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Abstract: As time passes, scale builds up inside the pipelines that deliver the oil or gas product from
the source to processing plants or storage tanks, reducing the inside diameter and ultimately wasting
energy and reducing efficiency. A non-invasive system based on gamma-ray attenuation is one of the
most accurate diagnostic methods to detect volumetric percentages in different conditions. A system
including two NaI detectors and dual-energy gamma sources (241Am and 133Ba radioisotopes) is
the recommended requirement for modeling a volume-percentage detection system using Monte
Carlo N particle (MCNP) simulations. Oil, water, and gas form a three-phase flow in a stratified-flow
regime in different volume percentages, which flows inside a scaled pipe with different thicknesses.
Gamma rays are emitted from one side, and photons are absorbed from the other side of the pipe by
two scintillator detectors, and finally, three features with the names of the count under Photopeaks
241Am and 133Ba of the first detector and the total count of the second detector were obtained. By
designing two MLP neural networks with said inputs, the volumetric percentages can be predicted
with an RMSE of less than 1.48 independent of scale thickness. This low error value guarantees the
effectiveness of the intended method and the usefulness of using this approach in the petroleum and
petrochemical industries.

Keywords: volumetric percentage; three-phase flow; scale thickness independent; industrial process;
MLP neural network

1. Introduction

Scale deposits in oil pipelines have caused many problems in many oil fields around
the world. Scale formation reduces the effective cross-sectional area of the pipeline and
complicates the flow of petroleum products. This factor prevents pumps and various
equipment from working properly. Increasing the amount of scale in the pipeline and not
detecting it in time can lead to downtime accidents, damage to oil equipment, increased
repair costs and reduced efficiency. It is for this reason that, in the presence of scale,
using a control system that provides features such as detection of volume percentages
is very useful for moving things forward. Researchers, when determining the various
parameters of a polyphase flow, always allude to gamma-ray attenuation systems as the
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gold standard [1–8]. In [1], the researchers carried out a setup consisting of a cesium source,
two detectors made of sodium iodide, and a test pipe. They implemented two-phase
flow in three regions: stratified, bubbly, and annular, and were able to predict the volume
percentages and classify the flow regimes using the counts recorded by two detectors fed
as inputs to the RBF neural network. In [2], Roshni et al. used artificial neural networks of
type GMDH trained on the imbalanced data to detect the type of flow regime and volume
percentages. They justified the heavy computational load applied to the system with the
resulting high accuracy. Years ago, Roshani et al. in [3], used the combination of a NaI
detector and cobalt-60 source to design a system for detecting the flow regime and volume
percentage, which had low accuracy in determining the parameters due to the extraction of
inappropriate characteristics. The Jaya optimization algorithm was used by researchers in
2019 to predict the volume percentage of a three-phase flow in the stratified regime [4]. Two
sodium iodide detectors, a cesium source, and a test pipe were the structures that led Sattari
and his colleagues to introduce a system for accurate determination of volume percentages
and classification of flow regimes. In a follow-up study [6], they investigated how to use
GMDH neural networks to identify types of flow regimes and predict volume percentages.
In this study, high accuracy was obtained in determining the volume percentage, but one
of the disadvantages of this study was not considering the amount of scale in the pipe.
In [7], the scale thickness in the oil pipe is detected by a dual-energy source including
Ba-133 and Cs-137. After simulating the two-phase flow in different regimes, the Ba-133
and Cs-137 gamma peaks from the first transmission photon detector and the total number
from the second scattered-photon detector were considered as inputs of the RBF neural
network. Finally, their research led to the prediction of scale thickness with RMSE less
than 0.22. In a recent investigation, the scale thickness in the oil pipe was detected by a
dual-energy source including Ba-133 and Am-241. After simulating the three-phase flow in
annular regimes, Photopeaks of Ba-133 and Am-241 of two transmission detectors were
propounded as inputs of the RBF neural network. Eventually, their investigation resulted in
the prediction of scale thickness with an RMSE of less than 0.09 [8]. The always-on energy
sources based on radioisotopes lead to problems, including transportation problems and
requiring employees to wear special protective clothing. Therefore, in recent years, the
attention of researchers has been drawn to research the use of X-ray tubes to determine
the parameters of multiphase flows [9–12]. Researchers in [9] determined the regime type
and volumetric percentage of two-phase flows using an X-ray tube and a NaI detector.
They extracted temporal features from the signals received by the detector and used these
features to train two MLP neural networks. In the study of three-phase flows in [10],
three regimes of homogeneous, annular, and stratified flow were simulated in different
volume percentages. Three RBF neural networks were also trained with the frequency
characteristics of the received signals, which were relatively accurate. Four petroleum
products that are mixed two by two with different volumes were simulated in [11] with the
MCNP code and centered on the X-ray tube. The inputs of three MLP neural networks were
the recorded signals, which were used to predict the volume ratio of the three products.
Considering that the volume ratio of three products was obtained, calculating the volume
ratio of the fourth product was not difficult. The introduced method predicted the type and
amount of products, but the lack of feature-extraction techniques prevented the obtaining
of high precision. In order to develop research [11], wavelet transforms was investigated
by Balubaid et al. [12] as a feature-extraction technique. Optimizing the computational
load and improving the accuracy was one of the results of this action. With the help of
the previous studies that have been undertaken in this field, in this study, an attempt has
been made to provide a volume-percentage diagnostic system with high accuracy. For this
purpose, a three-phase flow regime consisting of water, gas and oil in different volume
percentages was simulated. A different value of scale thickness was considered in each
simulation. By extracting the characteristics of the count under Photopeaks 241Am and
133Ba of the first detector and the total count of the second detector, and applying them to
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two MLP neural networks, we tried to predict volume percentages with high accuracy. The
following are the contributions of the present research:

1. Improving the detecting system’s precision;
2. Measurements of volumetric fractions could be taken during the passage of a three-

phase flow via an oil pipe, despite the presence of scale;
3. Examining the effectiveness of the photopeak characteristics of 241Am and 133Ba

of the first detector and the total count of the second detector in identifying the
volume percentages;

4. Significantly reducing the computational burden by collecting useful features.

2. Simulation Setup

The passage of time has shown that researchers are interested in using MCNP code to
simulate structures in which X-ray or gamma radiation is used [13–16]. The framework
proposed in this study was modeled with the MCNP code-simulation platform [17]. 241Am
and 133Ba radioisotopes form the centrality of the proposed framework of this research.
The aforementioned dual-energy source has a photon energy of 59 kilo electron volts and
356 kilo electron volts, respectively, and emits its photons towards a steel test pipe and
collects them at the end using two detectors. These two detectors, which are made of
sodium iodide, are placed at an angle of 0 and 7 degrees to the hypothetical horizon line
and have dimensions of 2.54 cm × 2.54 cm. However, the main event happens inside
the test pipe, where a three-phase flow is simulated in a stratified flow regime. The said
pipe is 0.5 cm thick and has an inner diameter of 10 cm. Inside this pipe, there is a scale
made of BaSO4 with different thicknesses. To be precise, there is a scale with a density
of 4.5 g per cubic centimeter in thicknesses of 0, 0.5, 1, 1.5, 2, 2.5, and 3 cm inside the
pipe, where water, oil, and gas pass through the scale. In this modeling, the density of
water is 1, gas is 0.00125 and oil is 0.826 g per cubic centimeter. In this research, the
structure was implemented in the MCNP code. It should be mentioned that the validation
of the simulated structure in this study was undertaken with the experimental structure
implemented in the study [1]. The recorded counts obtained from the detectors of the
simulated structure and the experimental structure were compared. It was apperceived that
there is an acceptable match between them. For every seven values of the scale thickness,
there are 36 different volume percentages, which finally result in 252 simulations. From
each simulation, three characteristics-named counts under Photopeaks 241Am and 133Ba
of the first detector and the total count of the second detector were extracted, which were
obtained in total for training the neural network of 3 × 252 matrix. There are two neural
networks, each of which has three inputs and one output. One output gives the volume
percentage of the gas phase and the other the volume percentage of the oil phase. It is
obvious that in the meantime, the volume percentage of water can be calculated simply by
subtracting these two values obtained from the initial total volume. The whole described
structure is shown in Figure 1. The extracted features are illustrated in Figure 2.
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3. MLP Neural Network

The human brain is a collection of millions of interconnected computing units called
neurons, which have branches called dendrites, which are the means of sending information.
After performing the processing steps, information is transferred outside the neuron by the
axon. The mentioned processes happen in physiological and biochemical fields, but the
mathematical modeling undertaken by the researchers has made the matter different. The
use of intelligent mathematical methods and artificial neural networks in many different
fields of science has attracted the attention of many researchers [18–32]. One of the most-
used modeling is the MLP neural network. The structure of this network consists of
three different parts: the output layer part, the hidden layer part and the input layer part.
Hidden layers can be more than one layer. In the hidden layers, mathematical processes
are performed, which are called activation functions. The number of these layers, the
number of hidden layer neurons and the type of activation function depends on the nature
and degree of non-linearity of the available data. In the mathematical implementation of
neurons, the output of neurons is as follows [18,19]:

nl = ∑u
i=1 xiwij + b j = 1, 2, · · · , m (1)

uj = f
(
∑u

i=1 xiwij + b
)

j = 1, 2, · · · , m (2)

output = ∑j
n=1(unwn) + b (3)

where x represents the input parameters. W represents the weighting factor; b represents
the bias term and f represents the activation function. i is the input number and j is the
neuron number in each hidden layer. In order to solve the problem of over-training and
under-training, the available data are divided into three categories: training, validation
and testing. The training data contains most of the data and this data is used for the neural
network to see and fit them. Generally, the term “validation data” refers to a sample of
the dataset that is used to ensure the correct training process. During the training process,
these data are used for network testing. The test data are applied to the neural network
at the end of the neural-network training process in order to ensure the accuracy of the
performance. When a neural network can work properly under operational conditions, it
performs well against all three introduced data types. The number of training, validation
and test data in this research are 176, 38 and 38, respectively.
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4. Result and Discussion

Three features introduced in the previous sections were applied as inputs of two
MLP neural networks, which consisted of a 3 × 252 matrix. The output of each neural
network was the volume percentage of the gas phase or oil phase, which is 1 × 252 matrix.
Several neural networks with a variant number of hidden layers and a different number of
neurons in hidden layers were implemented, and the optimal structure for determining
the volumetric percentage of gas and oil can be seen in Figures 3 and 4, respectively. The
specifications of these networks are tabulated in detail in Table 1. To calculate the error
value of the implemented network, two criteria MRE and RMSE are propounded. These
criteria equations are as follows:

MRE% = 100 × 1
N ∑N

j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (4)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(5)

where N represents the number of data, “X(Exp)” and “X(Pred)” represent the experimental
and predicted values of ANN, respectively.
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Table 1. The specifications of predictor MLP neural networks.

ANN Gas Volume Percentage Predictor Oil Volume Percentage Predictor

Neurons of the input layer 3 3

Neurons of the first hidden layer 18 8

Neurons of the second hidden layer 8 3

Neurons of the output layer 1 1

epoch 540 650

activation function Tansig Tansig

RMSE
Train data Validation data Test data Train data Validation data Test data

1.25 1.48 1.38 1.44 1.19 1.24

MRE% 3.45 5.39 6.02 5.00 4.28 4.97

In order to combat over-fitting and under-fitting, the accessible data are separated into
three categories: training data, validation data, and test data. The training data includes the
information seen by the neural network and used to create the model. Validation refers to
the process of introducing the test data that is utilized during training. The correct answer
to these data shows that the training steps have been conducted correctly. After the neural
network has been trained, its performance may be assessed using test data. As long as the
neural network responds appropriately to these three data sets, the proposed network will
be safe from over-fitting and under-fitting problems. The response of neural networks to
these three categories can be seen by the fit diagram and error diagram in Figures 5 and 6.
The fitting diagram shows both the target output and the network output in one graph
so that the accuracy of the network can be seen. The regression diagram displays both
the anticipated outcome (represented by a black line) and the neural network’s outputs
(represented by green circle). The difference between the two target outputs and the neural
network output can be seen in the error diagram.
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The calculation load may be decreased, while accuracy is improved by training MLP
neural networks with extracted features that are useful in estimating percentages of vol-
umes. The presented high-accuracy system eliminates the need of oil and petrochemical
industries to use an accurate and reliable detection system. The issue that can be limiting
in this research is the use of a radioisotope source, which leads to harmful effects on the
human body, and it is necessary to use protective equipment and clothing when working
with the device. There is no option to turn off the source either. The low error obtained in
this research is the result of the correct processing of the obtained signals and the training
of the neural network with the effective characteristics of the signal, and can cover the
defects. Future studies in this area are highly encouraged to examine many features, such
as time, frequency, and wavelet-transform characteristics, and the performance of various
neural networks in order to increase productivity.
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5. Conclusions

Determining the volume percentage of each passing phase of condensate inside the oil
pipe will optimize the system and improve the performance of the oil industry. Therefore,
engineering and implementing a system to detect volume percentage can be an effective
help in solving the challenges in the oil industry. In this research, to provide an accurate
system to detect the volumetric percentage of three-phase condensates passing in a stratified
flow regime, the gamma-ray attenuation technique was used and the optimal system was
provided. The detection system includes a gamma source with dual energy and two NaI
detectors placed on both sides of the pipe, where the volume percentage of each phase
is measured. All this procedure is simulated using MCNP code. A three-phase flow was
simulated at different volume percentages, in the range of 10% to 80%, while different scale
values, with thicknesses of 0 cm to 3 cm, were investigated. From the signals received
from all simulations, three features-named counts under Photopeaks 241Am and 133Ba of
the first detector and the total count of the second detector were extracted and used in the
neural network design. Two MLP neural networks were trained in the condition that the
mentioned features were considered as inputs and volume percentage of gas and oil as the
output of each neural network. The volume percentage of the water phase will be easily
obtained by subtracting the amount of gas and oil from the total volume of the pipe. These
neural networks were able to predict the volume percentage with RMSE less than 1.48,
which is a minor error compared to previous researches. The great precision of the provided
method is a direct result of the effective extraction of features and their usage in training
neural networks to create optimum networks. The detection system introduced in this
research is very beneficial and its use is recommended for the oil and petroleum industry.
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