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Abstract: A supplemental pozzolanic material such as fly ash may result in a reduction in the
concrete’s adverse environmental effect by reducing the discharge of carbon dioxide throughout the
cement production procedure. This pozzolanic material also enhances the mechanical characteristics
as well as the durability of concrete material. Considering the boundless passion for utilizing fly
ash and conducting extensive research studies, the extent to which this supplement can be added to
concrete has a limitation equal to almost one-third of cement material’s weight. In the current study,
a model based on the Radial Basis Function (RBF) is developed to estimate the compressive strength
of concrete containing various amounts of fly ash at any arbitrary age. Having parameters used as
inputs in ANN modeling such as concrete additives and characteristics of fly ash, the output was
compressive strength. It was concluded that the estimated results agree well with the experimental
measurements with an MSE of 0.0012 for the compressive strength. Simple and practical equations
are proposed to present a simple means to determine the compressive strength of fly ash-based
concrete.

Keywords: compressive strength; fly ash; radial basis function; estimation

1. Introduction

The mechanical performance and engineering properties of concrete can be enhanced
by using mineral admixtures that have pozzolanic activity [1]. A sharp increase in the
application of mineral admixtures can be observed owing to environmental and economic
considerations. Cement with pozzolan leads to denser calcium silicate hydrate (C-S-H)
and consequently less permeability and high compressive strength. Thus, awareness of the
pozzolanic reactions development is important for its proper utilization and optimization
when dealing with active admixtures [2]. In recent years, there has been an increasing
interest in determining the cementing efficiency factor, which is defined as the impact of an
admixture on improving a specific characteristic respecting the ratio of water to cement or
the amount of cement in a mixture, and identification of influencing factors of a mineral
admixture [3,4] .

Fly ash categorized as Class C (higher calcium content) or Class F is a by-product
of power generation plants, and it consists mainly of ferric oxide (Fe2O3), silicon dioxide
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(SiO2), aluminum oxide (Al2O3) and calcium oxide (CaO) and some impurities [5]. The pres-
ence of SiO2 and Al2O3 is the main reason for fly ash’s pozzolanic activity. The additional
calcium aluminate hydrate (C-A-H) and C-S-H are important in making denser concrete
paste, resulting in better durability and enhanced compressive strength formed by reacting
with calcium hydroxide during cement hydration [6,7]. The presence of SiO2 and Al2O3 is
the main reason that accounts for the pozzolanic reaction of the fly ash. On the other hand,
concrete containing fly ash has the ability to show further particle packing and dense matrix
due to its spherical particles, which produce the ball bearing effect [8,9]. Therefore, several
remarkable results have been reported on the implementation of fly ash in concrete [10].
The advantages of fly ash utilization in concrete include improved workability, reduced
hydration heat and thermal cracking in concrete at early ages, and enhanced mechanical as
well as durability properties of concrete, especially at later ages [11–14].

This paper aims to present a simple and reliable empirical equation to predict the
mechanical characteristics of concrete containing fly ash. For this purpose, three RBF
networks were used. Recently, computational and numerical calculations as well as Digital
Signal Processing (DSP), especially RBF as a very powerful mathematical tool, have wide
application in different aspects of electrical engineering [15–20], civil engineering [21–23],
mineral engineering [24,25], instrumentation and control engineering [26–28], nanoelec-
tronic [29–31]and chemical and petrochemical engineering [32–38] problems. In this study,
the same method is utilized. The number of hidden layers and neurons were calculated, and
the RBF network was learned from previous samples using 1025 experimental specimens
containing fly ash for compressive strength. The factors influencing the compression of
fly ash concrete, namely the cement content (C), the amount of water (W), the level of fly
ash replacement (FA ), the amount of coarse aggregate (G), the amount of fine aggregate
(S), the amount of SiO2 (Si) in fly ash, and age (Age) were considered as inputs of the
neural network, and the compressive strength was considered as the output. The inputs
were selected in such a way that the impact of both physical and chemical parameters
as well as the age of specimens on the mechanical characteristics of concrete could be
contemplated. The results were juxtaposed with the experimental outcomes, and the error
rate was dictated. In addition, simple empirical formulae are suggested to estimate the
compressive strength of fly ash-based concrete. In the current study, several approaches for
the practical utilization of RBF networks in the engineering field are proposed.

2. Radial Basis Function

Simplifying the models to use along with increasing the accuracy of outcomes using
complex natural systems including a considerable number of inputs are the advantages of
neural networks application [39]. Several uncomplicated operating elements that work in
parallel are the basis of neural networks [40]. These networks are data supervisor models
that are stimulated by mankind’s brain [41,42]. It is practicable to build an artificial structure
in compliance with natural networks and regulate the relation between its constituents by
modifying the merits of each connection as well as the weight of the connection. Following
modifying or training the artificial neural network, applying a particular input leads to
a particular outcome. The foremost essential section of the learning procedure of the
network is minimizing the error. This may be accomplished by replacing the weight
throughout the training procedure and continuing until the error function, such as mean
square error (MSE), is less than a particular amount. The MSE is calculated as follows:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (1)

where N stands for the number of samples, and yi and ŷ are the experimental results and
predicted outcomes of the proposed network, respectively. The challenge of the learning
procedure in a network is regarding estimating the weights that lead to less MSE. In most
artificial networks, the number of weights is vast, and therefore, they cannot be found
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directly. Weight determination using a trial procedure has a computational cost. A Radial
Basis Function (RBF) network is a sort of artificial neural network utilizing radial basis
functions as an activation function of hidden layers. The most important application of
this network is curve fitting in high-dimensional spaces [43,44]. In the proposed RBF
network, the multi-variable functions are estimated using linear mergers of expressions
according to one uni-variate function. This uni-variate function is the radial basis function.
The activation function of the hidden layer in an RBF network is “radbas”; thus, the outcome
from the hidden layer’s mth neuron can be expressed as:

ym = e
− ||x−vm ||2

2σ2
m (2)

2.1. Dataset

An in-depth and conscientious survey of the literature was conducted to propose
a model to predict the compressive strength of concrete containing fly ash at any arbitrary
age and by considering the chemical content of fly ash. The collected database includes
about 1025 cases with seven distinguished features. The most important features that are
considered as the inputs of the proposed network are cement content (C), water content
(W), fly ash (FA), coarse aggregate (G), fine aggregate (S), SiO2 content of fly ash (Si),
and age of the specimens (Age). The mechanical characteristic of fly ash-based concrete,
namely the compressive strength, was contemplated as the outcome of the RBF prediction
model. These features are utilized to train and test the RBF network. The distribution and
histogram of the features are depicted in Figure 1. Table 1 shows statistical factors for the
fly-ash-based concrete dataset.
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Figure 1. The data distribution of (a) cement, (b) water, (c) fly ash, (d) coarse aggregate, (e) fine
aggregate, (f) SiO2, (g) age, and (h) compressive strength.
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Table 1. Mathematical factors for the dataset of concrete containing fly ash.

Feature Unit Min Max Average Standard Deviation

Cement kg/m3 90 675 269.4 101.8
Water kg/m3 100 255 169.9 30.4

Fly Ash kg/m3 18 544 146.5 94.0
Coarse Aggregate kg/m3 436 1278 989.8 178.8

Fine Aggregate kg/m3 279 1293 751.9 169.7
SiO2 % 26.61 79.34 53.8 9.0
Age days 1 720 63.3 81.9

Compressive Strength MPa 1 124.5 40.9 24.0

Materials and Experimental Design

The main objective of the current study is to develop a model based on the RBF
function to estimate the compressive strength of concrete containing fly ash. The collected
dataset contains various experimental works with different materials and methods. In order
to reduce the effect of variation in the materials and methods, the chemical characteristic of
fly ash is considered in the dataset. This pozzolanic material is categorized according to the
Si content into two types, i.e., Class F and Class C, based on ASTM C 618 [45]. Class F fly
ash contains more than 70% of four critical constituents, i.e., SiO2, CaO, Fe2O3, and Al2O3,
while Class C has amounts between 50 and 70% [46,47]. Bituminous coal and old anthracite,
which encompasses less than 7% CaO are the main sources of generation of Class F fly
ash [48,49]. On the other hand, burning coal lignite or younger sub-bituminous that have
specific properties of self-cementing are the main reasons for creating Class C fly ash [50].
In this study, the variation of SiO2 content is from 26.6% to 79.3% in different previous
experimental tests. The variation of the chemical composition for the entire fly ash material
in the dataset is depicted in Figure 2. It is worth noting that due to the diversity of the
samples’ sizes and mold used to measure the compressive strength, during the construction
of the network, the compressive strengths were converted to a cylindrical standard mold
using the conversion factors reported by Elwell and Fu [51,52].
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Figure 2. The variation of the chemical composition of fly ash material in the dataset.

2.2. Modeling the Network

In common, network modeling is the strategy of duplicating the real-world problems
using mathematical functions [52–54]. It is principal to reform the network’s arrangement
in terms of the number of neurons to simultaneously provide a light weight and high
quality at the same time. Due to the truth that there is no connection between the numbers
of hidden layers and the numbers of neurons, the number of optimal hidden layers and
neurons was calculated with trial and error. In the RBF network, the centers are selected
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randomly, and then, the spread for the RBF function using the normalization method can
be computed; after that, weights are computed by means of the pseudo-inverse method.
Different configurations with various spreads and numbers of neurons in the hidden layer
have been evaluated, and the high reasonable configuration with the lowest error rate
was picked as the proposed RBF network. It was concluded that the RBF network having
15 neurons with a spread of 1 in one hidden layer for the fc has the most reasonable
performance. The configuration of the proposed RBF network is shown schematically in
Figure 3. The database parameters are normalized in the range of 0 to 1 in a linear pattern to
speed up the training procedure. This linear transformation preserves all the relationships
of the initial database [41,55].

The aforementioned approach randomly divided the input data into two sections,
80% for the train and 20% for the test. PURELIN (Equation (3)) is considered as the
activation function in the output layer. In the training process, the spread of radial basis
functions (i.e., σ in Equation (2)) was considered 1, and the MSE goal was considered
0. The training procedure will be completed whenever the desired performance of the
network was achieved.

y = purlin(x) = x (3)

Compressive 

strength

Inputs Hidden Layer Output

Cement

Water

Fly ash

Coarse 

aggregate

Fine 

aggregate

SiO2

Age

Figure 3. The configuration of the RBF network.

Network Performance

Estimation of the mechanical characteristics of concrete including fly ash is achievable
when the network is judiciously learned from available data. Furthermore, the compound
interaction between the input factors and their impacts on output can be computed. The net-
works’ performance to estimate the compressive strength is shown in Figure 4. As can be
seen, the network is able to predict the results with suitable accuracy and performance.
A critical challenge is selecting a suitable RBF configuration with a reasonable error without
any underfitting or overfitting. The former indicates that the training model is simple
and is not able to learn the relation between data [56,57], while the latter implies that the
model is convoluted and the network memorizes the training dataset with limited ability
in generalization [58,59]. In these conditions, due to the inaccurate learning procedure,
the network is not able to generalize the unseen data. One good way to escape such
a problem is using the early stopping procedure [58,60]. Moreover, as the MSE for test data
reaches a constant value at a higher number of neurons, it indicates the proposed network
is out of the risk for overfitting and underfitting [61]. In other words, an increase in the
number of neurons may not result in an increase or a reduction in the MSE of the network.
Therefore, one may be sure that the network is not stuck in the local minimum [57,62,63].
In addition, the difference between the MSE of test and train data is relatively low, which
further indicates that there is not any overfitting in the network. Furthermore, by searching
for a suitable configuration, a passive scheme of overfitting control is implemented. This
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method searches for a suitable configuration of the network before training, which is called
the hyper-parameter optimization technique or model selection approaches [57,58].

The condition of the prediction as a consequence of the coefficient of determination, R,
in the network for all data is demonstrated in Figure 5, showing the interconnection between
the RBF results and the experimental outcomes. Moreover, in Figure 5b, the comparison of
the experimental results, i.e., targets, and RBF network outcomes, i.e., outputs, along with
the corresponding errors is shown. As can be seen, the RBF network is able to predict the
compressive strength of concrete containing fly ash at any age with reasonable accuracy.
The proposed network can predict the compressive strength in a wide range from 1 MPa at
1-day age to more than 120 MPa. As can be noticed, the compressive strength of 1 MPa is
very low, and it is related to the early-age strength, almost at the age of 1 day. However,
the amount of error for the prediction of the compressive strength at early ages is relatively
high. Figure 6 indicates the distribution of the estimation error for the proposed RBF-based
network. As it is obvious, nearly half of the data was predicted using the proposed network
with an error range of 5%, while more than 73% of the data, i.e., almost 750 samples, have
an error of less than 10%. This demonstrates the accuracy of the proposed network and
indicates a verification for further analysis of unseen data.
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Figure 4. The performance of the network in predicting the compressive strength.
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Figure 5. (a) The regression of the proposed networks, (b) comparison of the targets and outputs
along with the corresponding error.
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Figure 6. The distribution of the prediction error for the proposed network.

In order to show the precision of the network outputs in terms of statistical measures,
four statistical error metrics such as correlation coefficient (R2), Nash–Sutcliffe efficiency
(NSE) coefficient, root mean square error (RMSE), and mean absolute percentage error
(MAPE) were used to comprehensively compare the outcomes of RBF network and experi-
mental data. These statistical error indicators can be calculated by equations in Equation (4).
These statistical metrics according to all data points obtained from the RBF networks are
listed in Table 2. The statistical metrics listed in Table 2 indicate that the predicted compres-
sive strength using the RBF network was very close to the experimental outcomes. This
additionally verifies the eligibility of the proposed RBF model.

RMSE =

√
∑(P− E)2

N
NSE = 1− ∑(P− E)2

∑(Ē− E)2

MAPE =
100
N ∑

∣∣∣∣ Ē− P
E

∣∣∣∣ R =
∑(P− P̄)(E− Ē)√

∑(P− P̄)2

√
∑(E− Ē)2

(4)

where E and P are the experimental and predicted values, and the Ē and P̄ factors are the
mean values for the experimental and the predicted results, respectively.

Table 2. MSE, RMSE, NSE, R2 for the entire dataset in the RBF network.

Output of the Network
RBF Performance

MSE RMSE MAE MAPE NSE R2

Compressive strength 0.0012 0.034 0.022 13.85 0.974 0.990

2.3. Evaluation the Sensitivity of the RBF Network

In an artificial neural network, the neuron’s weight shows the importance of that
neuron. In other words, the effectiveness and importance of each input feature can be deter-
mined using Garson’s factor [64]. For an RBF network with one hidden layer, the equation
can be written as follows:

Qik =
∑L

j=1

(
wij

∑N
r=1 wrj

vjk

)
∑N

i=1

(
∑L

j=1
wij

∑N
r=1 wrj

vjk

) (5)

where ∑N
r=1 wrj is the summation of the weights of connection between the N input neu-

rons and the hidden neuron j, and vjk is the weight of connection between the hidden
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neuron j and the output neuron k [54]. Evaluation of the sensitivity of the RBF network is
demonstrated in Figure 7.
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Figure 7. Relative importance of the input factors in the RBF network.

As can be seen, nearly all the factors have a similar engagement in calculating the
compressive strength of concrete containing fly ash. On this subject, it may be said that
no unrelated, excess, or irrelevant factors have been embraced in the proposed network.
By ruling out the extra factors in the estimation procedure, the degradation of the training
approach is prevented, which leads to further accuracy of the estimation [65,66]. The most
important features that have a remarkable impact on improving the compressive strength
of the concrete containing fly ash are cement content, coarse aggregate, the presence of
fly ash, and the age of the concrete samples. Conversely, the SiO2 content of fly ash has
a relatively insignificant impact on the compressive strength. However, since the fly ash-
based concrete’s compressive strength is affected by the SiO2 content of fly ash, these
parameters remain in the proposed network [67,68]. Generally, the existence of SiO2 in
the concrete mixture improves the mechanical properties, e.g., rise in the compressive
strength, by forming silica–oxygen bonds; which are stronger compared to the bonds of
aluminum–oxygen and silica–oxygen–aluminum [69].

3. Results

Influential computational approaches have been implemented to resolve sophisticated
problems, particularly in the engineering field in recent years [70,71]. This novel method
can be implemented for simulating, evaluating, and estimating with reasonable precision.
The precision of the network to generate new outcomes according to the previous input
factors, i.e., generalization, should be computed based on the proven facts or theoretical
results. Generalization of the RBF network is the ability to handle unseen data and to
produce results which are difficult or even impossible to obtain.

Since the aim of this paper is to predict the compressive strength of concrete containing
fly ash at any arbitrary age, the fly ash percentages, age of specimens, and the SiO2 content
of fly ash were considered as variables, and the variation of the compressive strength due to
their changes was calculated. This evaluation is not out of the question, as the compressive
strength of fly ash-based concrete as an essential factor to evaluate the quality of concrete is
under the influence of fly ash’s chemical specifications along with the age of concrete [68].
The presumed concrete mix design is summarized in Table 3. The water to binder ratio is
assumed to be 0.28, and the fly ash replaces the cement in the concrete specimens up to
30% of cement weight. Fly ash takes action as a pozzolanic material in a concrete mixture
containing a low replacement percentage. On the other hand, in the mixture with a higher
replacement percentage, some part of fly ash takes part in the pozzolanic reaction, while
the rest of the fly ash remains unchanged even after a long time of curing and acts as a
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packing material [72]. Therefore, the amount of fly ash to be used in a concrete mixture is
limited by American and British standards to 35% in structural concrete [73,74]. It is worth
noting that the entire simulations have been completed in the absence of the experimentally
investigated domain, which is only feasible using artificial intelligence methods.

Table 3. The presumed mix design of concrete.

Concrete Specimen C (kg/m3) W (kg/m3) G (kg/m3) S (kg/m3) SiO2 (%) FA (kg/m3) Age (days)

C40 500 140 1135 644 61.7 12.5–150 3–365

The amount of this pozzolanic material that should replace the cement in a concrete
mixture for typical implementation to gain optimum results has not yet been evaluated.
The disparity in the compressive strength versus the content of fly ash along with the age
of specimens for various amounts of SiO2 contents is shown in Figure 8. It is worth noting
that the scale of the vertical axis in Figure 8 is logarithmic due to better presentation. Based
on the results, it can be concluded that an increase in the fly ash replacement level has a
positive effect on those fly ashes with a higher amount of SiO2, i.e., Class F fly ash. This
observation is in accordance with the results of Sumer’s experiments [75]. An increase in the
age of concrete samples containing Class C fly ash may lead the variation of compressive
strength to be independent of the fly ash replacement level. This trend can be attributed to
the fact that the fly ash reaction with calcium hydroxide and water is time consuming [76].
Moreover, the utilization of Class C fly ash (with lower SiO2 content) in concrete may result
in a higher compressive strength in all ages compared with the implementation of Class F
fly ash. The same results were obtained in experimental research of Uysal and Akyuncu [77].
In addition, concrete samples containing Class F fly ash with a high amount of SiO2 have
a relatively low compressive strength at early ages, even until 28 days, which can be seen
in Figure 8c,d. This is in accordance with previous experimental research [75,78]. This
behavior, which is correctly anticipated in the results of the proposed network, is because
the disintegration process of glass materials in fly ash is time consuming. This reaction
occurs in an alkaline environment with a pH value of more than 13. A reason for a rise in
the alkalinity of the concrete mixture is that a specific amount of cement hydration occurs.
Therefore, as it was shown in this section, the outcomes generated using the RBF network
are in accordance with proven facts as well as experimental results. This may further verify
the outcomes of the proposed network and by ensuring the accuracy of the results, some
equations can be developed to predict the compressive strength of concrete containing fly
ash at various ages.
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Figure 8. The trend of compressive strength variation versus the level of fly ash replacement for SiO2

content of (a) 40%, (b) 50%, (c) 60%, and (d) 70%.

Development of Equations to Calculate the Compressive Strength of Concrete Containing Fly Ash

The same contribution of the input factors on the compressive strength prediction,
an appropriate match between the outcomes of the RBF network and the proven fact and
experimental results, and the reasonable precision of outcomes of the RBF network allows
the implementation of the RBF models to estimate the experimental outcomes and at the
higher level proposed estimation equations. The equation benefits from the weights and
biases of the RBF model to estimate the compressive strength of fly ash-based concrete
at various ages for different types of fly ash. The limitation of using artificial intelligence
in practical use may be reduced by developing empirical design charts and/or formulae.
The proposed equation for anticipating the compressive strength of fly ash-based concrete
was according to the conducted study by Leung et al. [79]. To develop an empirical equation,
the most influential factor on the outcomes of the RBF network should be calculated.

Figure 7 shows that the age of the concrete samples has relatively more influence than
the other factors. The variation of compressive strength versus the age of samples while
the other factors put in their median value is determined, and a curve-fitting procedure
is conducted on data to obtain the equation relating the compressive strength to the age
of specimens. A similar plan of action was conducted for other neurons in the input
layer, while the amount of cement is kept constant at its median. It is presumed that the
disparity of the compressive strength with each factor is autonomous of the other factors
and may be stated as Equation (6). In this formula, the compressive strength of concrete
is determined based on the variation of specimen ages. A correction function has to be
obtained for accounting for the impact of other input factors on the compressive strength.
A line that fits best to the aforementioned curve and has the lowest MSE is calculated
using the curve-fitting tool in MATLAB. The curve-fitting procedure is conducted in a way
that a suitable balance between accuracy and simplicity is made. Therefore, most of the
correction functions are in a simple format of mathematical equations. It is worth noting
that the limitation of the proposed network is in the age of the specimens. In other words,
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the proposed equations in this study are able to predict the compressive strength of concrete
containing fly ash with an age of more than 7 days. However, this limitation does not exist
in the RBF network.

Compressive strength = [Cc × Cw × CFA × CG × CS × Csi]× Age (6)

Age = 0.01125
(

Age
28

)3
− 0.6227

(
Age
28

)2
+ 8.43

(
Age
28

)
+ 35.35 (7)

After finishing the curve-fitting procedure, the formulae are derived to determine the
compressive strength of concrete containing fly ash as the pozzolan. These formulae are
summarized in Table 4. In order to show the accuracy of the proposed formula, the out-
comes of the empirical approach are compared to experimental results. This comparison
is demonstrated in Figure 9. The error distribution as percentage distinction within the
experimental and predicted results are listed in Table 5. The mean square error and R
coefficient of the proposed formula in anticipating the compressive strength of concrete
are 0.0028 and 0.7848, respectively. The RBF network reached 93.7%, 96.8%, and 97.5% of
samples in the error range of±20%,±30%, and±40%, respectively. The proposed equation
indicated a significant accuracy. The proposed equation is able to predict about 62.5% of
the samples regarding the compressive strength with the ±20% of error range, about 74.6%
with the error range of ±30, and roughly 82% of samples with ±40% the range of error.
Although, due to the limitation of the proposed equation, almost 126 data were not used in
the comparison. In other words, the number of data to be compared with the proposed
equation is 899 samples. As can be seen, the proposed equation is easy to implement and
also practical with reasonable accuracy.

Table 4. The equations for correcting the estimation of each output.

Correction Factor Equation

Cc 1.86
(

C
264

)
− 0.72

Cw 3.046
(

W
163

)2
− 8.67

(
W
163

)
+ 6.624

CFA 0.6438
(

F.A.
128

)
+ 0.3562

CG 0.1591
(

G
1017

)
+ 0.742

CS 0.8549
(

S
743

)2
− 1.189

(
S

743

)
+ 1.319

Csi 1.31
(

Si
55.3

)2
− 2.408

(
Si

55.3

)
+ 2.098
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Figure 9. Comparison between experimental and predicted mechanical properties.
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Table 5. Accuracy of suggested approaches and distribution of samples in the error range.

Compressive Strength Approach MSE Determination Coefficient
Number and % of Data in Error Range

±20% ±40% ±60%

RBF Network 0.0012 0.9900 955 (93.7%) 1020 (99.5%) 1025 (100%)
Proposed equation 0.0028 0.7848 562 (62.5%) 671 (74.6%) 738 (82%)

4. Conclusions

A large number of targets of the RBF network which correspond to the experimental
data for the fly ash-based concrete were gathered. Seven distinguished affecting factors
on the compressive strength of fly ash-based concrete—namely, cement, water, fly ash,
coarse and fine aggregates, SiO2 content of fly ash along with the age of specimens—were
considered. A RBF network was developed to anticipate the compressive strength of
concrete corresponding to the inputs. The inputs have the ability to consider all aspects of
fly ash-based concrete in terms of physical and chemical composition. Moreover, the age of
concrete as an important factor was considered. The high number of experimental samples
along with considering the age of specimens make the proposed network a comprehensive
and accurate model to predict a fundamental parameter such as compressive strength.

The results of the RBF network show an excellent accuracy in predicting the com-
pressive strength with an MSE of 0.0012. On the other hand, about 94% of the simulated
results were within ±20 of the experimental compressive strength for the RBF network,
demonstrating that the suggested RBF network was learned to generalize the informa-
tion well. In addition, the RBF’s prediction outcomes were scattered about the bisector,
which demonstrates neither under-prediction nor over-prediction. Simple and practical
formulae were obtained according to outcomes to simplify the practical implementation
of the achieved results of the RBF network for anticipating the compressive strength of
concrete containing fly ash. It was shown that the proposed formulae have a reasonable
accuracy with an MSE of 0.0028 and the ability to predict more than 62% of the experimental
compressive strength in the error range of ±20.

In the current study, only the compressive strength of concrete was considered as the
output of the network, while the other parameters such as tensile strength and modulus of
elasticity or durability properties were considered only if there was a sufficient amount
of data available. Moreover, the effect of other supplementary cementitious materials—
namely, Metakaolin, Zeolite, furnace slag, and so on—can be determined using the ability
of an artificial neural network in estimating the results.
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28. Golijanek-Jędrzejczyk, A.; Mrowiec, A.; Hanus, R.; Zych, M.; Świsulski, D. Uncertainty of mass flow measurement using centric
and eccentric orifice for Reynolds number in the range. Measurement 2020, 160, 107851. [CrossRef]

29. Mayet, A.; Smith, C.E.; Hussain, M.M. Energy reversible switching from amorphous metal based nanoelectromechanical switch.
In Proceedings of the 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), Beijing, China, 5–8
August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 366–369.

30. Shukla, N.K.; Mayet, A.M.; Vats, A.; Aggarwal, M.; Raja, R.K.; Verma, R.; Muqeet, M.A. High speed integrated RF-VLC data
communication system: Performance constraints and capacity considerations. Phys. Commun. 2022, 50, 101492. [CrossRef]

31. Mayet, A.M.; Hussain, A.M.; Hussain, M.M. Three-terminal nanoelectromechanical switch based on tungsten nitride—An amor-
phous metallic material. Nanotechnology 2015, 27, 035202. [CrossRef]

32. Khaibullina, K. Technology to remove asphaltene, resin and paraffin deposits in wells using organic solvents. In Proceedings of
the SPE Annual Technical Conference and Exhibition, Dubai, United Arab Emirates, 26–28 September 2016.

33. Khaibullina, K.S.; Korobov, G.Y.; Lekomtsev, A. Development of an asphalt-resin-paraffin deposits inhibitor and substantiation of
the technological parameters of its injection into the bottom-hole formation zone. Period. Tche Quim 2020, 17, 769–781. [CrossRef]

34. Khaibullina, K.S.; Sagirova, L.R.; Sandyga, M.S. Substantiation and selection of an inhibitor for preventing the formation of
asphalt-resin-paraffin deposits. Period. Tche Quim. 2020, 17, 541–551. [CrossRef]

35. Tikhomirova, E.; Sagirova, L.; Khaibullina, K.S. A review on methods of oil saturation modelling using IRAP RMS. In IOP
Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 378, p. 012075.

36. Mayet, A.M.; Alizadeh, S.M.; Nurgalieva, K.S.; Hanus, R.; Nazemi, E.; Narozhnyy, I.M. Extraction of Time-Domain Characteristics
and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems.
Energies 2022, 15, 1986. [CrossRef]

37. Mayet, A.M.; Alizadeh, S.M.; Kakarash, Z.A.; Al-Qahtani, A.A.; Alanazi, A.K.; Alhashimi, H.H.; Eftekhari-Zadeh, E.; Nazemi, E.
Introducing a Precise System for Determining Volume Percentages Independent of Scale Thickness and Type of Flow Regime.
Mathematics 2022, 10, 1770. [CrossRef]
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