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Abstract
Biotic interactions are widely recognised as the backbone of ecological communi-
ties, but how best to study them is a subject of intense debate, especially at macro- 
ecological scales. While some researchers claim that biotic interactions need to be 
observed directly, others use proxies and statistical approaches to infer them. Despite 
this ambiguity, studying and predicting the influence of biotic interactions on biogeo-
graphic patterns is a thriving area of research with crucial implications for conser-
vation. Three distinct approaches are currently being explored. The first approach 
involves empirical observation and measurement of biotic interactions' effects on 
species demography in laboratory or field settings. While these findings contribute to 
theory and to understanding species' demographies, they can be challenging to gen-
eralise on a larger scale. The second approach centers on inferring biotic associations 
from observed co- occurrences in space and time. The goal is to distinguish the envi-
ronmental and biotic effects on species distributions. The third approach constructs 
extensive potential interaction networks, known as metanetworks, by leveraging 
existing knowledge about species ecology and interactions. This approach analyses 
local realisations of these networks using occurrence data and allows understanding 
large distributions of multi- taxa assemblages. In this piece, we appraise these three 
approaches, highlighting their respective strengths and limitations. Instead of seeing 
them as conflicting, we advocate for their integration to enhance our understand-
ing and expand applications in the emerging field of interaction biogeography. This 
integration shows promise for ecosystem understanding and management in the 
Anthropocene era.
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1  |  INTRODUC TION

The study of biotic interactions has entangled researchers in de-
bates surrounding their precise definition and delineation. This term 
can encompass various phenomena, such as a butterfly feeding on 
a flower, the direct and in direct effects of one species on the popu-
lation dynamics of another, or the biotic factors influencing species 
ranges (Alexander et al., 2015). In the literature, biotic interactions 
have been observed in the field, measured through controlled ex-
periments, collected from expert knowledge, or inferred from statis-
tical relationships between co- occurring species (Lany et al., 2018; 
Ohlmann et al., 2018) or from species traits (Caron et al., 2022; 
Gravel et al., 2013). Consequently, the definition of biotic interac-
tions can vary depending on the research question, the organisms 
under study, the available data or data collection methods, and the 
study setup. Furthermore, the study of biotic interactions becomes 
progressively more challenging as spatial scales, species richness, 
and the variety of interaction types (e.g. competition, mutualism, 
predator– prey) increase. Nevertheless, the field of biogeography is 
now more than ever driven to comprehend the role of biotic inter-
actions in large- scale biodiversity patterns and to utilise this under-
standing to construct more robust biodiversity models and scenarios 
(Pollock et al., 2020; Urban et al., 2016).

In the early 20th century, the study of biotic interactions primar-
ily focused on understanding the temporal dynamics of interacting 
populations, driven by the emergence of mathematical ecology and 
findings from experiments and observational studies. The theoret-
ical work of Lotka (1925) and Volterra (1926) provided valuable in-
sights into how the temporal dynamics of predators and prey are 
interconnected and influence one another. Elton's empirical inves-
tigations on the fluctuations of hare and lynx populations further 
supported these predictions (Elton & Nicholson, 1942). Additionally, 
experimental studies by Gause (1934a) supported the predictions 
of Lotka- Volterra competition models, demonstrating the potential 
of competition to restrict coexistence. Notably, during this period, 
there was limited consideration given to how these results gener-
alise to large spatial scales, interactions across trophic levels and 
whether models could be used for predictions.

In the 1960s and 1970s, biogeographers, including Dia-
mond (1975), sought to overpass the limitations imposed by small 
scales (in terms of space, species richness, and interaction types) by 
employing statistical techniques, particularly null models, to infer 
biotic interactions from patterns of co- occurring species. They hy-
pothesised that interacting species would co- occur more (e.g. mutu-
alism) or less frequently (e.g. competition) than expected by chance. 
Nowadays, researchers employ more sophisticated algorithms to 
infer biotic interactions from observed species occurrences, while 
accounting for environmental effects that may lead to synchronised 
species responses unrelated to interactions (Lany et al., 2018; 
Ovaskainen et al., 2017). Observed data are often spatial in na-
ture, consisting of species abundances or simple presence/absence 
information. While inference methods can be powerful (see Dor-
mann et al., 2018; Ovaskainen et al., 2017 for more comprehensive 

reviews), there exists a significant gap between the mathematical 
definition of biotic interactions at the individual or population level 
and the inferred processes derived from empirical data, which are 
typically measured at the species level and do not incorporate tem-
poral dynamics (Blanchet et al., 2020).

In recent decades, there has been a growing interest in a dis-
tinct type of biotic interaction data that revolves around the con-
cept of metawebs or metanetworks (Dunne, 2006). Meta- networks 
integrate information on species interactions from various sources, 
including observations (e.g. GLOBI), expert knowledge, literature 
reviews (Maiorano et al., 2020) and phylogenetic or trait inference 
(Caron et al., 2022; Llewelyn et al., 2023). Metanetwork data thus 
provide a comprehensive summary of all potential species interac-
tions, without specifying the spatial and temporal variability in the 
strength and realisation of these interactions (Maiorano et al., 2020). 
The spatial information enters when local networks are constructed 
by filtering the metanetwork based on local co- occurrence or co- 
abundance data (Braga et al., 2019; Gaüzère et al., 2022; O'Connor 
et al., 2020). Thus, metanetworks offer an intermediate perspective 
on biotic interactions, bridging the earlier definitions based on field 
observation and population dynamics, and the broader- scale infer-
ences derived from co- occurrence data.

Rather than lamenting the limitations of individual approaches 
and concepts of biotic interactions in biogeography, we advocate for 
harnessing their respective strengths. Integrating and harmonizing 
these approaches is crucial not only to better understand the effects 
of biotic interactions on the distribution of biodiversity but also to 
account for biotic interactions in biodiversity modelling and scenar-
ios. In this paper, we review and elucidate the foundations of differ-
ent concepts surrounding biotic interactions and propose pathways 
for integrating distinct approaches in the field of interaction bioge-
ography (Figure 1).

2  |  FROM IN- SITU OBSERVATIONS 
AND E XPERIMENTS TO MATHEMATIC AL 
FORMUL ATIONS

The study of biotic interactions is facilitated by focusing on smaller 
spatio- temporal scales, a reduced number of species, and specific 
interaction types, along with controlled study designs. At small 
scales, researchers can directly observe the interactions between 
individuals and witness their observable effects on each other's de-
mography. Some might argue that these direct observations lie at 
the essence of the definition of biotic interactions. Unsurprisingly, 
earliest studies on biotic interactions were on experimental and ob-
servational approaches.

As early as 1862, Darwin observed and described how the 
shape and structure of orchids had evolved to attract and exploit 
specific species of bees, resulting in a mutualistic relationship (Dar-
win, 1862). Competition as a biotic interaction was defined through 
Gause's experiments with two species of Paramecium, demonstrat-
ing that when multiple species competed for the same resources, 
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    |  3THUILLER et al.

one species would eventually out- compete the other and become 
dominant (Gause, 1934b). Yet, it is here crucial to differentiate be-
tween experimental studies and observational studies. In experi-
mental studies, organisms are manipulated to quantify not only the 
frequency of interactions but also the impact of biotic interactions 
on other species' demography (Figure 1). Theory, mathematics and 
experiments are explicitly linked to unravel the dynamics of com-
petitive, mutualistic or predatory interactions and their influence 
on demography, and on community dynamics and stability (Kraft 
et al., 2015; Schupp et al., 2010). On the other hand, observational 
studies measure the frequency of specific interactions (e.g. flower 
visitation rates, fruit removal), and indirectly infer the effect of bi-
otic interactions on other species' demography (Koch et al., 2023; 
Vázquez et al., 2005). Interactions are still observed, but their ef-
fects are often assumed or estimated through changes in abundance. 
Measured or estimated effects of biotic interactions on demography 
can then be formalised in mathematical models of community dy-
namics to allow for temporal extrapolation (Godoy & Levine, 2014).

But is an extrapolation to biogeographic scales and species rich 
systems possible as well? Biotic interactions are thought to influ-
ence large scale species distributions and diversity patterns (Comita 
et al., 2014; Gotelli et al., 2010), yet there is still very little empiri-
cal evidence to support it (Thuiller et al., 2015). Upscaling empirical 
studies of biotic interactions to biogeographical scales is a chal-
lenging task. The inherent challenge is to parametrise mathematical 

and mechanistic models describing species interactions and their 
effects on demography in multi- species communities. The number 
of pairwise interaction parameters that would need to be directly 
observed or manipulated increases non- linearly with the number of 
species (Figure 1). Furthermore, pairwise interactions may change 
along environmental gradients (e.g. interactions among plants may 
shift from competition to facilitation along stress gradients, Mae-
stre et al., 2009). Sampling biotic interactions at large spatial scales 
presents a significant challenge, requiring extensive observational 
or experimental efforts that span diverse environments and en-
compass a wide range of species or taxa (i.e. the Eltonian shortfall, 
Hortal et al., 2015). New technologies might help here not only al-
lowing to measure different types of interactions more efficiently 
but also to move from pairwise interactions to entire networks 
(Hartig et al., 2024). For example, advancements in gut content 
analyses have significantly improved the quantification of resources 
acquired by organisms (Casey et al., 2019). Additionally, the integra-
tion of video and camera- traps with automatic recognition systems 
holds promise in observing multi- trophic interaction, such as plant- 
pollinator- herbivore- predator dynamics (Droissart et al., 2021). Fur-
thermore, the increasingly widespread use of acoustic recorders 
facilitates a comprehensive understanding of species behaviour and 
how interactions may evolve over time at a large scale (De La Torre 
Cerro & Holloway, 2021; Schöner et al., 2016). These innovative in 
situ technologies can be deployed across expansive spatial areas, 

F I G U R E  1  Integrating three different approaches to advance interaction biogeography. (1) Field observations and experiments provide 
data on species interactions, to test and develop theory and mathematical formulations (green arrows). (2) Analysis of spatial co- occurrence 
data reveals statistical dependencies between species (light blue arrows). (3) From fundamental knowledge and data integration to 
metanetworks and local network realisations (purple arrows). (4) Based on the first three approaches, different integration pathways 
to advance the field of interaction biogeography. Through various icons, we highlighted the strengths and limitations of the different 
approaches concerning their ability to account for large taxonomic (i.e. species rich systems) and spatial scales and generality (potentially 
along steep environmental gradients), whether they rely or not on strong theory and concept, and whether they account for temporal 
dynamics.
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4  |    THUILLER et al.

proving invaluable in measuring biotic interactions. However, one 
should note that most of these technologies need further develop-
ment to be readily applicable in the context of interaction biogeog-
raphy (i.e. large spatial scales, multiple sensors and multiple types 
of observations), and they do not overcome the assumptions under-
lying the association between biotic interactions and demographic 
rates.

3  |  FROM SPATIAL PAT TERNS TO 
STATISTIC AL INTER AC TIONS

Statistical approaches designed to infer biotic interactions from co- 
occurrence data have evolved considerably since the pioneering 
work of Diamond (1975) and Stone and Roberts (1990) on check- 
board scores. With the increasing availability of species distribution 
datasets and advancements in statistical modelling, the inference 
of biotic interactions from co- occurrence patterns has emerged 
as a vibrant research field (Losapio et al., 2021). This approach to 
interaction biogeography deviates from a strict definition of biotic 
interactions, as it does not rely on direct observations or ecologi-
cal expert knowledge. Instead, statistical models are utilised to infer 
interactions between species based on the signal these interactions 
may have left in species co- occurrence or co- abundance patterns 
(Blanchet et al., 2020; Poggiato et al., 2021). The underlying ration-
ale of this approach is that if two species interact, their distributions 
will depend on each other. The objective is to identify species with 
non- independent co- distributions, indicating a statistical interac-
tion, which is assumed to be caused by biotic interactions (Figure 1). 
However, it is important to note that this approach infers marginal 
dependencies between species pairs (Veech, 2013), which means it 
does not consider the influence of other species on the joint distribu-
tion of species pairs. For instance, two species may co- occur merely 
because they share the same prey. To address this issue, statistical 
models employ conditional correlations to highlight conditional de-
pendencies, which are pairwise associations between species while 
controlling for the effects of other species. The outcome of these 
models is often a conditional correlation network, representing the 
inferred associations based on co- occurrence patterns. Considering 
that species can co- occur due to shared environmental preferences 
(i.e. niche similarity), statistical models also incorporate environmen-
tal variables as predictors to account for the effect of the environ-
ment (Pollock et al., 2014; Warton et al., 2015). Here, we clarify the 
connections between two recently introduced classes of models: 
graphical models and joint species distribution models (JSDMs).

Graphical models seek to infer the dependency structure be-
tween species using a graph with appropriate sparsity, which can 
be either directed (Larsen et al., 2012) or undirected (Harris, 2016; 
Ohlmann et al., 2018). These models are flexible and can be applied 
to various distribution types or combinations of distributions. Envi-
ronmental covariates are typically included as additional nodes in 
the graph. On the other hand, JSDMs were initially developed to 
predict multi- species distributions based on environmental drivers 

while accounting for species dependencies (Ovaskainen et al., 2017; 
Pollock et al., 2014). These dependencies are represented by a re-
sidual covariance matrix that captures marginal dependencies, and 
conditional dependencies between species are obtained by invert-
ing this matrix. Although JSDMs and undirected graphical models 
have not been directly compared in the literature, they share simi-
larities in describing conditional dependence relationships between 
species (Momal et al., 2020). Specifically, a JSDM for Gaussian data 
without environmental covariates corresponds precisely to a Gauss-
ian graphical model without penalisation.

It is important to highlight that, regardless of the sophisticated 
statistical techniques employed, this approach relies solely on static 
co- occurrence data. As a result, it does not capture the mechanisms 
that govern the temporal dynamics between species as described by 
theoretical models. There is thus a significant gap between the sta-
tistical definition of a conditional correlation network and the actual 
effects of biotic interactions on demography and thus species' dis-
tributions. This gap arises from the fundamental hypothesis of this 
approach, which assumes that static co- occurrence patterns provide 
informative signals about the outcomes of biotic interactions. How-
ever, as mentioned in the Section 2, theoretical model expectations 
suggest that the effects of biotic interactions on distribution pat-
terns are dynamic (e.g. Lotka, 1925). For example, with static co- 
occurrence data of predator– prey systems, it is unclear whether high 
or low co- occurrence should be expected because predators both 
reduce prey populations and are more abundant when more prey is 
available.

Furthermore, even in cases where co- occurrence patterns do 
contain information about biotic interactions, this signal can be 
blurred by various factors. These factors include missing environ-
mental covariates or a mismatch in scales (Blanchet et al., 2020; Dor-
mann et al., 2018). Additionally, technical issues related to the models 
themselves can limit our ability to accurately infer biotic interactions. 
For example, JSDMs struggle to disentangle the influences of biotic 
and environmental signals (Poggiato et al., 2021). Empirical studies 
have also highlighted the poor correspondence between inferred in-
teraction networks and known networks, further supporting these 
limitations (Freilich et al., 2018; Sander et al., 2017).

Moreover, the statistical models used in this approach typically 
yield either directed acyclic graphs (e.g. Bayesian networks, struc-
tural equation models, hierarchical models) or undirected networks 
(e.g. JSDMs, partial correlation networks). As a result, it becomes 
impossible to represent asymmetric interactions or more complex 
interaction structures such as feedback loops, which are common in 
ecosystems (Neutel et al., 2002).

Yet, statistical models provide a means to infer associations be-
tween species that co- occur more or less than expected by chance 
in a given environment. These associations can be informative on 
their own, such as identifying species associated with endangered 
ones (Han et al., 2020). By examining these associations in relation 
to species traits, we can investigate whether species with similar 
traits exhibit negative associations (limiting similarity) or not (hier-
archical competition, Elo et al., 2023). Additionally, these models 
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    |  5THUILLER et al.

can quantify the relative contributions of the environment, species 
statistical associations, and spatial correlation for each species (Nor-
berg et al., 2019) or within each community (Leibold et al., 2022). 
This could help partition the roles of different processes in commu-
nity assembly and explore how they vary with spatial scale or envi-
ronmental conditions.

4  |  FROM FUNDAMENTAL KNOWLEDGE 
AND DATA INTEGR ATION TO 
METANET WORKS

Species interaction data can be acquired not only through new 
measurements but also from comprehensive databases, empiri-
cal knowledge and various sources of information across different 
spatial and temporal dimensions (Le Guillarme & Thuiller, 2023). The 
accumulation of this collective knowledge now enables us to draw 
generalisations about interactions across diverse environments and 
taxa. When information is lacking for certain species, interactions 
can be inferred from known species to those that are functionally 
or phylogenetically similar (Caron et al., 2022; Llewelyn et al., 2023; 
Strydom et al., 2022). Through the integration and analysis of these 
diverse data sources, researchers can then enhance the understand-
ing of interactions on a broader scale, bridging the gap caused by lim-
ited direct observations (Compson et al., 2018; Gravel et al., 2013; 
Maiorano et al., 2020). The set of interactions extracted or inferred 
from prior knowledge should be regarded as potential interactions, 
as they may not have been directly measured or observed in situ, 
or only observed in limited locations and time frames. Importantly, 
potential interactions do not necessarily assume any impact on spe-
cies' demography. All known potential interactions can be synthe-
sised in a metanetwork, which represents a specific type of network 
that encompasses a set of species and all their potential interactions 
(Dunne, 2006).

The metanetwork concept holds a substantial value in the field 
of biogeography, as it can be both conceptually and operationally 
linked to the species pool and filtering framework of community 
ecology (Figure 1). In this regard, the metanetwork comprises all 
species from the regional pool of species and, in addition, contains 
information on all their potential interactions. Comparably to the 
filtering framework of community ecology, species can be filtered 
through dispersal, abiotic and biotic filters into local multi- trophic 
networks akin to the local communities (Calderón- Sanou et al., 2021; 
Saravia et al., 2022). In practice, we can thus assume that locally co- 
occurring species passed all these filters and that they potentially 
interact as established in the metanetwork.

The metanetwork concept, when coupled with metacommu-
nity theory, sheds light on the processes underlying the assembly 
of network structures across different spatial scales in biogeogra-
phy (Figure 1). It allows for the examination of large- scale factors 
such as geographic area, co- evolution, immigration and diversifica-
tion, and their influence on the size and structure of local networks 
(O'Connor et al., 2020; Pugh & Field, 2022; Saravia et al., 2022). 

The metanetwork also serves as a baseline for potential interac-
tions, enabling the construction of null models for local interaction 
networks. Departures from these null models provide valuable in-
sights into the processes driving the formation of network struc-
tures from regional to local scales (Morlon et al., 2014). Moreover, 
the metanetwork concept offers the opportunity to integrate biotic 
interactions explicitly into biogeography theory. Incorporating biotic 
interactions into island biogeography models (Gravel et al., 2011; 
Massol et al., 2017), considering them as facets of diversity (Gaüzère 
et al., 2022) or incorporating them into scaling biodiversity relation-
ships (Galiana et al., 2021) have advanced our understanding of how 
ecological communities are assembled across space.

Yet, it makes a fundamental assumption that local interactions are 
identical to those in the metanetwork, which ignores the variability 
of biotic interactions in response to different environmental condi-
tions, landscape configuration and contexts (Bimler et al., 2018; Mi-
chalet et al., 2006). Moreover, the combination of data from different 
sources may introduce biases, inconsistencies or uncertainties, due 
to variations in methodologies, data quality, and varying sampling 
effort. Sensitivity analyses can help identify sources of uncertainty 
and enhance the accuracy and reliability of the metanetwork and 
subsequent analyses. By systematically varying the presence or ab-
sence of specific links in the metanetwork, researchers can evaluate 
the robustness of their analyses and conclusions to the uncertainties 
in the network structure.

5  |  WAYS FORWARD IN INTER AC TION 
BIOGEOGR APHY

In the preceding three sections, we outlined three general classes 
of approaches to incorporate biotic interactions in biogeographi-
cal studies, and highlighted their respective advantages and limita-
tions. Direct observations and experiments are most effective in 
capturing the temporal demographic dynamics resulting from biotic 
interactions, but can hardly be scaled up to biogeographic scales, 
species rich systems and multiple types of interactions. The statisti-
cal inference approach can reveal interactions between all species 
of a system by using data on species co- occurrences that are com-
monly available but risks providing biased and potentially errone-
ous estimates of species interactions. The metanetwork approach 
is anchored in community assembly theory, is based on integrated 
expert knowledge and thus less prone to use unrealistic estimates of 
species interactions, but it only describes potential interactions, ig-
nores interaction variability across environments and does not allow 
modelling temporal demographic dynamics. Acknowledging the syn-
ergistic potential they hold, we conclude this outlook by presenting 
three avenues to strengthen our comprehension and prediction of 
large- scale biotic interactions, facilitating their seamless integration 
into conservation studies and risk assessments.

In the first section, we discussed how measurements of biotic 
interactions from observational and experimental studies have 
long been used to parametrise mathematical models of community 
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6  |    THUILLER et al.

dynamics. However, this approach faces challenges due to the non- 
linear increase in the interaction matrix with the number of species 
(Figure 1, limitation in taxonomic and spatial scales). To address this 
challenge and reduce the parameter space, a proposed solution is 
to consider that pairwise interactions are not independent but 
shaped by common ecological drivers. Modelling these relationships 
can then be used to infer the pairwise interactions (Chalmandrier 
et al., 2022; Kissling et al., 2012). For instance, various approaches 
have been suggested for dimension reduction, such as incorporating 
metabolic theory and allometric scaling (Boit et al., 2012; Hudson & 
Reuman, 2013), considering species' functional traits (or phylogeny) 
and their role in demographic rates (Blonder et al., 2017; Chalman-
drier et al., 2021). These dimension reduction techniques offer two 
key advantages: they can significantly reduce the parameter space, 
and they can provide ecological insights into the drivers of inter-
actions. However, it was only recently that the combination of de-
mographic Lotka- Volterra models, dimension reduction through trait 
relationships and statistical models allowed the application of these 
ideas to species- rich systems (Figure 1; Chalmandrier et al., 2021). 
This approach allows estimating biotic interactions among numerous 
species with only a few parameters linking known traits to unknown 
biotic interaction coefficients. It can be used in conjunction with the 
metanetwork to estimate the strength of links among species using 
relevant functional traits (e.g. Danet et al., 2021; Ibanez et al., 2013). 
However, using mechanistic models to incorporate biotic interac-
tions in biogeographical analyses has its limitations. Many models, 
like Lotka- Volterra models, are designed to mimic community dy-
namics at small spatial scales, neglecting how steep environmental 
gradients can alter the nature of interactions across biogeograph-
ical scales. To address this, more research is required to develop 
mechanistic models that account for changes in biotic interactions 
along environmental gradients, such as temperature (Armitage & 
Jones, 2020) or nutrient (Koffel et al., 2021).

In the second section, we explored the challenges of inferring 
biotic interactions from co- occurrence patterns due to numerous 
confounding factors (Blanchet et al., 2020; Poggiato et al., 2021). 
Nevertheless, the wealth of knowledge compiled in metanetworks 
offers valuable insights (Figure 1). Leveraging the regional- scale 
interaction network should allow using it as input for modelling, 
providing a deeper understanding of the role of biotic interactions 
in shaping species communities and, ultimately, incorporating this 
information into species distribution predictions (Staniczenko 
et al., 2017; Wisz et al., 2012). For instance, Ohlmann et al. (2023) 
developed a model, based on Markov random fields (see also Clark 
et al., 2018), to concurrently analyse the presence and absence of 
all species within a given area in function of environmental covari-
ates and the topological structure of the available metanetwork. 
This model allows to capture the spatial variation of the influence 
of biotic and abiotic factors on communities, and provides a first 
means to integrate network ecology into joint species community 
modelling (Ohlmann et al., 2023). Another possibility is to explic-
itly account for known prey (or predators) from the metanetwork 
to model the niches of predators and improve their predictions (or 

prey, Poggiato et al., 2022). Such a model considers the direction of 
interactions (top- down vs. bottom- up) and includes species' preda-
tors or prey as additional covariates. Notably, the model aids in fil-
tering potential metanetworks into the realised local networks by 
removing statistically insignificant species interactions, thus refining 
the metanetwork approach presented in Section 4. By measuring 
variable importance, the model determines the relative significance 
of biotic interactions compared with environmental filtering for dif-
ferent species, and uncovers the spatial patterns and environmental 
determinants of biodiversity distribution (Poggiato et al., 2022).

Yet, the integration approach outlined above still relies on a cor-
relative snapshot of co- occurrence patterns to gauge the effect of 
biotic interactions on species distributions. Further development 
could involve integrating diverse data sources providing explicit spa-
tial and temporal information, such as novel technology data (e.g. 
camera- traps, acoustic recorders, environmental DNA), in situ and 
experimental data, and citisen science (section 1, Hartig et al., 2024). 
Incorporating temporal data would allow models that account for 
biotic interactions (Ohlmann et al., 2023; Poggiato et al., 2022) to be 
temporally explicit while utilizing known information derived from 
metanetworks. Techniques like multivariate autoregressive models 
and convergent cross- mapping could help extract the effect of biotic 
interactions from dynamic data, akin to causal time series inference 
(Abrego et al., 2021; Clark et al., 2015, 2020; Lany et al., 2018; Thor-
son et al., 2016).

Integrating various data sources would also benefit from theoret-
ical and experimental knowledge on the effect of biotic interactions 
on species dynamics, as described in the Section 2. Incorporating 
this knowledge into the modelling process would better constrain 
statistical predictions to align with theoretical and experimental 
expectations. Modelling frameworks that accommodate diverse 
data sources or even experiments, and prior information would be 
particularly valuable in achieving this task (Isaac et al., 2020; Tal-
luto et al., 2016). While theory and models can be developed and 
tested using limited data or simulated scenarios, the refinement and 
applicability of these models depend on real- world, large- scale data, 
hence the need for filling gaps in species interactions data on a broad 
taxonomic and spatial scale (i.e. the Eltonian shortfall). Ultimately, a 
comprehensive and integrative approach holds tremendous poten-
tial for advancing our understanding of biotic interactions and their 
implications for species distributions and ecological dynamics (Hal-
lam & Harris, 2023).
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