inhabitants must be equally valuable and cannot be left behind. In our paper, we analyzed
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each component of the city, not just a connected giant. In addition, some researchers argued
that flooding is not a random percolation transition [5], and others proved it empirically
[48].

1.4. Graph-Based Approach with Focus on Floods

Floods from a network science perspective were studied in [5,43,49–54]. A working
version of this paper was first published in [55]. Our framework is closest to the work of [5],
who developed an approach for assessing the physical vulnerability of a city to flooding in
terms of the community’s ability to access critical facilities and tolerate access disruptions.
The authors utilized a modified percolation method, calculated a disruption tolerance
index, and revealed spatial clusters of vulnerability in Houston, Texas. One critical facility
type they considered was hospitals. They found that vulnerable areas tend to form spatial
clusters. The information revealed by their framework is of practical essence and important
for city planners and emergency managers.

Similar to [5], we departed from the common idea of focusing on the GCC analysis. We
adopted the authors’ notion of the robust component, understanding it as a set of connected
edges that have access to at least one critical service of a certain type. We considered the
social dimensions of inhabitants’ access to facilities, even though the publicly available
data for Jakarta are not as detailed and rich as for U.S. cities. There are, however, some dif-
ferences. First, we added additional information on the surface elevation to the assessment.
Second, we incorporated more types of services: in addition to hospitals, our framework
included police stations, fire stations, grocery stores, pharmacies, educational facilities
(transformable space), and shelters. Third, we conducted 140 simulations based on the
probabilistic flood return periods specific to Greater Jakarta, which are related to flood
depths. In the simulations, we accounted for the random failure of the drainage system. We
calculated the proportions of the loss of access to services. The floods in our model were
static. This provides a simple way to test the framework for calculating network statistics
in the course of service loss. A more-practical application of this technique will require a
more-rigorous approach with propagating floods, which will allow a more-dynamic assess-
ment of access loss; probability models with input from machine learning investigations
will further enrich the calculations. Fourth, we paid special attention to network statistics in
the course of flooding and give a detailed account of different service access disruptions by
district. Finally, there may be technical differences in the way we constructed our networks.
The most-important difference is that we embedded facilities into one network in the form
of edge properties. Since, in reality, buildings can be accessed from different sides, we
introduced the notion of multiedge facilities, which are created by assigning a single facility
property to all edges located in a certain proximity to that facility. We will discuss this in
more detail in the following sections.

2. Materials and Methods
2.1. Materials

The framework of this research relies on the availability of data. To successfully
quantify the impact of flooding on the network, we need high-resolution raster or detailed
vector data to obtain information about the topology of urban systems and the occurrence
of flooding.

Despite the increasing availability of satellite data, there are still a limited number
of high-quality sources that depict disasters. The main sources of such data are currently
Maxar, the U.S.-based space technology company, Copernicus, the EU Earth observation
program, and Sentinel Asia, the Earth observation initiative for the Asia–Pacific region.
Maxar is providing optical satellite imagery of a number of catastrophes around the world
as part of its Open Data Program. Copernicus and Sentinel Asia provide access to both
optical and radar satellite data. In some cases, vector data are available with information on
the estimated damage from the catastrophes. In this research, we used publicly available
categorized and vectorized flood occurrence data provided by [56].
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Table 1. Overview of data types and sources. The data related to transportation and facility location
were obtained from [57] and [58]; flood occurrence data are provided by [56]; physical surface
information was extracted from [11]; population density was obtained from [12]; poverty severity
indices were from the official statistics services [59–61].

Data Year Source

Physical

Elevation 2020 ALOS GDSM
Flood 2020 Sentinel Asia
Road 2020 Humanitarian OSM
Fire station 2020 Humanitarian OSM
Police station 2020 Humanitarian OSM
Hospital 2020 Humanitarian OSM
Pharmacy 2020 Humanitarian OSM
Shelter 2020 Humanitarian OSM
Grocery store 2020 OpenStreetMap
School, college, university 2020 OpenStreetMap

Social

Population density 2015 Energydata.info
Poverty severity in Jakarta 2010 Open Data Jakarta
Poverty severity in Jakarta
Metro 2020 Open Data Jabar

Poverty severity in Jakarta
Metro 2020 Badan Pusat Statistik

Apart from the disaster- and damage-related sources, we need to have data about
urban systems. For this purpose, we used the free and open platform Open Street Map [57],
which is a project uniting thousands of volunteers, who digitize physical objects on the
surface. Another source of specialized data based on the OSM platform is [58]. It should
be noted, however, that both professionals and amateurs provide inputs to the platform,
which raises legitimate questions such as: Are these sources reliable? Researchers and GIS
professionals evaluate the accurateness of OSM. For example, Reference [62] evaluated the
quality of the OSM database and concluded that critical asset types are well represented.
The accuracy of public green spaces in OSM was estimated in [63]; the authors found that
the spaces were mapped with a high degree of completeness. Another study reports that
“the spatial indicators derived from points, lines, and areas are able to reflect socio-economic
characteristics”, therefore OSM has important capabilities and advantages for assessing
urban resilience [64].

Returning to this paper, it is known that surface elevation plays an important role in
flood occurrence; therefore, we used the ALOS Global Digital Surface Model [11] to add an
elevation dimension to the framework. The social characteristics of Greater Jakarta were
extracted from [12] (population density) and [59], [60] and [61] (poverty severity). Poverty
severity is the index that explains the share of the population below a minimum income
threshold, disaggregated by district. Population density is initially a raster dataset for the
whole country. The data types and sources are summarized in Table 1.

2.2. Methods’ Discussion

Christopher [65] in his book Notes on the synthesis of form described fit as the absence of
misfit. To assess the object, it is possible to list all of its good qualities, but the list is likely
to be long. A more-efficient way to do this is to make a list of detrimental qualities—those
qualities that are not just unfavorable, but seriously harmful: “... it is through misfit that the
problem originally brings itself to our attention. We take just these relations between form
and context which obtrude most strongly, which demand attention most clearly, which
seem most likely to go wrong” [65]. This framework revolves around the same principle.
We analyzed and show what is wrong or what will go wrong, rather than focusing on
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a few best practices. In summary, we assessed the vulnerability of people’s access to
critical infrastructure in the event of flooding and quantified the damage from the 2020
flood in Greater Jakarta, identifying its implications for the whole system. We looked
for relationships between the loss of access to services, poverty, and elevation. We ran
140 simulations of floods of various degrees to identify the most-vulnerable places. This
framework is the combination of two major quantitative methods—geographic information
systems and network analysis. The final results can be used by policy-makers and planners
to (1) identify vulnerable neighborhoods that are more likely to lose access to services in
the event of a disaster, (2) prepare for the next emergency, and (3) plan for the placement of
new services or the relocation of the existing ones.

The selected components of the urban system are listed in Table 2. The selection was
based on a review of literature and the availability of open data.

Table 2. Studied urban systems.

1. Transportation system
(a) Road infrastructure

2. Emergency system
(a) Police stations
(b) Hospitals
(c) Fire stations
(d) Shelters

3. Transformable system (public facilities convertible into shelters)
(a) Schools, colleges, and universities

4. Socio-economic system
(a) Approximate population count with poverty severity information
(b) Grocery stores

5. Environmental system
(a) Land surface elevation

2.3. Geographic Information Systems

Embedding the data structure of the urban system into a GIS system that happens in a
preparatory stage of research is the most-time-consuming part. The street topography from
OpenStreetMap usually needs to be simplified and cleaned from geometric errors. Initially,
each urban system (facilities, roads, population) represents an individual data layer. Our
task was to create a single dataset that embodies all the individual layers. This unification
was performed based on the road network. All other elements were joined to the nearest
road segment in the form of a vector attribute (see Figure A2 in Appendix B). Instead of
joining a facility as a property to a single edge, we connected it to all the nearest edges. This
was performed to account for the possibility of accessing facilities from different sides of
the building, not just from the street side. For this reason, we distinguish multiedge facilities
and facility edges. The former is a single facility consisting of several edges that contain the
properties of a single facility; the latter is a single edge that is part of a multiedge facility. In
damage quantification, when a multiedge facility loses all of its edges, we call this a loss
of access. If some, but not all, edges of the facility are damaged, we define this situation
as hindering of access to services. The same was performed with flood occurrence. Flood
becomes a Boolean property of each road segment indicating 0, when there is no flood, and
1, when the flood occurs on a segment.

Other Geographic Information System (GIS) techniques, such as fixing geometries,
raster vectorization, and joining attributes by location, were also used when necessary.
The software used was QGIS, a free and open desktop GIS application [66]. The complete
workflow is shown in Figure 1.
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2.4. Network Statistics

The cleaned geospatial data were then transformed into a two-dimensional graph
(network) consisting of vertices (nodes) and edges. This way, road infrastructure becomes
a network of road segments (edges) that are connected by road junctions (vertices). Critical
facilities, surface elevation parameters, population density, and poverty data are embedded
in the network as edge properties.

The mathematical formulation of the network is as follows. Let G = (V, E) be a
planar undirected graph of the urban transportation system, where V is a set of vertices
representing road junctions (intersections) and E is a set of edges representing parts of
the road that link those junctions. The number of V equals 785,442; the number of E
equals 995,074. Each edge (u, v) in E has a corresponding feature vector φuv indicating the
elements of critical infrastructure that are adjacent to this edge, in particular police stations
(equal to 0 or 1), hospitals (0 or 1), fire stations (0 or 1), shelters (0 or 1), public facilities (0
or 1), grocery stores (0 or 1), population (in count), poverty severity (as a numerical index),
and elevation (in meters) (components listed in Table 2). Vd and Ed are the sets of vertices
and edges affected by the flood. Let G′ = (V′, E′) be a copy of the initial network with all
the edges from Ed removed. The number of E′ then will be 899,628.

Using the Python NetworkX [67] and graph-tool [68] specialized modules, we ob-
tained basic network statistics and performed all the other calculations.

Number and share of roads and services of a certain type:

We calculated and reveal what types of roads there are (e.g., trunk, primary, secondary,
residential), what is the total share of affected edges of each type, how many and what
critical services are available, what is the fracture of disabled services due to disasters.

Population without access to facilities:

The share of the population left with no access to critical facilities was calculated for
the entire system and for each district.

Betweenness centrality of edges

The edge betweenness centrality is defined as the number of shortest paths that go
through that edge [69]. Knowing the betweenness of edges will help to see how important
the roads that are damaged during disasters are. If, for example, a critical amount of
important roads is prone to a disaster, the vulnerability of the whole system should be of
our concern. If the most-important roads are still available or some other roads can take
over their function even in the case of a major disaster, this may be an indication of the
system robustness. The limitation of this measure is that it considers only the shortest
paths, and if another path is only slightly larger than the shortest path, it is not considered,
even though it may serve as an alternative route with only minimally higher costs. We
define and compute betweenness centrality as in [68,70]. An alternative measure of the
betweenness of an edge can also be measured by comparing the average shortest distance
between all pairs of nodes with the same number, but with that edge removed from the
graph. If removing an edge significantly increases the average shortest distance, this is an
indication of its importance.

Average betweenness:

We can also took the average of edge betweenness as a measure of network robustness.
Intuitively, the smaller the average, the more robust the network. The average betweenness
is a linear function of the average distance.

Highest betweenness:

This is the value of the top edge in the betweenness centrality distribution. You also
want this number to be as small as possible.
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Comparison of network states:

Summarizing all the collected statistics, we compared two networks: the initial net-
work G = (V, E) and the network affected by the flood G′ = (V′, E′).

Figure 1. The methodological workflow for the ex post evaluation.

2.5. Relationship Identification

This involves running linear regressions to reveal the associations between the loss
of access to services, poverty, and elevation. The hypothesis is that the higher the loss of
access to services, the higher the poverty rate is, and that the lower the surface elevation,
the higher the poverty is.
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2.6. Flood Simulation

Having confirmed the existence of a negative relationship between the loss of access to
services and elevation (Table A1 in Appendix C), we ran flood simulations based on surface
elevation levels for historical and projected rainfall observations. We had no information
about the fragility of the drainage system, but we tried to account for it by introducing
random failures that occur with a randomly assigned probability varying between one and
ten percent.

Table 3. Lower and upper cap flood depth levels in meters (D) and corresponding return periods in
years.

Return Period Dmin Dmax

2 0.31 0.62
5 0.48 0.96
10 0.6 1.22
20 0.73 1.47
50 0.9 1.81

100 1.03 2.07
200 1.15 2.33
500 1.32 2.67
750 1.4 2.82

1000 1.45 2.93
1500 1.52 3.08
2000 1.58 3.18
5000 1.74 3.52

10,000 1.87 3.78

In total, we used fourteen intervals of flood depth levels (D: from less than 0.62 m to
less than 3.78 m), each corresponding to a particular flood return period and consisting of
the two values—the bottom cap and the upper cap (Table 3) [71]. These intervals were used
as background data in the paper [71] and were provided by its authors. The thresholds were
based on the rainfall–runoff coefficient calculations applied to a 28-year (1980–2008) record
of monthly rainfall observations in Jakarta. There is a logarithmic relationship between the
frequency of events, measured by return period, and the severity, measured by flood depth.
The authors extrapolated the results to unknown return periods, and that allowed us to
run ten simulations for each of the intervals. The flood variability was provided by the
lower and upper caps. For each simulation, a new feature vector was created describing
the weight attributes assigned based on certain flood occurrence probabilities (see Section 2
for more information on the weight distribution among the levels). The probability values
were the assumptions, and in a single simulation, they were distributed as follows:

• p = 0.95 of flood occurrence on edge for D < Dmin (values smaller than the lower cap
elevation level).

• p = 0.90 of flood occurrence for Dmin ≤ D ≤ Dmax (values smaller than the upper cap
but greater than the lower cap elevation level), where D is a flood depth level, and
Dmin and Dmax are the lower and upper caps of flood depth levels correspondingly,
which are specific for respective flood return periods.

• 0.01 <= p <= 0.1 (randomly assigned) is a possibility of a drainage system failure
for all other elevation values, i.e. D > Dmax.

Table 4 shows an example of the probability of an edge being flooded for a simulation
of a two-year return period.
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Table 4. An example of an edge failure probability distribution for return period 2.

Elevation (D) Flooding Probability (p)

D < 0.31 0.95
0.31 ≤ D ≤ 0.62 0.9

D > 0.62 0.1

The recorded weighted outcomes helped us construct a spatial vulnerability map. We
performed this by recording all edges that have lost access to at least one service after each
flood occurrence simulation. This type of simulation was not intended to be an accurate
reflection of the real flood and is mostly used for demonstration purposes.

3. Results
3.1. System State Description: Before and After the 2020 Greater Jakarta Flood
3.1.1. Global Level

Table 5 summarizes the statistics for two systems—Greater Jakarta network before the
flood (J0) and Greater Jakarta network after the flood (J1). ne describes the number of edges.
The hazard directly affected 9.6% of the edges within the studied area. The completeness of
the network is represented by the parameter κ, which indicates the number of connected
components within the whole system. The first network is a monolithic unaffected network;
therefore, it has only one component. After the event, the system breaks down into 62,772
individual components.

Table 5. Network information and robustness properties’ comparison between the two system
states—before and after the flood, where ne is the number of edges, κ—the number of components in
the network, P—the population share with access to all facilities, Fe is the number of existing facility
edges of all types of facilities, F—the number of multiedge facilities belonging to all types of facilities,
bmax

e indicates the maximum betweenness centrality, and be is average betweenness centrality.

ne κ P Fe F bmax
e be

J0 995, 074 1 100 10,739 2363 * 0.207 0.000254
J1 899, 628 62, 772 87 10,035 2231* 9.506 0.005946

δ −9.6% 6,277,100% −13% −6.6% −5.6% 4492% 2241%
* Except grocery stores.

The share of population P with access to all critical facilities is 100% in the first case and
87% in the second. Fe and F correspond to a number of facility edges and multiedge facilities.
The reason why we distinguished facility edges from multiedge facilities is grounded in the
way the edge properties were assigned. Figure A2 explains how an individual facility is
embedded into its nearby edges, which together form a multiedge facility. The comparison
of Fe in two systems shows how many edges regardless of their facility attachment are
flooded. This may or may not mean that a certain facility is flooded. The comparison of F
suggests how many multiedge facilities are completely flooded, which only happens when
all facility edges, attributed to a certain facility, are affected by the flood. For example, if a
multiedge facility consists of five facility edges and four of them are disabled, the facility
is still considered functional, although we assumed that the access to it is, to some extent,
hindered.
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Table 6. The 2020 flood’s direct impact on road infrastructure by road type, number of edges, and
percentage change. Comparison of the two system states—before and after the flood.

J0 J1 δ

Trunk 9199 8795 4.4%
Primary 23,156 22,177 4.2%
Secondary 21,365 19,935 6.7%
Tertiary 45,115 41,851 7.2%
Residential 675,285 601,080 11%
Other 220,954 205,790 6.9%
Bridge 18,093 17,008 6%

The betweenness centrality comparison allowed us to see how the importance of the
edges is redistributed after the flood. The edges high in betweenness centrality tell us that
their position has significant influence on connectivity in the whole graph. It may be a case
when the street has few connections, but it is located in such a way that, if taken out, some
large parts of the graph will be disconnected. We wanted this measure to be as small as
possible, because a small number is a sign of less dependency on certain edges. Here, we
observed a dramatic increase in both the highest (bmax

e ) and average betweenness centrality
(be), which suggests that, after a stress has been imposed in the form of flood, the system
has become more vulnerable. This assumption finds support in [43], who demonstrated
how natural hazards make technical systems increasingly more fragile, in particular with
respect to compound attacks.

Table 6 shows the flood effect on the types of roads. The roads that suffered the most
from flood occurrence were residential, tertiary, and secondary. Trunk and primary roads
are usually of paramount importance in the urban transportation system; therefore, even
4.2–4.4% of damage is considered a significant loss.

The direct impact of flood disaggregated by services is shown in Table 7.

Table 7. The 2020 flood’s direct impact, number of facility edges (in parentheses—multiedge facilities),
and percentage change. Comparison of the two system states—before and after the flood.

J0 J1 δ

Hospital 6753 (1393) 6356 (1308) 5.9% (6.1%)
Police station 597 (178) 559 (173) 6% (2.8%)
Fire station 283 (96) 254 (91) 10% (5.2%)
Pharmacy 287 (98) 254 (88) 11.5% (3.4%)
Shelter 45 (21) 43 (20) 4.4% (2.2%)
Public space 670 (577) 628 (551) 6.3% (4.5%)
Grocery store 2104 1941 7.7%

In Table 8, we show the indirectly affected population and total population left without
access to all services. The population that was directly affected by the flood and, as a result,
lost access was equal to 2,082,678, which amounted to 9.22%. We calculates Ptotal simply by
adding up the directly affected population and indirectly affected population. All services
were ranked from 1 to 4. The smallest share of population lost access to hospitals, and
the largest share ended up without access to police stations, fire stations, pharmacies, and
shelters. Figure 2 visualizes edges that were flooded, edges that lost access to at least one
service, and a robust fully functional component.
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Table 8. Approximate population and its share left without access to facilities as a result of indirect
and both direct and indirect impacts from the 2020 flood, where the service ranked 1 is the service to
which the biggest number of people lost access.

Pindirect (%) Ptotal (%) Rank

Hospital 678,120 (3) 2,760,799 (12.22) 4
Police station 778,468 (3.44) 2,861,147 (12.66) 1
Fire station 772,541 (3.42) 2,855,220 (12.64) 1
Pharmacy 768,178 (3.49) 2,850,857 (12.62) 1
Shelter 789,672 (3.47) 2,872,351 (12.71) 1
Transformable 721,112 (3.19) 2,803,790 (12.41) 3
Grocery store 743,529 (3.29) 2,826,208 (12.51) 2

Figure 2. Greater Jakarta network after major flood in January 2020. Green color marks the edges,
which, according to the satellite data, were affected directly by the flood; the edges highlighted in
orange were affected indirectly, i.e., they were isolated from access to at least one service due to
the flood occurrence elsewhere; the robust component that maintains the access to services is gray.
Sources: [57] (2020), [58] (2020), [56] (2020).

3.1.2. District Level

To obtain a more-detailed picture of the flood implications on the urban system, we
conducted calculations for each district in Greater Jakarta. Table 9 shows a comparison of
the population share with access to all services P, the poverty severity index S, the number
of facility edges Fe, and the number of multiedge facilities F before and soon after the flood.
The most-robust districts were Bogor, Kota Jakarta Pusat, and Kota Jakarta Selatan. The
inhabitants of the districts Karawang, Tangerang, Kota Jakarta Barat, and Bekasi suffered
the most from the loss of access.
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Table 9. Network statistics and robustness properties by district comparison between the two system
states—before (0) and after (1) the 2020 flood. P means population share with access to all facilities;
S is the corresponding poverty severity index; Fe shows the number of existing facility edges in
each system state; F indicates how many multiedge facilities each of the districts possessed in both
systemic states.

P S Fe F

Kota Jakarta
Utara (0) 100 1210 356

Kota Jakarta
Utara (1) 89.9 0.26 1129 337

Kota Jakarta
Barat (0) 100 1326 278

Kota Jakarta
Barat (1) 76.4 0.18 1143 246

Kota Jakarta
Pusat (0) 100 977 212

Kota Jakarta
Pusat (1) 95.5 0.31 935 205

Kota Jakarta
Selatan (0) 100 1582 408

Kota Jakarta
Selatan (1) 94.2 0.18 1523 392

Kota Jakarta
Timur (0) 100 1615 384

Kota Jakarta
Timur (1) 91.5 0.07 1494 358

Tangerang * (0) 100 404 67
Tangerang * (1) 62.5 0.22 328 61

Kota Tangerang
(0) 100 440 106

Kota Tangerang
(1) 89.5 0.15 419 102

Kota Tangerang
Selatan (0) 100 590 89

Kota Tangerang
Selatan (1) 91.1 0.08 570 89

Karawang * (0) 100 191 82
Karawang * (1) 28.8 0.25 184 76

Bekasi (0) 100 346 68
Bekasi (1) 77.5 0.18 298 57

Kota Bekasi (0) 100 589 79
Kota Bekasi (1) 85.7 0.15 563 76

Kota Depok (0) 100 728 114
Kota Depok (1) 90.3 0.06 710 112

Bogor * (0) 100 309 64
Bogor * (1) 96.3 0.11 307 64

Kota Bogor * (0) 100 429 78
Kota Bogor * (1) 100 0.26 429 78

* incomplete network

Figure 3 is the illustration of the access variability across districts with a background
layer of surface elevation. The access is excellent in the districts colored in green, and it is
difficult in the districts colored in red. The lighter (whiter) areas of elevation correspond to
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lower sea levels and darker areas to higher sea levels. One can see that the northern part of
the city is situated on low ground. We assumed that elevation and vulnerability to losing
access to services should be related, and a simple analysis proved this point (Table A1). In
Figure 3, one can see two major clusters of districts with robust and less-robust access to
facilities. A more-robust cluster is concentrated in the high-lying areas and in the heart of
the city, and a less-robust cluster forms an arc of districts touching the ocean.

Figure 3. Share of population with access to all services after the flood in January 2020 by district.
Green areas represent the districts that maintained excellent access to services after the flood event;
these districts are high-lying Bogor and Kota Bogor and low-lying Kota Jakarta Pusat. In the middle of
the metro, there is a cluster of districts with good access to services; they are Kota Tangerang Selatan,
Kota Jakarta Selatan, and Kota Jakarta Timur. The rest of the regions form an arc cluster of less-robust
districts,Kota Tangerang, Kota Jakarta Utara, and Kota Depok, and problematic districts with critical
levels of access to services, which include Kota Jakarta Barat, Kota Bekasi, Bekasi, Tangerang, and
Karawang (we have to make an assumption concerning the latter two, as they are cut on the sides
and may have access to services that are outside of the scope of the studied network; although,
considering a scale of flood occurrence and high poverty levels in these districts, even this incomplete
network should reflect the reality).

Table 10 is a closer look at the access to all facility types. Here, we show the poverty
severity index with the population share together with the access to all facilities of the
considered types. To give some idea about the availability of services within the district,
we calculated the number of facilities of certain types per 10,000 persons.
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Table 10. Access to facilities by district after the flood (system J1) and the availability of facilities
before the flood per 10,000 people (system J0). The poverty severity index (S) and the number of
facilities per 10,000 persons before the flood ( f acility f ) are provided to give readers a general idea
about the poverty and facilities availability in the studied districts.

S hp h f psp ps f f sp f s f php ph f shp sh f tp t f gp

Kota
Jakarta
Utara

0.26 90.21 0.374 89.97 0.069 89.81 0.035 89.66 0.071 89.72 0.008 89.66 0.042 89.66

Kota
Jakarta
Barat

0.18 77.41 0.172 76.7 0.046 76.96 0.021 76.95 0.01 76.41 0.003 77.05 0.023 76.4

Kota
Jakarta
Pusat

0.31 95.51 0.296 95.51 0.069 95.51 0.03 95.51 0.012 95.51 0.002 95.55 0.081 95.51

Kota
Jakarta
Selatan

0.18 94.21 0.366 94.15 0.039 94.15 0.017 94.15 0.012 94.15 0.008 94.15 0.017 94.15

Kota
Jakarta
Timur

0.07 91.79 0.243 91.55 0.022 91.57 0.022 91.55 0.009 91.55 0 91.55 0.018 91.55

Tangerang
* 0.22 65.37 0.054 62.45 0 62.45 0 63.07 0.006 62.45 0.002 65.99 0.082 65.99

Kota
Tangerang 0.15 89.62 0.04 89.54 0.001 89.62 0 89.62 0.009 89.54 0.003 89.54 0.103 89.59

Kota
Tangerang
Selatan

0.08 91.1 0.088 91.08 0.002 91.08 0 91.08 0.004 91.08 0 91.08 0.063 91.08

Karawang
* 0.25 91.15 0 28.85 0 28.85 0 28.85 0 28.85 0 94.94 15.208 28.85

Bekasi 0.18 79.27 0.065 77.51 0 77.51 0 77.51 0.012 77.51 0 77.65 0.042 77.79

Kota
Bekasi 0.15 85.67 0.036 85.67 0 85.67 0 85.67 0.001 85.67 0 85.69 0.037 85.71

Kota
Depok 0.06 90.36 0.048 90.35 0 90.35 0 90.35 0.003 90.35 0.001 90.35 0.108 90.35

Bogor * 0.11 96.35 0.035 96.34 0 96.34 0 96.34 0 96.34 0.002 96.34 0.069 96.34

Kota
Bogor * 0.26 100 0.138 100 0 100 0 100 0 100 0 100 0.26 100

Total—
Greater
Jakarta

0.15 87.78 0.618 87.34 0.079 87.36 0.043 87.38 0.043 87.29 0.009 87.59 0.256 87.49

* Incomplete network, S—poverty severity index (according to the Indonesian official statistics services), hp—
population share with access to hospitals (as a result of the flood), h f —number of hospitals per 10,000 persons
(before the flood), psp—population share with access to police stations, ps f —number of police stations per 10,000
persons, f sp—population share with access to fire station,s f s f —number of fire stations per 10,000 persons, php—
population share with access to pharmacies, ph f —number of pharmacies per 10,000 persons, shp—population
share with access to shelters, sh f —number of shelters per 10,000 persons, tp—population share with access to
transformable facilities (public buildings), t f —number of transformable facilities (public buildings) per 10,000
persons, gp—population share with access to grocery stores.
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3.2. Poverty, Lack of Access, and Elevation: All Related?

To understand better the relationships between poverty, the population’s lack of access
to facilities as the result of a flood, and elevation, we ran simple linear regressions.

We found that there was a negative significant association between access loss and
elevation and a positive significant association between access loss and the poverty severity
index (Table A2 in Appendix C). This tells us that, in Greater Jakarta, poor people are more
exposed to impacts from disasters. This also suggests that the elevation with regard to
floods is an important indicator and can be used as the defining parameter when running
flood simulations.

3.3. Vulnerability Simulation

Table 11 summarizes the 140 flood simulations conducted on the real network of
Greater Jakarta. The simulations were based on the lower cap of flood depth levels in
meters (with a 95% probability of failure), upper cap (with a 90% probability of failure), and
assumed drainage system failure (with the probability of failure varying from 1 to 10%).

Table 11. Simulation results. Each row represents a set of ten simulations and contains the information
on the average population’s share left with access to all services after simulated flood occurrence (P)
and the average poverty severity in the affected edges (S). The column D shows the corresponding
flood depth levels with lower and upper caps in meters, and the column W is the yearly probability
that an event of this return period occurs.

P S D W

sim1 98.33 0.1707 D ≤ 0.62 0.5
sim2 98.32 0.1703 D ≤ 0.96 0.2
sim3 96.44 0.1729 D ≤ 1.22 0.1
sim4 96.46 0.1725 D ≤ 1.47 0.05
sim5 96.46 0.1724 D ≤ 1.81 0.02
sim6 94.17 0.176 D ≤ 2.07 0.01
sim7 92.79 0.1719 D ≤ 2.33 0.005
sim8 91.39 0.1686 D ≤ 2.67 0.002
sim9 91.38 0.1682 D ≤ 2.82 0.0013
sim10 89.92 0.1666 D ≤ 2.93 0.001
sim11 86.8 0.1704 D ≤ 3.08 0.0007
sim12 85.19 0.1682 D ≤ 3.18 0.0005
sim13 83.4 0.1661 D ≤ 3.52 0.0002
sim14 81.6 0.0164 D ≤ 3.78 0.0001

In the table, the average of ten simulations within each elevation interval is calculated
for the share of population with access to all facilities and for the poverty severity index
in the affected edges. The third column of the table shows the upper and lower elevation
caps for flood depth (in meters). The last column is the weight. With this information,
it is possible to create a vulnerability map that depicts the probabilities of losing access
to critical infrastructure and services in the spatially embedded network (Figure 4). This
analysis is only a demonstration of how the information from more-sophisticated flood
risk models can be used in a graph-based approach to calculate the vulnerability to not
only the occurrence of floods, but also the vulnerability of the population to losing access
to vital services. This approach will enable further practical post-disaster analysis and the
development of more-effective preparedness measures.
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Figure 4. Greater Jakarta vulnerability map based on simulated flood occurrence probability account-
ing for flood depth levels and random drainage system failure with the calculated consequent loss of
access. Bright red gradient colors present the edges that are very likely to loose access to services
during floods; bright green colors indicate a medium probability of this happening; gray colors mean
low probability. Base map source: [57] (2020), [58] (2020).

4. Discussion

At the beginning, we mentioned vulnerability, robustness, resilience, and antifragility.
So far, this framework has only covered the vulnerability and robustness stages. Thus,
this paper is only a segue to a broader discussion of the resilience and antifragility of
urban systems. These are all matters for future research—strategies for restoring crippled
networks, the time and resources required for restoration, strategies for not simply returning
to the initial state, but for rebuilding better, the pursuit of continuous improvement, and the
use of shocks as opportunities to rise from the ashes in the form of a more-robust, -resilient,
and -antifragile system. The framework, which considers the vulnerability of access to
facilities, also opens the door to discussions about facility placement under uncertainty
and the facility location problem in general. The framework can be applied to other cities
with minimal adaptation. The physical infrastructure data sources will remain the same.
What will require some changes is the social dimension, which includes information on
population density and poverty. In some cases, these data may not be available, but in other
cases, it is possible that more-detailed data can be found. Overall, the better the quality
of the data, the more accurate the results will be. In addition, the proposed framework
requires categorized satellite data of actual floods; this research is not possible without
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remote sensing data of a disaster. The mechanisms for activating disaster monitoring, such
as Sentinel Asia and the International Charter on Space and Major Disasters, allow space
agencies and specialized private companies to make satellite data on disaster damage more
accessible, which will also lead to a wider applicability of this framework.

Our framework has generated data for many more insights than those discussed here.
Based on the needs of city planners, individual vulnerability maps can be generated for
each critical service considered. The simulations can be improved by taking into account
more flood factors—environmental, social, and technological. For instance, incorporating
information about the past failures of a drainage system will lead to a more-realistic
vulnerability assessment. To compare the selected indicators in this paper with some used
in the flood risk assessment literature on a more-global scale, Reference [72] used data on
average annual precipitation, distance to rivers, elevation, slope, NDVI, population density,
GDP, and global land cover. While we took into account the elevation, population density,
and poverty level (which may correspond to what the authors were trying to show with
the GDP index), in future research, other indicators can also be considered when creating
urban vulnerability maps.

At the same time, we must remember that simulations, however complex they are,
provide merely an indication of what may be affected in the first place. We have to
remember that disaster occurrence is governed by the power law and it is always more
beneficial for emergency planners to prepare an urban system for an attack from any
possible direction. The idea that improving one part of a system requires improving the
system as a whole [73] may work here as well.

It should be noted that a general departure from a focus on the giant connected
component in graph-based disaster research is beneficial to the field as a whole. Findings
on the absence of traditional random percolation in floods also advance the line of research,
making this approach more applicable to crisis management practices.

5. Conclusions

The Jakarta flood that occurred in January 2020 was a devastating catastrophe that
affected the lives of hundreds of thousands of people. The framework proposed in this
paper allowed quantifying the direct and indirect damage to the physical infrastructure
and the loss of access of the population to critical facilities. It was found that 9.6% of
all edges were flooded. The hazard broke the urban network into dozens of thousands
of disconnected components, increased the betweenness centrality, making the whole
system more vulnerable to potential compound attacks, and significantly distorted the
road connectivity and people’s access to critical facilities. Both major and minor roads were
affected (residential roads being the most affected). Damage to trunk and primary roads
was sufficient to cause transportation collapse on other major roads. All types of facilities
studied in this paper were directly affected by the flood. Between 12.22 and 12.71% of the
population (more than 2.7-million people) lost access to at least one critical facility as a
result of this disaster. Access to police stations, fire stations, pharmacies, and shelters was
most severely affected.

The tests showed that poor people, on average, settle more in the lowland areas,
confirming the hypothesis of uncontrolled urbanization of flood-prone areas in Greater
Jakarta. A positive relationship exists between poverty and loss of access, although this
does not allow for predictions. A closer look at how the inhabitants lose access to services
in different districts revealed vulnerable areas of the city and allowed for the identification
of more- and less-robust clusters of districts. We found that the districts Kota Jakarta Barat,
Kota Bekasi, Bekasi, Karawang, and Tangerang were the most vulnerable to losing access
to critical services during the 2020 flood. Kota Jakarta Utara, Kota Tangerang, and Kota
Depok were also significantly affected by the flood. The most-robust districts were Kota
Jakarta Pusat and Bogor. An important contribution of this research is the introduction of
the notions of facility edge and multiedge facility, where a facility edge is a segment of the
road adjacent to the facility and a multiedge facility is a set of all facility edges located in
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the vicinity of the building. This allowed us to consider ways to reach the facility from
different sides and to distinguish between a complete loss of access (if all facility edges are
flooded) and an impeded access to a facility (if some, but not all facility edges are flooded).

The flood simulations showed that northern coastal areas and all suburban areas are
most vulnerable to flooding. A simulation model used for the calculations, however, is too
simplistic: it relies on elevation and rainfall data, but many more factors should be taken
into account. Currently, the risk map produced does not reflect the vulnerability of Kota
Depok and Kota Bekasi, and it does not explain the large occurrences of real flooding in
Kota Jakarta Barat, as well as it does not explain why low-lying poor Kota Jakarta Pusat is
relatively safe.

The transformation of geospatial data into a network and the embedding of socio-
physical characteristics into this network in the form of edge properties with consequential
analysis provides a simplified enough (simple, but not simpler) framework for quantifying
the damage from disasters, assessing the vulnerability of access to services, and discussing
vulnerability and robustness. This framework relies on the open publicly available data
and will be of interest to urban planners, policy-makers, and emergency specialists as a
tool for the rapid quantification of hazard impacts without the need for ground surveys
and for preliminary assessment of the vulnerability of access to critical facilities.
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Appendix A

Figure A1. Flood occurrence in Greater Jakarta, January 2020. Data: [56], [57].

Appendix B

Figure A2. Approach for embedding critical facilities into the network. The building that hosts the
facility usually can be accessed from various sides; therefore, we embedded the facility into all near
road segments (edges). A set of edges containing the properties of the same facility forms a multiedge
facility. An edge in this set is called a facility edge.
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Appendix C

Table A1. OLS regression to search for relationships between the loss of access, on the one side, and
poverty severity and elevation levels, on the other side.

Dep. Variable: ACCESS LOSS R-squared: 0.052
Model: OLS Adj. R-squared: 0.052
Method: Least Squares F-statistic: 2.716e+04
Prob (F-statistic): 0.00 Log-likelihood: -3.9708e+05
No. Observations: 995,074

coef std err t P> |t| [0.025] 0.975]

const 0.1312 0.001 116.923 0.000 0.129 0.133
POVERTY INDEX 0.5913 0.006 98.852 0.000 0.580 0.603
ELEVATION -0.0013 7.42e-06 -173.281 0.000 -0.001 -0.001

Table A2. OLS regression to search for relationships between the poverty severity situation, on the
one side, and loss of access and elevation levels, on the other side.

Dep. Variable: POVERTY R-squared: 0.093
Model: OLS Adj. R-squared: 0.093
Method: Least Squares F-statistic: 5.112e+04
Prob (F-statistic): 0.00 Log-likelihood: 1.3851e+06
No. Observations: 995,074

coef std err t P> |t| [0.025] 0.975]

const 0.1656 8.91e-05 1857.921 0.000 0.165 0.166
ACCESS LOSS 0.0164 0.000 98.852 0.000 0.016 0.017
ELEVATION -0.0003 1.21e-06 -277.190 0.000 -0.000 -0.000
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17. Blečić, I.; Cecchini, A. On the antifragility of cities and of their buildings. City, Territ. Archit. 2017, 4, 3.
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