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Abstract: The prevalence of multidrug resistant, extended spectrum β-lactamase (ESBL)-producing
Enterobacteriaceae is increasing worldwide. The present study aimed to provide an overview of the
multidrug resistance phenotype and genotype of ESBL-producing Escherichia coli (E. coli) isolates
of livestock and wild bird origin in Greece. Nineteen phenotypically confirmed ESBL-producing
E. coli strains isolated from fecal samples of cattle (n = 7), pigs (n = 11) and a Eurasian magpie that
presented resistance to at least one class of non β-lactam antibiotics, were selected and genotypically
characterized. A DNA-microarray based assay was used, which allows the detection of various
genes associated with antimicrobial resistance. All isolates harbored blaCTX-M-1/15, while blaTEM was
co-detected in 13 of them. The AmpC gene blaMIR was additionally detected in one strain. Resistance
genes were also reported for aminoglycosides in all 19 isolates, for quinolones in 6, for sulfonamides
in 17, for trimethoprim in 14, and for macrolides in 8. The intI1 and/or tnpISEcp1 genes, associated
with mobile genetic elements, were identified in all but two isolates. This report describes the first
detection of multidrug resistance genes among ESBL-producing E. coli strains retrieved from feces
of cattle, pigs, and a wild bird in Greece, underlining their dissemination in diverse ecosystems
and emphasizing the need for a One-Health approach when addressing the issue of antimicrobial
resistance.

Keywords: ESBL; Escherichia coli; multidrug resistance; antimicrobial resistance genes; cattle; pigs;
Eurasian magpie; Greece

1. Introduction

The emergence and dissemination of extended-spectrum β-lactamase (ESBL) produc-
ing bacteria currently constitutes a major public health concern. ESBLs are enzymes that
hydrolyze penicillins, first to third generation cephalosporins as well as aztreonam, at a
rate that exceeds 10% of their hydrolysis rate for benzylpenicillin. They are inhibited by β-
lactamase inhibitors such as clavulanic acid and utilize serine for β-lactam hydrolysis [1,2].
Over 9000 human deaths were caused by ESBL-producing Enterobacteriaceae in the USA in
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2017 [3]. The same year, World Health Organization (WHO) ranked these resistant bacteria
in the first priority tier, under the characterization ‘critical’, to guide research, discovery
and development of new antibiotics [4].

ESBLs are divided into eleven families based on their amino acid sequences [5],
with the CTX-M family, and particularly CTX-M-15 variant, currently predominating
among ESBL-producing Escherichia coli (E. coli) strains [6]. Plasmidic location of ESBLs
has been associated with multidrug resistance. Co-occurrence, on the same plasmid, of
resistance determinants for cephalosporins, aminoglycosides, tetracycline, sulfonamides,
carbapenems, and quinolones has been reported and is speculated to provide ESBL genes
an advantage for maintenance due to co-selection processes [7,8]. Such plasmids also carry
toxin/antitoxin systems that enforce maintenance, even in the absence of antimicrobial
selective pressure [9]. These facts, combined with the bacterial ability for acquisition of
multiple plasmids, has resulted in multiresistance among ESBL-producing strains, limiting
the already few treatment options against these pathogens even further [10]. Mobile
genetic elements—including insertion sequences, integrons, and transposons—have also
significantly facilitated mobilization of blaCTX-M onto different types of plasmids which
assist the spread of ESBLs to a wide variety of hosts [11], rendering ESBL-producing E. coli
an issue of great zoonotic importance.

The prevalence of presumptive ESBL-producing E. coli in the European Union, during
2017–2018, was reported to be 38% in fattening pigs and 25% in calves [12]. The therapeutic,
metaphylactic and prophylactic use of antibiotics in veterinary medicine is considered to be
the main cause for the selection of resistant bacteria in cattle and pigs, which are identified
as a major ESBL reservoir [13]. However, ESBLs are also detected in Enterobacteriaceae
isolated from hosts that do not consume antibiotics, i.e., wild fauna [14–18]. Wild birds are
the most frequent ESBL carriers among wildlife species and have been proposed as another
potential reservoir that can significantly contribute to the diffusion of resistant strains via
migration and/or living in close proximity to both humans and other animals [19–21].
Notably, many of these wild birds are scavengers, including corvids [22], gulls, kites,
vultures, storks [23], and cattle egrets [21].

In Greece, recently published data indicate overconsumption of antibiotics, as well as
rates of antibiotic resistance consistently higher than in other EU member states [24–26].
Although ESBL-producing bacteria are frequently detected among humans, reports about
animal isolates are scarce [27–32]. Both SHV and CTX-M types seem to be common
in human strains [33,34], while mainly CTX-M variants have been reported from cattle,
poultry, and dogs [30–32]. Human ESBL isolates have been detected to co-harbor various
other resistance genes, such as plasmid mediated quinolone resistance genes (PMQR),
carbapenemase genes and plasmid encoded AmpC genes [35–37], whereas animal ESBL
isolates have only been correlated with a colistin resistance gene (mcr-1) [31].

To get a better insight into the characteristics of multidrug resistant ESBL producers
of animal origin in Greece, the present study investigated the antimicrobial resistance
profile of selected ESBL E. coli isolates from cattle, pigs and a wild bird. This is the first
report describing the presence and presenting the multidrug resistance determinants of
ESBL-producing strains in fecal samples of cattle, pigs, and wild birds in Greece.

2. Results
2.1. Phenotypic Antimicrobial Resistance of the ESBL-Producing E. coli

The 19 selected E. coli isolates from cattle (n = 7), pigs (n = 11) and a Eurasian magpie
(Pica pica) presented resistance to penicillins (ampicillin), third (cefoperazone, ceftiofur),
and fourth (cefquinome) generation cephalosporins, while they were susceptible to car-
bapenems.

Among the seven cattle E. coli isolates, the ESBL phenotype was combined with amino-
glycoside, fluoroquinolone, tetracycline, and trimethoprim/sulfamethoxazole resistance
in four strains, with aminoglycoside, tetracycline, and trimethoprim/sulfamethoxazole
resistance in two strains and with aminoglycoside and tetracycline resistance in one strain.
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The ESBL phenotype of pig isolates coexisted with resistance to aminoglycosides,
fluoroquinolones, tetracycline, and trimethoprim/sulfamethoxazole in four strains; amino-
glycoside, fluoroquinolone, and tetracycline resistance in one strain; tetracycline and
trimethoprim/sulfamethoxazole resistance in four strains; fluoroquinolone resistance in
one strain; and only tetracycline resistance in one strain.

The E. coli strain from the magpie presented the ESBL phenotype combined with re-
duced susceptibility to fluoroquinolones, tetracycline, and trimethoprim/sulfamethoxazole.

The antimicrobial resistance phenotype of each ESBL-producing E. coli isolate is
summarized in Table 1.

2.2. Genotype of the ESBL-Producing E. coli

Microarray analysis confirmed that the 19 ESBL-producing strains belonged to E. coli.
The genotyping results are presented in Table 1.

All seven bovine strains harbored blaCTX-M-1/15 and blaTEM, while the AmpC variant
blaMIR was identified, though not expressed, in only one strain. Carbapenemase or other
β-lactamase genes were not detected in isolates of this animal species.

Furthermore, the presence of blaCTX-M-1/15 was confirmed in all 11 swine isolates, while
six co-harbored blaTEM. AmpCs were not identified. A carbapenemase gene associated with
the blaOXA-134 family was detected in one of the swine strains, namely S7-1. However, the
corresponding phenotype, a resistance against imipenem, could not be detected (Table 1).
Sequencing did not confirm the presence of a blaOXA variant in this strain. The genes
detected, using whole genome sequencing of the isolate S7-1, as well as their locations are
presented in Supplementary Materials File S1.

The magpie’s isolate also harbored blaCTX-M-1/15 but no other β-lactamase variants
were reported.

Regarding the seven cattle strains, all presented phenotypic resistance to aminoglyco-
sides. The aphA resistance gene was detected in all seven, the aadA1 in five, the aadA2 in
three, while strA and strB co-existed in six isolates. The aadA1, aadA2, aphA, strA, and strB
gene pattern was reported in three and the aphA, strA, and strB in two strains. Reduced
susceptibility to aminoglycosides was also detected in five pig isolates despite the fact that
resistance genes were identified in all 11. aadA1 was identified in eight strains, aadA2 in
six, aadA4 in five, aphA in two and both strA, and strB in three strains. strA and strB were
always concurrently detected. Co-occurrence of aadA1, aadA2, and aadA4 was reported in
three and of aadA1 and aadA4 in two strains. Finally, the wild bird’s isolate harbored aadA4,
strA, and strB, without displaying phenotypic resistance.

E. coli strains were additionally tested for the presence of genes conferring resistance
to quinolones. Four of the seven bovine isolates expressed a resistant phenotype, however
only one harbored a PMQR gene, namely qnrS. Diminished susceptibility to this class of
antibiotics was also identified in six of the 11 swine isolates, whereas resistance genes were
detected in four. qnrB was identified in one, qnrS in two and co-occurrence of qnrB and
qnrS was reported in one isolate. One of the swine strains that harbored qnrS (Table 1,
isolate S7-2) did not present resistance to any of the fluoroquinolones tested. The wild
bird’s isolate expressed a resistant phenotype and carried qnrS.

All seven cattle isolates harbored a minimum of one sulfonamide resistance gene.
Specifically, sul1 was identified in five strains, sul2 in six, and sul3 in one. Co-existence
of sul1 and sul2 was reported in three isolates; and coexistence of sul1, sul2, and sul3 was
reported in one. Moreover, 9 of the 11 pig isolates presented at least one gene. sul1 was
detected in six isolates, sul2 in seven, and sul3 in four. Co-occurrence of sul1 and sul2 was
reported in three strains; of sul2 and sul3 in one; and of sul1, sul2, and sul3 in two strains.
The wild bird’s isolate harbored both sul1 and sul2.
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Table 1. Antimicrobial resistance phenotype and genotype of the ESBL-producing E. coli isolates.

Isolate 1
Antimicrobial

Resistance
Phenotype

Antimicrobial Resistance Genotype

β-lactamases genes Aminoglycoside
Resistance Genes PMQRGenes Sulfonamide

Resistance Genes
Trimethoprim

Resistance Genes
Macrolide

Resistance Genes
Genes Associated with

Mobile Genetic Elements

B1

AMP, AMC, TCC,
CEX, CF, CFP, CEF,
CEQ, GEN, NEO,
FLU, ENR, MRB,

TET, SXT

blaCTX-M1/15, blaTEM aadA1, aphA - sul1 dfrA1 - intI1

B2

AMP, AMC, TCC *,
CEX, CF, CFP, CEF,
CEQ, GEN, NEO,

FLU, TET, SXT

blaCTX-M1/15, blaTEM
aadA1, aphA, strA,

strB - sul1, sul2 dfrA1 mph intI1

B3
AMP, CEX, CF, CFP,

CEF, CEQ, GEN,
NEO *, TET, SXT

blaCTX-M1/15, blaTEM
aadA1, aadA2, aphA,

strA, strB - sul1, sul2 dfrA1 - intI1

B4

AMP, CEX, CF, CFP,
CEF, CEQ, GEN,
NEO *, FLU, TET,

SXT

blaCTX-M1/15, blaTEM,
blaMIR

aadA1, aadA2, aphA,
strA, strB - sul1, sul2, sul3 dfrA1 - intI1

B5 AMP, CEX, CF, CFP,
CEF, CEQ, NEO, TET blaCTX-M1/15, blaTEM aphA, strA, strB - sul2 - - tnpISEcp1

B6
AMP, CEX, CF, CFP,

CEF, CEQ, GEN,
NEO, TET, SXT

blaCTX-M1/15, blaTEM
aadA1, aadA2, aphA,

strA, strB - sul1, sul2 dfrA1, dfrA5 - intI1

B7

AMP, AMC, CEX, CF,
CFP, CEF, CEQ, NEO
*, FLU *, ENR *, TET,

SXT

blaCTX-M1/15, blaTEM aphA, strA, strB qnrS sul2 - - tnpISEcp1
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Table 1. Cont.

Isolate 1
Antimicrobial

Resistance
Phenotype

Antimicrobial Resistance Genotype

β-lactamases genes Aminoglycoside
Resistance Genes PMQRGenes Sulfonamide

Resistance Genes
Trimethoprim

Resistance Genes
Macrolide

Resistance Genes
Genes Associated with

Mobile Genetic Elements

S1

AMP, CEX, CF, CFP,
CEF, CEQ, GEN,

NEO *, FLU, ENR,
MRB, TET

blaCTX-M1/15, blaTEM aadA1, aphA, - sul2, sul3 - - tnpISEcp1

S2 AMP, CEX, CF, CFP,
CEF, CEQ, TET, SXT blaCTX-M1/15 aadA1, aadA4 - sul1, sul2 dfrA7, dfrA17, dfrA19 - intI1, tnpISEcp1

S3-1

AMP, AMC, TCC *,
CEX, CF, CFP, CEF,
CEQ, GEN, FLU *,
ENR *, TET, SXT

blaCTX-M1/15 aadA1, aadA4 qnrB sul1 dfrA1, dfrA7, dfrA17,
dfrA19 mph, mrx intI1

S3-2
AMP, AMC, TCC *,
CEX, CF, CEF, CEQ,

TET, SXT
blaCTX-M1/15, blaTEM aadA1, strA, strB - sul1, sul2 dfrA1, dfrA14, dfrA15 mph, mrx intI1

S3-3

AMP, AMC, TCC,
CEX, CF, CFP, CEF,
CEQ, GEN, FLU,
ENR *, TET, SXT

blaCTX-M1/15, blaTEM
aadA1, aadA2, aadA4,

strA, strB qnrB, qnrS sul1, sul2 dfrA1, dfrA7, dfrA12,
dfrA17, dfrA19 mph, mrx intI1

S4-1 AMP, CEX, CF, CFP,
CEF, CEQ, TET, SXT blaCTX-M1/15 aadA1, aadA2 - sul1, sul2 dfrA12 - intI1

S4-2 AMP, CEX, CF, CFP,
CEF, CEQ, TET, SXT blaCTX-M1/15, blaTEM aadA1, aadA2, aadA4 - sul1, sul2, sul3

dfrA1, dfrA7, dfrA12,
dfrA15, dfrA17,

dfrA19
- intI1, tnpISEcp1

S5

AMP, CEX, CF, CFP,
CEF, CEQ, NEO *,
FLU, ENR, MRB,

TET, SXT

blaCTX-M1/15, blaTEM aphA, strA, strB - sul2 dfrA5 - intI1
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Table 1. Cont.

Isolate 1
Antimicrobial

Resistance
Phenotype

Antimicrobial Resistance Genotype

β-lactamases genes Aminoglycoside
Resistance Genes PMQRGenes Sulfonamide

Resistance Genes
Trimethoprim

Resistance Genes
Macrolide

Resistance Genes
Genes Associated with

Mobile Genetic Elements

S6

AMP, AMC, TCC *,
CEX, CF, CFP, CEF,
CEQ, GEN, NEO *,
FLU, ENR, MRB,

TET, SXT

blaCTX-M1/15, blaTEM
aadA1, aadA2, aadA4,

aphA, strA, strB - sul1, sul2,sul3
dfrA1, dfrA7, dfrA12,

dfrA14, dfrA17,
dfrA19

mph, mrx intI1, tnpISEcp1

S7-1
AMP, CEX, CF, CFP,

CEF, CEQ, FLU *,
ENR *

blaCTX-M1/15 aadA2 qnrS - - mph, mrx -

S7-2 AMP, CEX, CF, CFP,
CEF, CEQ, TET blaCTX-M1/15 aadA2 qnrS - - mph, mrx -

WB1
AMP, CEX, CF, CFP,

CEF, CEQ, FLU,
ENR *, TET, SXT

blaCTX-M-1/15 aadA4, strA, strB qnrS sul1, sul2 dfrA7, dfrA17, dfrA19 mph, mrx intI1

1 B—bovine strains; S—swine strains; WB—Eurasian magpie strain; AMP—ampicillin; AMC—amoxicillin/clavulanic acid; TCC—ticarcillin/clavulanic acid; CEX—cefalexin; CF—cefalotin; CFP—cefoperazone;
CEF—ceftiofur; CEQ—cefquinome; GEN—gentamicin; NEO—neomycin; FLU—flumequine; ENR—enrofloxacin; MRB—marbofloxacin; TET—tetracycline; SXT—trimethoprim/sulfamethoxazole; * intermediate
resistance; - the isolate did not harbor genes of this category.
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Genes associated with trimethoprim resistance were identified in five of the seven
cattle isolates. dfrA1 was detected in five and dfrA5 in one. Coexistence of dfrA1 and dfrA5
was reported in one of the isolates. Concerning pig strains, eight out of the 11 carried at
least one gene and a variety of genes were identified. Each one of dfrA1, dfrA7, dfrA19
and dfrA17 was found in five isolates, dfrA12 in four, both dfrA14 and dfrA15 in two and
dfrA5 in one. Concurrent presence of dfrA1, dfrA7, dfrA17, and dfrA19 was reported in four
strains. The dfrA7, dfrA17, and dfrA19 pattern was detected in one pig strain and in the
isolate from the Eurasian magpie.

Overall, diminished susceptibility to sulfonamides/trimethoprim was expressed in
all seven cattle, 8 of the 11 pig and in the wild bird isolates.

The mph gene, associated with macrolide resistance, was identified in one of the seven
bovine strains, while 6 of the 11 swine as well as the magpie isolates harbored both mph
and mrx.

2.3. Mobile Genetic Elements

Genes associated with mobile genetic elements were identified in all the seven bovine
isolates. In detail, intI1 was detected in five and tnpISEcp1 in two strains. A total of 9 of the
11 swine strains harbored either intI1 (n = 5) or tnpISEcp1 (n = 1) or both (n = 3). intI1 was
also detected in the magpie’s isolate.

3. Discussion

The present study reports the antimicrobial resistance profile of 19 ESBL-producing
E. coli strains isolated from cattle (n = 7), pigs (n = 11) and a Eurasian magpie in Greece.
The genotypic antimicrobial resistance characteristics of the isolates were investigated by
assessing the occurrence of a variety of resistance genes corresponding to seven classes of
antibiotics. This is the first report presenting in detail the multidrug resistance determinants
of ESBL-producing E. coli isolates of animal origin in Greece.

The reported ESBL-producing E. coli isolates presented diminished susceptibility to at
least one agent of more than three classes of antibiotics and subsequently were characterized
as multidrug resistant (MDR). The bovine strains were resistant to at least four classes of
antibiotics, the swine strains expressed resistance to at least three antimicrobial classes and
the magpie isolate displayed reduced susceptibility to five classes. Recent studies have
confirmed the presence of MDR ESBL-producing E. coli among cattle [38,39], pigs [39,40],
and wild birds [41,42], in various regions.

All the isolates expressed the ESBL phenotype due to blaCTX-M-1/15 carriage. CTX-M-
1/15 are the most prevalent ESBL variants among humans, livestock, wild birds and the
environment in Europe [19,43–46]. Several hospital and community-acquired infection out-
breaks worldwide have been attributed to these enzymes, even in countries with low antibi-
otic consumption and low prevalence of antimicrobial resistance, such as Norway [47–50].
High ESBL occurrence among human isolates has been described in Greece and inter-
national travel to the country has been suggested as a significant risk factor for ESBL
colonization [51,52]. However, there are no available data about the presence and molec-
ular characteristics of ESBL-producing strains from livestock and wildlife. To the best of
our knowledge, this is the first identification of blaCTX-M-1/15 in fecal E. coli isolates of cattle,
pigs, and a wild bird in Greece. Detection of these variants among strains from the above-
mentioned species is alarming and probably depicts their wide dissemination, since they
were retrieved from different ecological niches, i.e., farmed animals and wildlife. These
genes have also formerly been detected in isolates from healthy dogs in Greece [30]. We did
not detect blaSHV variants, although in our country they have previously been identified in
milk samples from cows presenting mastitis and are frequently reported among human
strains [31,33].

The blaTEM β-lactamase gene was identified in 13 of the 19 ESBL isolates; all the cattle
and six swine isolates. However, we cannot assume whether these genes encoded ESBLs
or the narrow spectrum β-lactamases TEM-1 or TEM-2 since the array includes consensus
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probes and the TEM subtype was not identified. blaMIR was the only plasmidic AmpC gene
detected in one cattle isolate which was, though, not resistant to β-lactams/β-lactamase
inhibitor combinations [53]. Additionally, a carbapenemase gene associated with the
family blaOXA-134 was detected in a pig strain. Since signals on the microarray assay were
weak, a new allelic variant of this gene/gene-family was suspected. However, subsequent
sequencing did not confirm the presence of an OXA-134-like gene. Reviewing published
data, genes of this family have only been isolated from Acinetobacter spp., which is their
natural host [54,55], and do not constitute a clinical problem to date.

Genes associated with aminoglycoside resistance were detected in all the E. coli isolates,
although only 12 expressed a resistant phenotype. Aminoglycosides are extensively used in
veterinary medicine [56], a fact that could explain the wide dissemination of the respective
resistance genes. Recent studies that molecularly characterized ESBL-producing strains,
confirmed a high frequency of aminoglycoside resistance genes among isolates from
pigs and abattoir workers in Cameroon [57] as well as from retail raw pork and beef
meat in Singapore [58]. According to our results, aadA1, aphA, strA, and strB were the
most frequently detected genes in bovine strains, as has recently been reported in ESBL-
producing E. coli isolated from milk samples of cattle with mastitis in Egypt [59]. The
aac(6′)-Ib gene was not detected in any of our strains, even though it is frequently identified
in ESBL E. coli strains of various hosts worldwide [21,60].

PMQR genes qnrS, qnrB, or both were identified in 5 out of the 11 fluoroquinolone
resistant and in one fluoroquinolone susceptible ESBL-producing strains and were the gene
family least frequently detected. Similarly, low PMQR detection rates have been reported
in isolates obtained from cattle feces in Canada [61] and from lake water in Singapore [62].
The only study from Greece that has formerly identified concurrent presence of a qnr
variant (qnrS1) with an ESBL gene (blaCTX-M-15) refers to a human E. coli isolate [63]. qnrS
gene was detected in bovine strains and its co-occurrence with blaCTX-M-15 has previously
been documented in E. coli of raw beef meat in Turkey [64]. The magpie’s isolate also
presented the fluoroquinolone resistant phenotype due to carriage of qnrS. Our finding
is in accordance with an earlier study from the Netherlands that reported coexistence of
qnrS with blaCTX-M-1 in E. coli from a Northern lapwing and with blaCTX-M-15 in E. coli from
a Black-headed gull [65]. Swine strains harbored qnrS and/or qnrB, as has previously been
described for CTX-M-1group –producing E. coli strains isolated from fecal samples of pigs
in China [66,67] and of piglets in India [68]. As for the six fluoroquinolone resistant strains
that did not harbor PMQR genes, these probably expressed resistance due to mutations
in the genes coding for DNA gyrase and topoisomerase IV [69]. In Greece, mutations in
quinolone resistance-determining regions have been detected in ESBL E. coli strains of
human origin that produced CTX-M-15 [35].

Trimethoprim/sulfamethoxazole resistance was mediated by the combined presence
of sul and dfrA genes in all but one E. coli isolates. Sulfonamide resistance genes sul1, sul2,
and sul3 or different combinations of them were detected in the bovine and the swine
strains. Braun et al. [60] also reported these resistance genes in ESBL E. coli isolates from
feces of Egyptian dairy cattle. Notably, sul3 is considered to be a rather rare sulfonamide
resistance determinant [70]. In the magpie strain, the sul1 and sul2 genes were identified,
as previously described for CTX-M-15 –producing strains of birds of prey in Germany
and Mongolia [71] and of waterfowl in Pakistan [72]. Overall, the sul2 gene presented
the highest detection rate, which is consistent with former reports for isolates of humans,
animals, and animal-derived foods [73]. Concerning trimethoprim resistance determinants,
dfrA1 predominated in cattle strains, whereas dfrA1, dfrA7, dfrA17, and dfrA19 were evenly
common in pig strains. Markedly, trimethoprim resistance genes were not detected in a
bovine strain that presented reduced susceptibility to trimethoprim/sulfamethoxazole.
This isolate only harbored sul2, which is associated with a trimethoprim/sulfamethoxazole
susceptible phenotype, a fact implying the presence of an alternative resistance pathway in
this strain.
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Integrase genes were present in 13 of the livestock isolates as well as in the one from
the magpie. Only class 1 integrons were detected, which are known to be the most com-
mon in enteric bacteria and are highly prevalent among isolates of pigs, cattle and wild
birds [21,74,75]. In our study, intI1 positive E. coli strains co-harbored blaCTX-M-1/15 and
different combinations of resistance determinants for at least three classes of antibiotics.
The presence of intl1 could explain the resistance profiles of our strains, since inserted
gene cassettes in these mobile genetic elements have been described to confer resistance
to aminoglycosides, quinolones, trimethoprim, sulfonamides, and tetracyclines [76–79].
Finally, the ISEcp1 element was detected in two bovine and four swine strains. It can be
inferred that genes harbored by the ISEcp1 positive strains are more likely to be widely
disseminated, as this genetic platform has been associated with the mobilization and im-
proved expression of blaCTX-M [80,81]. In general, mobile genetic elements have contributed
to the emergence of novel E. coli hybrid strains with distinct assortment of antimicrobial
resistance traits [82].

Overall, multiple combinations of genes conferring antimicrobial resistance were
detected in the ESBL-producing E. coli isolates of livestock origin. This finding could
be attributed to the overuse or misuse of antimicrobials in animal husbandry [83] and
is alarming since products derived from these animals are included in the daily human
dietary [58]. Furthermore, MDR E. coli strains could potentially be transmitted from
farmed animals to wildlife species or vice versa [84,85]. The magpie strain harbored
resistance genes for all the tested antimicrobial classes, a fact that could be ascribed to
antibiotic residues and ESBL-producing strains present in the environment due to human
and livestock influence [86], as well as to the bird’s scavenging behavior. This resident wild
bird lives in vicinity to humans and farmed animals and therefore could be contaminated
by resistant bacteria from human or livestock offal as well as contribute to the spread of
multidrug resistant ESBL bacteria. Thus, our results support previous studies that proposed
wild birds as sentinels for antimicrobial resistance, reflecting the impact of human activities
on the environment and highlight their possible role in the dissemination of multidrug
resistant strains [87].

4. Materials and Methods
4.1. Study Design

In the context of an ongoing survey about β-lactamase producing Enterobacteriaceae
of animal origin in Greece, 19 E. coli isolates that presented phenotypic resistance to third
and fourth generation cephalosporins as well as a resistant phenotype to at least one class of
non β-lactam antibiotics, were selected for further molecular characterization of resistance
genes. All isolates were retrieved from non-duplicated fecal samples of clinically healthy
animals using a sterile cotton swab (Transwab® Amies, UK). Seven isolates were obtained
from seven cattle, 11 from seven pigs and one from a Eurasian magpie. The wild bird
isolate was retrieved after testing a total of 83 samples derived from 19 different wild bird
species (Supplementary Materials File S2).

4.2. Isolation, Identification, and Antimicrobial Resistance Phenotype of ESBL-Producing E. coli

Swabs were directly streaked on ESBL selective media (CHROMID® ESBL, BioMérieux,
Marcy l’Etoile, France) and the plates were incubated aerobically at 37 ◦C for 24–48 h. Mor-
phologically different colonies of pink to burgundy coloration, corresponding to E. coli
growth, were sub-cultured on MacConkey agar. Identification and antimicrobial sus-
ceptibility testing of the isolates were performed using the Vitek-2 system (BioMérieux,
Marcy l’Etoile, France), according to the manufacturer’s instructions. The AST-GN96
card was used in order to determine the minimum inhibitory concentration (MIC) of the
following antimicrobials: ampicillin, amoxicillin/clavulanic acid, ticarcillin/clavulanic
acid, cefalexin, cefalotin, cefoperazone, ceftiofur, cefquinome, imipenem, gentamicin,
neomycin, flumequine, enrofloxacin, marbofloxacin, tetracycline, florfenicol, polymyxin
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B, and trimethoprim/sulfamethoxazole. Results were interpreted automatically by the
Vitek-2 software, according to CLSI or CA-SFM criteria.

4.3. Phenotypic Confirmation of ESBL Production

ESBL production was phenotypically confirmed by the double disk synergy test,
according to EUCAST guidelines [88]. Antibiotic disks containing cefotaxime (30 µg),
ceftazidime (30 µg), cefepime (30 µg), and amoxicillin/clavulanate acid (20 µg/10 µg)
were applied at a distance of 20 mm (center to center) on Mueller Hinton agar that was
pre-inoculated with an 0.5 McFarland inoculum. Following incubation, any enhanced zone
of inhibition between cephalosporin disks and the amoxicillin/clavulanic acid disk or a
‘keyhole’ formation in the direction of the disk containing clavulanic acid were consid-
ered as evidence for the presence of an ESBL producing strain. In cases of ambiguous
results, a combination disk test was applied, using cefotaxime and ceftazidime disks (30 µg
each), alone and in combination with clavulanic acid (10 µg). A difference of ≥5 mm in
zone diameter among single and combined with clavulanic acid antimicrobial agents was
interpreted as ESBL production.

4.4. Molecular Genotyping of the ESBL-Producing E. coli

The CarbDetect AS-2 Kit (Abbott, Jena, Germany) was used, according to the manu-
facturer’s instructions, to detect the AMR genotype. This microarray kit simultaneously
detects a total of 134 genes, as presented by Braun et al. [89] and in Supplementary Materials
File S3. The “result collector” software, provided by Abbott, automatically summarized the
data. An antibiotic resistance genotype was defined as a group of genes, which have been
described to confer resistance to a family of antibiotics (e.g., the genotype “blaCTX-M1/15,
blaTEM” confers resistance to third generation cephalosporins).

For strain S7-1, the Nanopore Oxford MinION platform was used to sequence the
whole genome, in order to prove the presence or absence of a microarray detected car-
bapenemase gene, blaOXA-134-like. Briefly, size selection was performed using AMPure
beads in a ratio 1:1 (v/v) with the isolated DNA sample. The DNA library was gener-
ated using the nanopore sequencing kit SQK-LSK109 (Oxford Nanopore Technologies,
Oxford, UK), according to manufacturer’s instructions. The used Flongle flow cell FLO-
FLG001 (R9.4.1) was primed by the flow cell priming kit EXP-FLP002 (Oxford Nanopore,
Oxford, UK). The protocol named “Genomic DNA by Ligation” was used in version
GDE_9063_v109_revW_14AAug2019 (Last update: 9 December 2020). The guppy base-
caller (v4.4.2., Oxford Nanopore Technologies, Oxford, UK) translated and trimmed the
MinION raw data (fast5) into quality tagged sequence reads (4000 reads per fastq-file).
Flye (v2.8.3) was used to assemble all reads to two large contigs (the chromosome and one
plasmid). Then, a racon-medaka (racon v1.4.3; medaka v1.2.0) pipeline was applied for
polishing. The tool Abricate (v1.1.0) was used to identify possible resistance genes in both
chromosome and plasmid (Last update: 19 April 2020) [90].

5. Conclusions

Our study presented the antimicrobial resistance profile of ESBL-producing E. coli
strains isolated from cattle, pigs, and a wild bird in Greece. All the strains that were
selected for analysis harbored blaCTX-M-1/15 along with various other genes conferring
resistance to six classes of antimicrobials. This finding underlines the wide dissemination
of multidrug resistant bacteria in diverse ecosystems and emphasizes the need for an
integrated antimicrobial surveillance system. Further studies are required to fully illustrate
the occurrence of MDR ESBL-producing isolates, investigate their origin and unravel the
dynamics of their transmission in Greece.
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