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In this work, we propose and theoretically analyze a new scheme for generation

of counterpropagating photon pairs in photonic crystal waveguides through the

process of spontaneous four-wavemixing. Using the fundamental properties of

periodic Bloch modes in a standard photonic crystal waveguide, we

demonstrate how modal phase-matching can be reached between forward-

propagating pump modes and counterpropagating signal and idler modes, for

generation of degenerate and non-degenerate photon pairs. We then show

how this scheme can be used for generation of photon pairs that are nearly

uncorrelated in the spectral degree of freedom. Such a source will be highly

interesting as a heralded source of single photons, especially as the spectrally

separable signal and idler photons are also spatially separated directly at the

source. We conduct our investigation based on a design in silicon, yet our

design concept is general and can in principle be applied to any nanostructured

material platform.
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1 Introduction

Sources of heralded single photons are an important resource for optical quantum

technologies, e.g., for generation of cluster states Nielsen (2004) and

Greenberger–Horne–Zeilinger states Varnava et al. (2008) for optical quantum

computation, for boson sampling Brod et al. (2019), and quantum communication

protocols Wang et al. (2006); Pant et al. (2017). Such sources are based on spontaneous
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photon-pair generation in nonlinear materials, where pairs of

photons are generated commonly through the processes of

spontaneous parametric down-conversion (SPDC) in materials

with χ(2)-nonlinearity or spontaneous four-wave mixing (SFWM)

in materials with χ(3)-nonlinearity Castelletto and Scholten

(2008); Zhang et al. (2012); Signorini and Pavesi (2020). In

both cases, the nonlinear material is optically pumped. In

SPDC, a pump photon of frequency ωP can split into a pair

of photons, commonly called signal and idler, with frequencies

ωS and ωI, respectively, such that conservation of energy ωP = ωS

+ ωI is preserved. In SFWM, two pump photons, with frequencies

ωP1 and ωP2, can combine and split into a pair of signal and idler

photons such that ωP1 + ωP2 = ωS + ωI. For efficient nonlinear

interaction, conservation of momentum, also known as the

phase-matching condition, should also be satisfied between

the wave-vectors of the photonic modes, which for SPDC and

SFWM takes the form Δk = kP (ωP) − kS (ωS) − kI (ωI) = 0 and

Δk = kP1 (ωP1) + kP2 (ωP2) − kS (ωS) − kI (ωI) = 0, respectively.

Since photon-pair generation through SPDC and SFWM is

probabilistic, heralding is used to determine when or if a pair is

generated, where the detection of one of the photons in the pair

heralds the presence of the other one. For the output heralded

single photon to be useful for quantum applications, the two

photons in a pair must be spectrally uncorrelated, otherwise

detection of one photon can randomly collapse the state of the

other photon, and hence create a mixed state at the output,

instead of the commonly desired pure single-photon state

Signorini and Pavesi (2020). However, due to the combination

of conservation of energy and phase-matching conditions, signal

and idler photons generated through SPDC or SFWM are

commonly entangled in the spectral degree of freedom Law

et al. (2000). In general, such a two-photon state can be

described as |ψ〉∝ ∫∫ dωSdωIJSA(ωS,ωI)|S,ωS〉|I,ωI〉
(removing its vacuum part and the proportionality coefficients

that indicate the overall probability of the process), where JSA is

the joint-spectral amplitude of the photon-pair state, describing

the spectral correlation between the signal and idler photons Law

et al. (2000). Having a spectrally uncorrelated pair is equivalent to

having a separable/factorable JSA, namely JSA (ωS, ωI) = u (ωS) ×

v (ωI) Grice et al. (2001); U’Ren et al. (2005). One way of creating

spectrally pure single photons at the output of the heralded

source is by using narrowband spectral filters at the output

Aboussouan et al. (2010), yet this reduces the source

brightness and limits the heralding efficiency Meyer-Scott

et al. (2017). A better method is to engineer the dispersion

properties of the optical modes of the system to directly

generate spectrally uncorrelated pairs Grice et al. (2001);

U’Ren et al. (2005). In the following, we focus our

explanation on generating factorable states in waveguide

systems with propagating waves, but it has to be mentioned

that factorable states can also be generated in resonator systems

Vernon et al. (2017); Christensen et al. (2018), where resonators

typically allow for higher power efficiencies for the source, yet

they are more sensitive to temperature and fabrication

inaccuracies.

In waveguide systems, a prerequisite for the generation of

spectrally factorable pairs is to satisfy the following relation

between the group indices of the signal, idler, and pump

modes: ng,S < ng,P < ng,I or ng,I < ng,P < ng,S Grice et al.

(2001); U’Ren et al. (2005). The group index is related to the

group velocity through vg � dω
dk � c

ng
, with c being the vacuum

speed of light. To minimize the spectral correlations, a condition

often known as asymmetric group-velocity matching (AGVM) is

sought after, where we either have ng,I ≠ ng,P = ng,S or ng,I = ng,P ≠
ng,S Zhang et al. (2012). AGVM can be reached in different

systems, such as bulk crystals Mosley et al. (2008); Kaneda et al.

(2016), photonic crystal fibers Garay-Palmett et al. (2007),

nanostructured wavegudies Svozilík et al. (2011); Kang et al.

(2014); Kumar et al. (2022), and photonic crystal waveguides

Saravi et al. (2019), with different degrees of versatility. The bulk

crystals used for SPDC offer the least degree of versatility, as

AGVM is only attained in certain crystals (such as KDP Mosley

et al. (2008) and KTP Kaneda et al. (2016)) and at certain

frequency ranges limited by the dispersion of the material’s

permittivity. The constraints can be reduced by using micro-

and nanostructured optical systems, where the dispersion of the

guided modes can be more dominantly controlled by the

geometry of the structure, yet such structures are still limiting.

For example, AGVM with SPDC in nanostructured ridge

waveguides is limited to material platforms that can

implement quasi-phase-matching (QPM). This requires to

change the nonlinear susceptibility of the material periodically

(such as in lithium niobate through periodic poling Younesi et al.

(2021)), as QPM is needed as an extra degree of freedom to reach

both phase-matching and AGVM conditions Svozilík et al.

(2011); Kang et al. (2014); Kumar et al. (2022). Moreover, in

pair generation based on SFWM in waveguide systems, to the

best of our knowledge AGVM is only reached for non-degenerate

photon-pair generation Garay-Palmett et al. (2007). Overall, in

all such waveguide systems, there are constraints on the

frequency ranges where the AGVM condition can be reached,

as the dispersion relations of the guided modes are still a strong

function of the dispersion properties of the material and there is

only a limited manipulation of the dispersion relation of guided

modes that can be achieved in regular waveguides.

A way to overcome these limitations is to use the

counterpropagating (CP) configuration Christ et al. (2009), in

which the waveguide system is phase-matched such that one

photon in the pair is propagating in the forward direction, e.g.,

the signal, and the idler in the backward direction. This

configuration creates an effect similar to the AGVM case with

ng,S = ng,P, where here instead of bringing ng,S close to ng,P, we

bring ng,I, being a negative number, much further from the signal

and pump group indices, which are positive numbers. This

effectively makes |ng,I − ng,P|≪|ng,S − ng,P|, which has an

equivalent effect as the AGVM condition for creating
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spectrally uncorrelated pairs, but without being limited by the

dispersion of the modes. Moreover, the CP configuration will be

of additional value for a heralded source of single photons, as the

spectrally separable signal and idler photons are also spatially

separated directly at the source. The problem, however, is that

due to the negative wave-vector of the backward-propagating

modes, satisfying the phase-matching condition is very

complicated. One way is by QPM in χ(2)-materials with

submicron-sized poling periods, which is technologically

challenging Nagy and Reano (2020); Zhao et al. (2020);

Younesi et al. (2021). Only recently fully guided uncorrelated

pair-generation in the CP configuration was demonstrated, but

using larger micron-sized poling periods that allow for higher-

order and consequently less efficient QPM Luo et al. (2020); Liu

et al. (2021). Nevertheless, this limits the use of the CP

configuration to material platforms that can be poled to such

small periods. Another way would be to use free-space pumping

from above the sample for reducing the wave-vector of the pump

waves Lanco et al. (2006), which was also used for demonstrating

the generation of factorable pairs Belhassen et al. (2018) and

polarization-entangled photon pairs Orieux et al. (2013). Yet, this

method is fundamentally a non-integrated method and not

appealing for large-scale implementations. There is also a

proposal for CP SFWM based on pumping the structure from

two sides with CP pump pulses Monroy-Ruz et al. (2016),

although due to the specific configuration of CP pumping the

generation of pairs is limited to frequencies close to that of the

pump pulses.

Photonic crystal waveguides (PCWs) have been proposed as

a structure that can reach CP phase-matching in a fully integrated

way using modal phase-matching and without the need for

periodic poling, where specific designs have been proposed for

direct generation of path-entangled Bell states Saravi et al.

(2017a) and near-factorable CP photon pairs Saravi et al.

(2019), both through the process of SPDC in a PCW made of

a χ(2)-material. The proposed schemes use the fundamental

properties of guided Bloch modes, where each Bloch mode

can have both positive- and negative-valued wave-vectors.

This allows to satisfy the phase-matching condition in a CP

configuration, involving forward-propagating (FP) pump, FP

signal, and backward-propagating (BP) idler modes.

Importantly, PCWs are highly versatile in controlling the

group indices of the guided modes, far beyond what can be

done with ridge waveguides Li et al. (2008). The capability for

group-index engineering in PCWs was in fact used to satisfy CP

phase-matching together with AGVM between the signal and

pump modes, allowing the generation of highly factorable

photon pairs Saravi et al. (2019). The problem, however, with

the SPDC-based designs was, that due to the large difference

between the frequencies of the signal/idler and the pump mode,

the pumpmode will be above the light line and inherently a leaky

mode Saravi et al. (2015). This eventually limits the interaction

length and hence the efficiency of such photon-pair sources. To

reduce the pump mode leakage, a double-slot structure was

proposed Saravi et al. (2017b); Saravi et al. (2019), which

increases the interaction length. Nevertheless, due to the

suspended narrow central waveguide, such double-slot designs

have challenging fabrication prospects compared to a standard

PCW, and the interaction length still remains limited due to the

limited decay length of the leaky pump mode.

In our work, we propose and theoretically analyze a new

scheme for generation of CP photon pairs in PCWs through the

process of SFWM. SFWM has the advantage that the frequencies

of all participating modes can be close to one another, and hence

we can have all the participating modes below the light line and

fully guided. This allows to use a standard W1 photonic crystal

waveguide, where one row of holes is missing from the photonic

crystal slab. To enable CP phase-matching for a four-wave-

FIGURE 1
Scheme of counterpropagating photon-pair generation in a photonic crystal waveguide through spontaneous four-wave mixing. The solid
arrows indicate the direction of propagation for each of the involved modes. The dashed arrows indicate the dominant polarization direction for the
modes.
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mixing process, we propose the use of TM-like index-guided

modes of the structure for the pump modes and the TE-like gap-

guided mode for the signal and idler modes. We then show that

simply by a proper choice of the thickness of the photonic crystal

slab, one can satisfy the CP phase-matching condition between

the TM-like and TE-like modes. This is shown schematically in

Figure 1. We numerically demonstrate this based on a design

in silicon.

In the first part of our paper, we show the mechanism for

phase-matching a CP SFWM process in a standard silicon PCW,

both for the generation of frequency non-degenerate photon

pairs by degenerate pumping and also for generating degenerate

photon pairs by non-degenerate pumping. Afterwards, we

discuss the spectral properties of the photon pairs and the

many different possibilities in this system for generation of

factorable photon pairs. We then calculate the JSA of the

photon pairs for specific CP scenarios that also satisfy AGVM

and demonstrate near-factorable states. In both cases, we

numerically demonstrate the generation of spectrally narrow

single photons with central wavelengths in the telecom range

and sub-nanometer bandwidths, in a short PCW of below

400 μm length. Finally, we also calculate the absolute

efficiency of pair generation in such a structure. At the very

end, we also discuss some of the other possibilities of this highly

versatile scheme for generation of quantum light.

2 Counterpropagating phase-
matching in photonic crystal
waveguides for spontaneous four-
wave mixing

Here we show how our proposed phase-matching scheme

works. Before going on to describe the mechanism, let us describe

our system. We are using a standard W1 photonic crystal

waveguide (PCW), which is formed by removing one row of

holes from a photonic crystal slab that is suspended in free space.

The photonic crystal slab of thickness h is made of a periodic

array of holes, with radius r and periodicity a (the distance

between closest hole neighbours is a), arranged in a hexagonal

lattice. This is shown schematically in Figure 1, where we take x

as the propagation direction along the direction of the removed

row of holes. Such a structure supports Bloch modes

propagating along the x-direction, with a pseudo-periodic

electric field profile E(r,ω) � e(r,ω) exp[ik(ω)x] �
∑+∞

n�−∞Cn(y, z,ω) exp[i(k(ω) + 2πn/a)x], where e(r) �
e(r + ax̂) is periodic with the periodicity a. k(ω) is the

wave-vector of that particular mode at frequency ω in the

first Brillouin zone (BZ), where the first BZ is defined as

−π
a ≤ k≤

π
a. The band diagram of Bloch modes repeat

themselves in the other BZs, such that k(ω) = k(ω) + 2π/a.

Moreover, the band diagram is also symmetric around k = 0

for reciprocal materials, such that k(ω) = −k(ω). Since e(r) is

periodic, it can be expanded into a Fourier series, with

vectorial x-invariant coefficients Cn. These are the Bloch

harmonics (BH) of the Bloch mode Yariv and Yeh (1977).

Essentially, one can imagine that a Bloch mode is composed

of non-periodic waveguide-like modes with mode profiles

Cn(y, z, ω) and wave-vectors kn(ω) ≡ k(ω) + 2πn/a. For

indexing the BHs, we take n = 0 to correspond to the BH

with a wave-vector in the first BZ. As can be seen, in principle

a Bloch mode can include BHs with both positive- and

negative-valued kn wave-vectors, which contribution to the

Bloch mode is determined by the strength of their Cn

coefficients. The overall direction of propagation of a

Bloch mode is determined by the sign of its group velocity

vg � dω
dk. Hence, a mode with either positive- or negative-

valued sign of this derivative can include both positive- and

negative-valued kn wave-vectors. This is the core idea used for

reaching CP phase-matching for SPDC in Saravi et al.

(2017a); Saravi et al. (2019). We also use this core

principle here.

To do this for SFWM, we have to find the proper set of modes

that can satisfy the CP phase-matching condition. To find the

Bloch modes in the system, we use the MIT Photonic Bands

(MPB) package Johnson and Joannopoulos (2001), where we

look for Bloch modes with a wave-vector along the x-direction in

a unit-cell of the size a, 10
�
3

√
a, and 6a in the x, y, and z directions,

respectively. The band diagram for photonic crystals is often

presented in normalized quantities, such as shown in Figure 2,

where the frequency of ω is expressed in units of 2πc/a and the

wave-vector k is expressed in units of 2π/a. Hence, the

normalized frequencies take the value of ωa
2πc � a

λ, where λ is

the free-space wavelength, and normalized wave-vectors take

the value of ka
2π. The first BZ in normalized units is then within

−0.5 ≤ k ≤ 0.5. The spatial dimensions can also be described in

units normalized to a. In fact, finding the band diagram of PCWs

can be done independent of the periodicity a using all normalized

quantities Joannopoulos et al. (2011). If the physical effect of

interest is happening at a normalized frequency of ωnorm, and we

want to choose the physical dimensions of the PCW such that

this normalized frequency coincides with the physical free-space

wavelength of λ0, then we have to choose a such that a = λ0 ×

ωnorm. Yet this choice is not so arbitrary, since the simulation in

MPB has to be done by assigning a non-dispersive permittivity ε

to the material. Hence, from the start of the design one has to

choose a target physical wavelength of operation, λ0, and then use

the actual permittivity of the underlying material at that

wavelength, ε(λ0), in the simulation. a can then be chosen

such that a ωnorm of interest coincides with λ0. In this way,

the simulation will be an exact representation of the PCWs

behaviour at λ0 and an approximation for the wavelengths

around it. This will be a good approximation if ε(λ) of the

underlying material is not strongly dispersive around λ0 and

we are not deviating too far from λ0. In our design, we choose λ0 =

1.55 μm, as the telecom range is a wavelength range of interest for
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many quantum communication and computation applications.

We set the relative permittivity to ε = (3.694)2, which corresponds

to that of amorphous silicon (from the company Tafelmaier) at

λ0 = 1.55 μm. We emphasize that our design concept is general

and not specific to a material or certain permittivity values and

could be implemented in other nanostructured material

platforms (potentially by changing the slab thickness, as we

will discuss), especially in III-V semiconductors like GaAs and

GaP, which have a high permittivity and very strong χ(3)

nonlinearities, both comparable to silicon.

We now analyze the modes of the PCW. The modes in a

vertically mirror-symmetric PCW can be categorized into TE-

like and TM-like modes, which can more simply be thought of

as modes with dominant Ey and Ez components of the electric

field, respectively. There is a more systematic description to

these modes based on the symmetry of their field components,

which can be found elsewhere Joannopoulos et al. (2011). In

our case, we are looking only for TE-like (TM-like) modes,

where the profile of the Ey (Ez) electric field component has an

even mirror symmetry across the xy and xz planes. This

ensures a better input and output coupling for the modes

of the system and better overlap between the mode profiles of

the different modes for having a more efficient nonlinear

interaction. More technically, TE-like (TM-like) modes of

that symmetry are also referred to as z-even-y-odd (z-odd-

y-even) modes Joannopoulos et al. (2011). The band diagrams

for these TE-like and TM-like modes are shown in Figures

2A,B, respectively. The blue shaded region in each plot shows

the regions with leaky modes above the light line (the blue

line), which are modes that couple to the surrounding free-

space. The yellow-shaded regions correspond to leaky modes

that couple to the modes of the photonic crystal slab and also

modes of the photonic crystal slab that will exist without the

line defect. Only isolated lines indicate truly guided modes

that are confined to the central line defect. Our guided modes

of interest are marked as TE, TM1, and TM2, which dominant

electric field profiles are shown in Figure 2C. The TE mode

falls within the bandgap frequency range of the photonic

crystal slab for TE-like modes, hence it is guided by the

bandgap effect in the y-direction and total internal

reflection in the z-direction. Due to the strong interaction

with the periodic photonic crystal slab, such TE modes have

considerable negative- and positive-valued wave-vector BHs

for both forward- and backward-propagating modes Saravi

et al. (2017b); Saravi et al. (2019), and will be the choice for the

signal and idler modes here. To reach the CP phase-matching

and also to be able to reach the AGVM condition, we choose

the TM1 and TM2 modes as the pump modes. These are

index-guided modes, which have lower frequency than all the

TM-like slab modes of the photonic crystal (the slab modes are

in the yellow-shaded region in Figure 2B) and are guided by

the fact that the surrounding photonic crystal slab has a lower

average permittivity than the central line defect. By changing

the thickness of the slab, one can shift the TM1 and

TM2 modes in frequency with respect to the TE mode, as

the TM modes with their dominant Ez components are more

sensitive to the change in the z-direction. This is shown in

Figure 2D, which shows how the TM bands move with respect

to the TE band by changing the slab thickness h. For our

chosen permittivity, a slab thickness of h = 0.66a brings the

index-guided TM modes to a frequency range where they can

be used for phase-matching the CP process, as will be

FIGURE 2
Band diagram of the (A) TE-like and (B) TM-like modes of a W1 photonic crystal waveguide (relative permittivity ε = (3.694)2, slab thickness h =
0.66a, hole radius r = 0.3a). Our guided modes of interest are marked as TE, TM1, and TM2. (C) The profile of the dominant electric field component
for our guided modes of interest, shown in the xy and xz planes, along with the permittivity profile of the photonic crystal waveguide. (D) The band
diagram of the TE, TM1, and TM2 modes for different slab thicknesses, showing the relative movement of the TM bands with respect to the TE
band.
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demonstrated in the following. Moreover, the slab thickness is

used here to fine tune the position of the TM modes with

respect to TE modes, to also get the AGVM condition, which

will also be shown in the following. We note, that in all the

following cases, we are using a design with h = 0.66a.

In the following we explain how CP phase-matching for

SFWM can be reached in two scenarios, one with degenerate

pumping for generation of non-degenerate signal and idler

photons and the other case with non-degenerate pumping for

generation of degenerate signal and idler photons. We start

with the case of degenerate pumping. We show the band

diagram of the involved modes in Figure 3A. We have color-

coded the different modes for better distinction in the

different plots. For our idler mode, we choose the

backward-propagating TE mode (red line), in the first BZ.

The sign of the group velocity indicates that this is a

backward-propagating mode. This TE mode also has a

forward-propagating counterpart in the neighboring BZ

(green line), which we choose as our signal mode. We also

see the forward-propagating TM1 (blue curve, called pump1)

and TM2 (purple curve, called pump2) modes in this graph.

The TM1 and TM2 modes also have backward-propagating

counterparts that are their mirror symmetric version around

the edge of the BZ (k = π/a), which we do not show here, as

they are not used in our scheme. Figure 3B shows the group

index of the forward-propagating modes. The markers in

Figure 3A indicate an example of points that satisfy the

phase-matching condition between the FP signal, BP idler,

and FP pump1 mode, such that kS + kI = 2kP1, while at the

same time satisfying the conservation of energy ωS + ωI =

2ωP1. To better understand the physics, we take a look at the

BH distribution of the modes, shown in Figure 3C. To be

specific, we are showing the z-component of C (y, z) for the

TM modes and the y-component of C (y, z) for the TE modes,

all at the center of the transversal coordinate y = z = 0. For

example, C0,P1 is shorthand for z ·C0,P1 (y = 0, z = 0). The

amplitudes of the BHs are normalized, such that the

dominant BH for each mode takes the value of 1. For

example, C0,P1 is the strongest BH of the pump1 mode,

which takes the value of 1, and the value of C−1,P1 is

normalized with respect to C0,P1. We show the dominant

BHs for the modes in Figure 3C. As we can see, the FP signal

and pump modes have their strongest BH at positive-valued

wave-vector values of kS and kP1, respectively. Importantly,

the BP idler mode has a weaker, yet substantial, BH with a

positive-valued wave-vector at kI (C0,I). This allows for

phase-matching between the C1,S, C0,I, and C0,P1 BHs. The

profiles of these BHs are shown in Figure 3D. Here, we show

the dominant polarization component for each mode, namely

the absolute values of z ·C0,P1 (y, z), y ·C1,S (y, z), and y ·C0,I (y,

z). As can be seen, all modes have a strong field concentration

around y = z = 0, which allows a high overlap between the

FIGURE 3
Explaining the phase-matching mechanism for generating non-degenerate counterpropagating photon pairs. Here we show the case with
degenerate pumping in mode TM1. (A) Shows the band diagram of the idler in the backward-propagating TE mode (red), the signal in the forward-
propagating TE mode (green), and the pump in the forward-propagating TM1 mode (blue). The markers indicate a combination where modes are
phase-matched, with kS + kI = 2kP1. (B)Group index of the forward-propagating modes. The markers indicate the same points as marked in (A)
for the signal and pump modes, showing that they also have matching group indices, in addition to being phase-matched. (C) The position and
amplitude of the main Bloch harmonics (BH) for the modes. (D) The field profile of the BHs that make the dominant contribution to the process.
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mode profiles of the BHs for an efficient nonlinear interaction

between them. We note that the C0,S, C−1,I, and C−1,P1 BHs are

also phase-matched, as kS − 1 + kI − 1 = 2 (kP1 − 1), but their

contribution is weaker than C1,S, C0,I, and C0,P1, due to the

smaller BH amplitudes in combination. It is important to also

note that such a nonlinear process between z-polarized pump

fields and y-polarized signal and idler fields can be mediated

by the χ(3)zzyy of the third-order nonlinear susceptibility tensor

Boyd (2008). Such cross-polarized processes have been used

for pair-generation through SFWM Garay-Palmett et al.

(2007). Finally, in our work we are neglecting the potential

effects from self- and cross-phase modulation that can shift

the phase-matching condition with increasing input pump

powers Garay-Palmett et al. (2007), by assuming that we are

operating in a weak pumping regime. Considering these

power-dependent effects is beyond the scope of our work

here, as we are mainly aiming for introducing the main

physics of this new scheme. Finally, it is important to note

that the particular points we chose to demonstrate our

general phase-matching scheme also satisfy the AGVM

condition. This can be seen in Figure 3B, where we

marked the chosen points in the group-index curves for

the pump and the signal modes. The two modes have a

very close group index, with ng,S ≈ 7.37 and ng,P1 ≈ 7.29,

which is used to achieve a highly factorable JSA, as will be

shown in the next section.

We now explain how phase-matching with non-degenerate

pumping for generation of CP degenerate signal and idler

photons can be achieved. We show the same band diagram from

Figure 3A again in Figure 4A, but marking different points in the

bands that satisfy the phase-matching condition kS + kI = kP1 + kP2
and conservation of energy condition ωS + ωI = 2ωS = ωP1 + ωP2. In

this case, one of the pump beams for the SFWMprocess will be in the

forward-propagating TM1 mode and the other in the forward-

propagating TM2 mode. It is interesting to note that the

frequency-degenerate counterpropagating signal and idler modes

at ωS = ωI will have the following relation between their wave-

vectors kS � 2π
a − kI due to the mirror-symmetry of the band

diagram around the edge of the BZ. This means that we also

have the following relation between the two pump mode wave-

vectors kP1 + kP2 � kS + kI � 2π
a . The BH distribution of the modes

is shown in Figure 4C. As can be seen, the dominant contribution to

the process will be from the phase-matching between the C1,S, C0,I,

C0,P1, and C1,P2 BHs. The profiles of these BHs are shown in

Figure 4D, namely the absolute values of z ·C0,P1 (y, z), z ·C1,P2

(y, z), y ·C1,S (y, z), and y ·C0,I (y, z). Once again, all modes have a

strong field concentration around y = z = 0 for an efficient

overlap. We note that the C0,S, C−1,I, C−1,P1, and C0,P2 BHs are

also phase-matched, as kS − 1 + kI − 1 = kP1 − 1 + kP2 − 1, but with a

weaker contribution due to their smaller BH amplitudes. Finally,

Figure 4B shows the group index of the forward-propagating modes,

where we see a near-AGVM between the signal and the

FIGURE 4
Explaining the phase-matching mechanism for generating degenerate counterpropagating photon pairs. Here we show the case with non-
degenerate pumping using both TM1 and TM2modes. (A) Shows the band diagramof the idler in the backward-propagating TEmode (red), the signal
in the forward-propagating TEmode (green), and the pumps in the forward-propagating TM1 (blue) and TM2 (purple) modes. Themarkers indicate a
combination where modes are phase-matched, with kS + kI = kP1 + kP2. (B) Group index of the forward-propagating modes. The markers
indicate the same points asmarked in (A) for the signal and pump in the TM2mode, showing that these twomodes also havematching group indices.
(C) The position and amplitude of themain Bloch harmonics (BH) for themodes. (D) The field profile of the BHs that make the dominant contribution
to the process.
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pump2 modes, with ng,S ≈ 5.88 and ng,P2 ≈ 5.90. This will be used to

achieve a highly factorable JSA in this scenario.

3 Nearly uncorrelated joint spectral
amplitudes

In this section, we will calculate the JSA of the two-photon

state, where we focus on the two specific group-index-matched

cases shown in the previous section. The JSA of the two-photon

state from the SFWM can be found from the following expression

Garay-Palmett et al. (2007):

JSA ωS ,ωI( ) � ∫ dω′α1 ω′( )α2 ωS + ωS − ω′( )sinc Δk ω′,ωS ,ωI( )L
2

[ ]exp iΔk ω′,ωS ,ωI( )L
2

[ ]. (1)

Firstly, it should be emphasized that this relation assumes

that the JSA has a narrow enough spectral width, such that the

other properties of the modes such as their mode profile or group

index can be considered a constant over this spectral range.

Hence, they can be pulled out of the frequency integral and

treated as a proportionality constant. We will see this coefficient

when we are calculating the overall pair generation efficiency in

this structure at the end of this work. This point aside, in the

above equation, L is the length of the structure. α1,2(ω) are the

spectral amplitudes of the pump pulses, which could be the same

with degenerate pumping or different with non-degenerate

pumping. The phase-mismatch function will take different

forms based on which mode combinations are used for

pumping, namely if both pumps are in the pump1 mode we

have Δk (ω′, ωS, ωI) = kP1 (ω′) + kP1 (ωS + ωI − ω′) − kS (ωS) − kI
(ωI), if both pumps are in the pump2 mode we have Δk (ω′, ωS,

ωI) = kP2 (ω′) + kP2 (ωS + ωI − ω′) − kS (ωS) − kI (ωI), and if

both pump1 and pump2 modes are used for pumping we get Δk
(ω′, ωS, ωI) = kP1 (ω′) + kP2 (ωS + ωI − ω′) − kS (ωS) − kI (ωI).

Although the JSA depends on the choice of the pump pulse

spectra, a fixed property of the device itself is its joint phase-

matching spectrum (JPS), being sinc [Δk (ω′, ωS, ωI)L/2] exp [iΔk
(ω′, ωS, ωI)L/2]. Let us first have a look at the JPS for different

configurations. More specifically, we plot the curve

corresponding to the maximum of the JPS, which corresponds

to the points with Δk = 0. To plot these curves in the two-

dimensional ωS, ωI space, we have to assign values to ω′. This
choice will correspond to different pumping configurations. ω′ �
ωS+ωI

2 represents the phase-matching curve for a degenerate

pumping case. If the degenerate pumping is in pump1 mode,

the curve of interest will be 2kP1(ωS+ωI
2 ) − kS(ωS) − kI(ωI) � 0,

which is calculated for our structure and shown in Figure 5A

(blue curve). If the degenerate pumping is in pump2, the curve of

interest will be 2kP2(ωS+ωI
2 ) − kS(ωS) − kI(ωI) � 0, which is also

shown in Figure 5A (purple curve). The dashed line in these plots

correspond to the ωS = ωI line, which corresponds to degenerate

photon-pair generation. For non-degenerate pumping, we can fix

the frequency of one of the pump beams, and vary the other one,

which in practice corresponds to using a continuous wave (CW)

pump field for one of the pump beams. In Figure 5B we plot the

maximum of the JPS for the case with a fixed pump in the

pump2 mode at ωP2 � 0.258 2πc
a , where the frequency of the

pump1 mode can vary. The curve corresponds to

kP1(ωS + ωI − 0.258 2πc
a ) + kP2(0.258 2πc

a ) − kS(ωS) − kI(ωI) � 0.

In Figure 5Cwe plot themaximumof the JPS for the case with a fixed

pump in the pump1mode atωP1 � 0.243 2πc
a , where the frequency of

the pump2mode can vary. The curve corresponds to kP2(ωS + ωI −
0.243 2πc

a ) + kP1(0.243 2πc
a ) − kS(ωS) − kI(ωI) � 0.

There are a number of important points that should be

discussed about these JPSs. Firstly, that the limited range of

the curves is associated to the fact that the guided modes exist

over limited frequency ranges. The TE mode’s frequency is

bounded from the lower side by its bandgap (where the mode

gets to k = π/a) and from the higher side by the fact that it goes

FIGURE 5
The maximum of the joint phase-matching spectrum (JPS), showing the curve of Δk =0, for different pumping scenarios. (A) Degenerate
pumping in the TM1 mode (blue) and in the TM2 mode (purple). The marked point on the blue curve corresponds to the group-index-matched
phase-matched scenario shown in Figure 3. (B)Non-degenerate pumping, by varying the pump frequency in TM1 and having a fixed pump in TM2 at
ωP2 � 0.258 2πc

a . (C) Non-degenerate pumping, by varying the pump frequency in TM2 and having a fixed pump in TM1 at ωP1 � 0.243 2πc
a . The

marked point around the middle of the purple curve corresponds to the group-index-matched phase-matched scenario shown in Figure 4, where
the signal and idler photons have equal central frequencies. The dashed line in all plots is the ωS = ωI line.
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above the light line and becomes leaky. The TM1 mode’s

frequency is only bounded from the higher side by its

bandgap. The TM2 mode’s frequency is bounded from the

lower side by its bandgap and from the higher side by the fact

that it goes into the slab-mode region and starts leaking into the

photonic crystal slab. Hence, considering these modes only over

regions where they are fully guided results in a limited range of

the JPS curves. The most important property of the JPS curves

that relates to the possibility for uncorrelated pair generation is

the angle θ that the JPS maximum curve makes with the ωS axis.

For factorable pair generation to be possible we must have 0 ≤ θ ≤
90°, where this angle relates to the group indices of the modes

through θ � −tan−1(ng,P−ng,Sng,P−ng,I)Christ et al. (2009). An angle of θ = 0

(θ = 90) degrees corresponds to AGVM between the pump and

the signal (idler) mode. The marked points in Figures 5A,C,

correspond to the group-index-matched phase-matching

scenarios shown in Figures 3, 4, respectively, where we have

θ = 0. In fact, there is a wide variety of angles that can be reached

with a single design, as the TE mode goes over a large range of

group indices as it approaches the band edge, where the mode

enters the slow-light region and the group index theoretically

diverges. However, this is only the case if there are no sources of

losses, such as disorder in fabrication, which can increasingly

reduce the propagation losses of the slow light modes and overall

limit the performance of nonlinear interactions Saravi et al.

(2016). Nevertheless, the lower left side of both of the blue

curves in Figures 5A,B corresponds to such a region, where

both the FP signal and BP idler are going into the slow light

region, but the phase-matching frequency for the FP signal is

closer to the band edge, making its group index much higher than

the idler, such that |ng,P − ng,S| > |ng,P − ng,I| = |ng,P + |ng,I‖, which
makes θ approach 90°. This in principle can have the same effect

as AGVM with θ = 0, however, since these regions deal with very

slow modes close to the bande edge they can in practice

experience strong losses. Nevertheless, the important point is

that due to the strong variations in ng there is a wide variety of θ

angles at different frequencies that can be chosen along the blue

JPS curves shown in Figures 5A,B, for reaching factorable states,

which allows for choosing the central frequencies and

bandwidths of the resulting factorable photons with respect to

one another. In the following, we calculate the JSA for the two

explained cases with AGVM between pump and signal, where all

modes have moderate group indices below 10, to show that

highly factorable states can be reached in these structures.

We calculate the JSA from Eq. 1. We take the normalized

length of the structure as L/a = N, withN = 1,000 periods. For the

case of degenerate pumping shown in Figure 3, we take a pump

pulse centered around ωP1 � 0.2474 2πc
a , with a Gaussian

spectrum with FWHM of ΔωP1 � 1.66 × 10−42πca for its

spectral intensity. We show the resulting joint spectral

intensity (JSI), which is JSI = |JSA|2, in Figure 6A. Such

shapes for the JSI, which look like a horizontal or vertical

elongated ellipse, commonly result in highly uncorrelated

pairs. To quantify the degree of spectral entanglement

between the signal and idler, we perform a Schmidt

decomposition on the JSA Law et al. (2000); Grice et al.

(2001), such that JSA(ωS,ωI) � ∑n

���
Λn

√
un(ωS)vn(ωI), with

∑nΛn = 1, where Λn is the probability of having a certain pair

FIGURE 6
(A) Joint spectral intensity (JSI) for degenerate pumping with a pulsed pump in mode TM1, which creates non-degenerate pairs. The frequency
combination corresponds to the case shown in Figure 3. The purity calculated from Schmidt mode decomposition is P = 0.954. (B) The spectral
intensity of the pump and the dominant Schmidtmodes of the signal and idler photons for the case in (A). The periodicity is set to a= 383.47 nm to set
the pump central wavelength to 1.55 μm. (C) JSI for non-degenerate pumping, with a CW pump inmode TM1 and a pulsed pump inmode TM2,
which creates pairs with degenerate central frequencies. The frequency combination corresponds to the case shown in Figure 4. The purity
calculated from Schmidtmode decomposition is P=0.975. (D) The spectral intensity of the pump and the dominant Schmidtmodes of the signal and
idler photons for the case in (C). The periodicity is set to a = 386.18 nm to set the signal/idler central wavelengths to 1.55 μm. The narrow blue line
corresponds to the wavelength of the CW pump in mode TM1.

Frontiers in Photonics frontiersin.org09

Saravi et al. 10.3389/fphot.2022.953105

https://www.frontiersin.org/journals/photonics
https://www.frontiersin.org
https://doi.org/10.3389/fphot.2022.953105


of spectral Schmidt modes in the JSA. The ideal uncorrelated pair

has just one pair of Schmidt modes with Λ1 = 1. Doing the

Schmidt decomposition on this JSA results in a highly dominant

Schmidt mode pair with near-unity value of probability Λ1 =

0.9766. The next pair of Schmidt modes have a very low

probability of Λ2 = 0.0098. To give one number for

quantifying the degree of spectral entanglement, one can

calculate the purity P � ∑nΛ2
n. A purity of P = 1 corresponds

to a fully factorable state. Here we calculate the purity of P =

0.954, which is very close to unity and comparable to the state of

the art designs for factorable pair generation Christ et al. (2009);

Kang et al. (2014); Garay-Palmett et al. (2007). At this point, we

can now choose a value for the periodicity of the structure, to get

some physical values from the normalized quantities. We set the

periodicity to a = 383.47 nm to coincide the pump central

wavelength to 1.55 μm. With this choice, we plot the spectral

intensity of the pump and the dominant Schmidt modes of the

signal and idler photons as a function of wavelength in Figure 6B.

In terms of free-space wavelength, the FWHM of the pump pulse

is ΔλP1 = 1.0 nm, and the bandwidths of the resulting signal and

idler photons (the dominant Schmidt modes to be precise) are

ΔλS = 1.5 nm and ΔλI = 0.13 nm, respectively.

For the case of non-degenerate pumping shown in Figure 4,

we take a pump pulse in mode TM2 centered around

ωP2 � 0.2553 2πc
a , with a Gaussian spectrum with a FWHM of

ΔωP1 � 5.16 × 10−42πca for its spectral intensity, and a single-

frequency pump beam in the TM1 mode at ωP1 � 0.243 2πc
a .

We show the resulting JSI in Figure 6C. Doing the Schmidt

decomposition on this JSA results in a near-unity value of

probability Λ1 = 0.9874 for the dominant Schmidt pair. The

next pair of Schmidt modes have a very low probability of Λ2 =

0.0080. For this JSA we calculate the purity of P = 0.975, which is

even better than the previous case. To get physical values from

the normalized quantities, we set the periodicity to a = 386.18

nm, which sets the signal/idler central wavelengths to 1.55 μm.

With this choice, we plot the spectral intensity of the pumps and

the dominant Schmidt modes of the signal and idler photons as a

function of wavelength in Figure 6D. In terms of free-space

wavelength, the FWHM of the pump pulse in mode TM2 (shown

by purple curve) is ΔλP2 = 3.0 nm, and the bandwidths of

the resulting signal and idler photons are ΔλS = 3.2 nm and

ΔλI = 0.15 nm, respectively. The narrow blue line corresponds to

the wavelength of the CW pump in mode TM1.

4 Calculation of pair-generation
efficiency

In this section, we calculate the efficiency of generating

spectrally uncorrelated pairs in the proposed structure.

Specifically, we do this for the degenerate pumping

scenario, with spectral properties shown in Figures 6A,B.

We use the formulation developed for description of SPDC in

photonic crystal waveguides in Saravi et al. (2017b), and

adapt it to describe the SFWM case. To do this, we start

with the SFWM Hamiltonian, ĤNL(t) ≈ −
3ϵ0 ∫ dr χ(3)zzyy(r)E(+)

P,z(r, t) E(+)
P,z(r, t) Ê(−)

S,y(r, t) Ê(−)
I,y (r, t) +H.c.

Christensen (2018), which is the nonlinear Hamiltonian of

SFWM with degenerate pumping. Here we only take into

account the contribution from the dominant polarization

components of the modes, mediated by χ(3)zzyy � χ(3)yyyy/3.

For the positive-frequency part of the classical pump pulse

we use E(+)
P (r, t) ≈ AP eP(r,ωP,0)∫+∞

0
dω α(ω) eik(ω)x−iωt, with

α(ω) � exp(−(ω − ωP,0)2/2σ2P) being the spectral envelope of

the pump at the central frequency ωP,0 with bandwidth σP. In

our case, the pump bandwidth is narrow enough that we can

approximate its field profile as being the field profile at its

central frequency. If Ppeak is the peak power of the pump pulse

at its center, x = 0 and t = 0, then we can find the pump

intensityA2
P � Ppeak

4πσ2Pc
ng,P(ωP,0)

∫
Ω
dr ϵ0 ε(r,ωP,0) |eP(r,ωP,0)|2/a

, where we used a

similar normalization approach as in Saravi et al. (2015). We

note that the volume integral ∫Ωdr � ∫a

0
dx∫+∞

−∞ dy∫+∞
−∞ dz is

taken over the volume of one unit cell of the photonic crystal

waveguide. We then take a similar approach as in Saravi et al.

(2017a) for calculating the biphoton state |ψ〉 in photonic

crystals (neglecting the material dispersion), which itself is

based on a perturbative pair-generation formalism Yang et al.

(2008) combined with a quantization formalism for Bloch

modes Sipe et al. (2004), with only changing the SPDC

Hamiltonian to the SFWM Hamiltonian. The result for the

probability of generating a photon pair is

〈ψψ
∣∣∣∣ 〉 ≈ G∫∫dωSdωI|JSA ωS,ωI( )|2, (2)

with

G � ∫Ωdr e
2
P,z r( )epS,y r( ) epI,y r( )/a∣∣∣∣∣

∣∣∣∣∣2
E2
PEIES

3μ0Lχ
3( )
zzyyPpeak

8πσ2P

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

|n2g,Png,Ing,S|ωI,0ωS,0. (3)

Here, Eq � ∫Ωdr ε(r,ωq,0) |eq(r,ωq,0)|2/a, with q = P, S, I.

The Bloch mode profiles and the group indices are evaluated at

the central frequencies for the pump, signal, and idler, being ωP,0,

ωS,0, and ωI,0, respectively. This is a good approximation in our

case, as the JSA has a very narrow spectral band compared to the

spectral functionality of these quantities. The JSA in this equation

has the same expression as in Eq. 1.

We now calculate the pair generation probability from Eq. 2

for the case of the degenerate pumped structure with the JSA

shown in Figure 6A. The periodicity is set to a = 383.47 nm to fix

the pump central wavelength to 1.55 μm. The structure chosen

there was N = 1,000 periods long, which results in the physical

length of L = N × a ≈ 383 μm. The chosen Gaussian spectrum

with a FHWM of ΔωP1 � 1.66 × 10−42πca corresponds to

σP � 10−42πca , which results in the FWHM of the pump pulse

intensity being ΔλP = 1.0 nm, as shown in Figure 6B. The group

indices are ng,I = −6.04, ng,S = 7.37, and ng,p = 7.29. For the
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nonlinear coefficient, we take n2 = 7.43 × 10–17 m2/W for the

nonlinear index of amorphous silicon Wang and Foster (2012).

Using n2[m2

W] � 283
ε χ

(3)
yyyy[m

2

V2] Boyd (2008), with ε = (3.694)2, we

find the nonlinear susceptibility χ(3)yyyy � 3.58 × 10−18 m2/V2,

which gives χ(3)zzyy � 1.19 × 10−18 m2/V2 for the cross-polarized

nonlinear susceptibility coefficient. With a peak pump pulse

power of Ppeak = 1 W, we find the generation probability of

about 1.4 × 10–3 counts per input pump pulse. Assuming a

80 MHz repetition rate for the pump laser, the average pump

power will be about 0.3 mW and the pair-generation rate will be

about 115 KHz.

We compare this theoretically calculated efficiency with the

measurements from a pulsed SFWM experiment on an

amorphous silicon ridge waveguide, with comparable

transverse dimensions and pump pulse bandwidths, but with

approximately an order of magnitude larger length Wang et al.

(2014). In this case, a comparable generation rate was measured,

yet with an order of magnitude lower pump pulse energy due to

the longer length of the ridge waveguide. It should be pointed out,

that the effect of the lower value of the cross-polarized nonlinear

susceptibility in our scheme and the lower overlap integral due to

the use of non-dominant Bloch harmonics is effectively balanced

by the effect of larger group indices in the PCW.

5 Conclusion and discussion

We have proposed a novel scheme for reaching CP phase-

matching for photon-pair generation through SFWM in a

standard photonic crystal waveguide, where we have

performed the design and numerical demonstration of this

scheme in a silicon PCW. We have then showed that

asymmetric group-velocity matching can be reached in this

structure, and have numerically demonstrated the generation

of highly spectrally uncorrelated photon-pair states, where the

pair can have both degenerate and non-degenerate central

frequencies.

An important part of our design is the use of index-guided

TM modes of the PCW, which allow us to reach both the CP

phase-matching condition and the AGVM condition. We

emphasize that the region of interest in the design was

reached only by tuning the slab thickness in a standard

W1 PCW, and we have not even tapped into the well-known

dispersion-engineering capability of PCWs, which can shape the

group-index spectra of the guided modes through changing the

in-slab design parameters (such as the position or radius of the

rows of holes neighbouring the central line defect) Li et al. (2008);

Schulz et al. (2010). Adding this degree of freedom to the design

can open up even more possibilities in engineering the properties

of the factorable state.

An interesting property of the design is that the pump and

the signal/idler modes are cross polarized. Hence, the

polarization degree of freedom can also be used, in

addition to spectral filtering, to filter out the pump field

from the two-photon state. Even more interesting, is the

fact that in both of the cases we presented with degenerate

and non-degenerate pumping, one can fully avoid the

unwanted photon pairs that are usually generated around

the pump beam frequency due to trivial phase-matching of

the pump mode with itself. This is due to the fact that in the

case shown in Figure 3, the frequency of the idler photon, and

in the case shown in Figure 4, the frequency of both of the

signal and idler photons fall within the bandgap of the TM

modes. It has been shown that if one of the photons in a pair

falls within the bandgap region of a mode, pair generation will

be fully suppressed at both frequencies of the pair in that mode

Helt et al. (2017); Saravi et al. (2017b). This means that pair

generation in the TM modes themselves will be suppressed at

the frequencies where we generate pairs in the TE mode. The

bandgap-suppression effect has been proposed previously to

suppress unwanted pair generation channels Helt et al. (2017),

although it has to be noticed that the extent of this suppression

can be limited by underlying losses of the system, which

reduce the effectiveness of the bandgap modes Saravi et al.

(2017a).

It should also be noted that, although we have used the same

TE mode for the CP signal and idler, which consequently

generates the pair in a close spectral range, we are not limited

to such a configuration. For example, to separate the signal and

idler frequencies even further, one can imagine a scenario, with

the signal photon in the low-frequency TE index-guided modes

(the lowest guided bands in Figure 2A) and the idler photon in

the gap-guided TE mode, while having the pump mode

somewhere in the TM1 mode, which could be positioned in

the needed frequency range with a proper choice of the slab

thickness, as was done in this work. We do not investigate such

scenarios here, yet we want to point this out as an example of the

plethora of possibilities for generation of CP photons pairs in

such PCWs based on SFWM.

We strongly emphasize, that although we do our

demonstration based on a design in silicon, our design

concept is general and can in principle be applied to any

nanostructured material platform. Other candidates could be

III-V semiconductor material platforms, such as aluminium

gallium arsenide Kultavewuti et al. (2016) and gallium

phosphide Wilson et al. (2019), which also have comparable

χ(3) coefficients to silicon and also a comparable linear refractive

index. Such silicon Xiong et al. (2011); Collins et al. (2013); He

et al. (2014) and III-V semiconductor Clark et al. (2013) photonic

crystal waveguides have already been fabricated and used for

conventional co-propagating photon-pair generation. This

shows that an experimental demonstration of our proposed

scheme is feasible.

Aside from heralded single-photon sources, the CP

configuration is of interest for other applications, e.g. for

creating a mirrorless optical parametric oscillator Canalias and
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Pasiskevicius (2007), which can then be used as a narrowband

source of squeezed light Gatti et al. (2017). In particular, recently

there is a rising interest for creating purely single- and two-mode

squeezed light sources for Gaussian boson sampling Vaidya et al.

(2020); Zhong et al. (2020). Such sources in essence require that

the two squeezed beams are spectrally factorable from one

another. Hence, the source presented here could also be a

candidate for such applications if it is operating in a higher-

gain regime of pumping that surpasses the probabilistic pair-

generation regime. Finally, the CP scheme involving different

modes for the signal and idler was used in Saravi et al. (2017b) to

propose a design for direct generation of path-entangled Bell

states through SPDC in PCWs. The same concept could

potentially be extended to SFWM for generation of path-

entangled Bell states.
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