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Abstract: Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibra-
tional states within samples. This information on vibrational states can be utilized as spectroscopic
fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios
to determine the chemical composition of the sample without altering it, or to predict a sample
property, such as the disease state of patients. These two examples are only a small portion of
the application scenarios, which range from biomedical diagnostics to material science questions.
However, the Raman signal is weak and due to the label-free character of RS, the Raman data is
untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based
chemometric models are needed. As a subset of representation learning algorithms, deep learning
(DL) has had great success in data science for the analysis of Raman spectra and photonic data in
general. In this review, recent developments of DL algorithms for Raman spectroscopy and the
current challenges in the application of these algorithms will be discussed.
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1. Introduction

In 1928, a new scattering effect was discovered by C. V. Raman [1]. Today, this effect is
called Raman scattering, which is the inelastic scattering of photons on a quantized system
such as the vibrational states within molecules, e.g., in matter. Because the vibrational
states of a molecule are molecule-specific, a Raman spectrum can be used as a “vibrational
fingerprint” of the molecule. If Raman spectroscopy is applied to molecule mixtures, the
Raman spectrum can be used as fingerprint of the respective sample [2]. Due to the intrinsic
low quantum efficiency of the Raman effect, the measurement of high-quality Raman spec-
tra requires long measurement times. Therefore, enhancement techniques, such as coherent
anti-Stokes Raman spectroscopy (CARS) [3] and surface-enhanced Raman spectroscopy
(SERS) [4], were invented. Nowadays, Raman spectroscopy has already widely spread
into different research fields, for example, forensic analysis [5], pharmaceutical product
design [6], material identification [7], disease diagnosis [8], etc. Most of the presented and
similar studies employ the unlabelled version of Raman spectroscopy. For this reason, data
modelling is always necessary for interpreting the untargeted spectral data [9].

The research field of applying mathematical and statistical methods on the data of
chemical measurements has been defined as chemometrics by Kowalski in 1975 [10]. Usu-
ally, chemometrics for Raman spectroscopy can be divided into two main parts: data
pre-processing and data modelling. In terms of data pre-processing, there are correction
steps, including spike correction, wavenumber calibration, baseline correction, etc. [2].
Different pre-processing methods exist, such as traditional pre-processing, e.g., the Vancou-
ver Raman algorithm [11], as well as machine learning options, such as automatic Raman
spectra correction [12]. In terms of data modelling, machine learning (ML) models are
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prevailing, especially the partial least squares (PLS) algorithm. For instance, Goetz et al.,
used a PLS-based multivariate technique to quantify body chemicals [13]; Hedegaard et al.,
combined PLS and K-means clustering to identify isogenic cancer cells [14]; and Guo et al.,
modified PLS and principal component analysis (PCA) to improve Raman spectroscopy
classification [15]. Besides, other classical machine learning algorithms are also often used
for data modelling. For example, Manoharan et al., determined 12 principal components of
61 Raman spectra for breast cancer diagnosis by singular value decomposition (SVD) [16];
Widjaja et al., applied support vector machine (SVM) into near-infrared (NIR) Raman
spectroscopy for classifying colonic tissue specimens [17]; and Seifert proved that random
forests are efficient for analysing complex biological samples based on SERS data [18].

Apart from the afore-mentioned examples of classical machine learning models, there
is a kind of representation learning, which is most often based on very deep multilayer
perceptrons (MLPs). This kind of representation learning is called deep learning and it
can solve various artificial-intelligence tasks [19] (pp. 1–12). With the rapid development
of computer science, deep learning has changed numerous traditional research fields,
including photonics [20], chemistry [21], and biology [22]. For Raman spectroscopy, deep
learning models are also very helpful in both data pre-processing and data modelling,
which, theoretically, can be applied to all kinds of Raman spectral data. If a large number
of Raman spectra are available, they can be sent directly into deep learning models without
pre-processing. It should be noted here that it is not clear what is a large number for a
given DL model and application. That is, mainly, because no sample-size planning (SSP)
algorithm exists for deep learning. If Raman spectra are utilized without pre-processing,
the DL model should do that implicitly beside the classification or regression task. If there
are different Raman experiments, the models can be retrained or just directly used for a new
experiment or task. Besides, typical deep learning algorithms in this field are convolutional
neural networks (CNNs), residual networks (ResNets), recurrent neural networks (RNNs),
autoencoders, and generative adversarial networks (GANs). Therefore, in the following
sections, these algorithms, their recent applications in Raman spectroscopy, as well as their
current challenges, will be discussed in more detail.

In this article, Section 1 has introduced the background information about Raman
spectroscopy and deep learning; Section 2 will make an overview of several common deep
learning models, including CNNs, ResNets, RNNs- and GANs; and Section 3 will discuss
recent applications of deep learning in combination with Raman spectroscopy. The applica-
tions are grouped into four categories. Section 4 will summarise the existing challenges of
deep learning for Raman spectroscopy. Finally, Section 5 will draw a conclusion.

2. Deep Learning—Overview

In 1986, Rina Dechter introduced the term “deep learning” into the machine learning
community [23]. Because of the recent rise of big data, deep learning (DL) has successfully
infiltrated nearly all major areas of scientific research. DL belongs to the representation
learning subset of artificial intelligence (AI). Most often, feedforward neural networks
(FNNs) are the fundamental basis of deep learning algorithms, which are a kind of artificial
neural networks (ANNs) that always consist of an input layer, hidden layers, and an output
layer. The input layer sends the input data into the network, then the neurons in hidden
layers process the data depending on their weights, and, finally, the processed data is
returned by the output layer. The weights and bias of the network are typically updated
using backpropagation and gradient-based optimization techniques. The basic architecture
of an FNN is shown in Figure 1. This architectural basis makes it possible for a deep learning
network to be capable of representing functions of increasing complexity by adding more
units and layers [19] as long as sufficient large numbers of labelled training samples
are available. Based on this basic architecture, various deep learning-based algorithms
have been recently invented and implemented, for example, CNNs, ResNets, RNNs,
autoencoders, GANs, etc, [9]. Their relationships are illustrated in Figure 2. Although these
algorithms vary from one to another, an optimisation method, a cost function, a dataset,
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and a model defined by its building blocks, e.g., layers, are always the four fundamental
components [9]. These typical deep learning algorithms will be briefly introduced in
the following.
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network consists of three main parts: an input layer (red units), an output layer (green units), and a
number of hidden layers (blue units). The input data is sent into the network from the input layer,
and then the hidden layer processes the data, which yields an output.
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Figure 2. ANN Venn diagram. This image shows that under the big ANN umbrella, CNNs, GANs,
ResNets, autoencoders, and RNNs are typical deep learning models. Although they are all indepen-
dent network architectures, it is very common to combine some of them together in real applications.

2.1. Convolutional Neural Networks (CNN)

In 1989, LeCun et al., firstly introduced the CNN for handwritten zip code recog-
nition [24]. The most important part of a CNN is its convolutional layer. Additionally,
batch normalization layers and pooling layers as well as fully-connected layers are also
commonly utilized in a CNN. The input of a convolutional layer is convolved by the
kernels of a convolutional layer and passed to the next layer acting as input for that layer.
During the process of weight updating, the convolution kernel of each layer is learned,
thus, feature maps which are generated by the kernels are updated. Additionally, pooling
layers are utilized to reduce data dimension and computational complexity by subsampling.
There are two most common types of pooling methods: max pooling and average pooling.
Usually, a fully-connected layer is at the end of a CNN, which connects every single neuron
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of its previous layer to the output. Figure 3 illustrates the typical structure of a CNN model.
It should be noted here that CNNs have two special concepts: parameter sharing and local
connectivity. These concepts reduce the number of parameters and make the computations
more efficient.
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2.2. Residual Network (ResNet)

In 2015, He et al., published a paper to use residual learning for image recognition [25].
This is the first application of ResNet, containing a 34-layer network architecture. The
core structure of a ResNet is its residual block, which is shown in Figure 4. The residual
block utilises a shortcut to jump over layers. This design can avoid the vanishing gradient
problem, which might completely stop the neural network from further learning in the
training process. According to the network length, the most commonly used ResNets are
ResNet-50, ResNet-101, and ResNet-152, which can be categorized as CNN variants.
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Figure 4. A residual block. There is a shortcut between the input x and the desired output H(x). If
the output of the nonlinear stacked layers is defined as F(x): = H(x) − x, then H(x) = F(x) + x. This
network design enables a skip connection, which allows gradient information to pass through the
layers and can avoid the vanishing gradient problem.

2.3. Autoencoder

Unsupervised learning can be realised with an autoencoder, which has a bottleneck
structure, as shown in Figure 5. An autoencoder has two main parts: an encoder and a
decoder, which are designed for input and output data, respectively. The data flows from
the input through a bottleneck, which forms a feature representation of the input data
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to model the output. An important application of an autoencoder structure constructed
by means of a CNN is the U-Net, which was firstly introduced by Ronneberger et al., for
biomedical image segmentation [26].
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Figure 5. The bottleneck structure of an autoencoder. The first half is an encoder (yellow), which
maps the input X to the bottleneck H; while the second half is a decoder (green), which maps the
bottleneck H to the output X’. Firstly, the encoder processes X and generates H (containing important
features); then, the decoder translates H into the desired output X’.

2.4. Generative Adversarial Network (GAN)

Goodfellow et al., introduced a very interesting deep learning architecture called
generative adversarial network (GAN), which consists of a generator G and a discriminator
D [27]. During the process of training, G aims to maximise the probability of D making
a mistake, while D wants to separate real from generated data instances. The training is
performed sequentially using the minimax loss, which is, actually, a minimax two-player
game. As a result, G learns to generate data that comes from on approximated distribution
similar to the distribution of the original input. Meanwhile, D try to distinguish real
images in the training dataset between generated fake images. Figure 6 shows a typical
GAN architecture.

2.5. Recurrent Neural Network (RNN)

In 1997, Hochreiter and Schmidhuber invented the long short-term memory (LSTM)
network, which is a form of a RNN [28]. LSTM networks have feedback connections, so
they are able to process entire sequences of data and avoid the vanishing gradient problem.
RNNs are capable of adding memory to the network over time, thus, they have succeeded
widely in time-series processing, such as speech signal recognition. More specifically,
according to Pradhan et al., RNN architectures can be separated into three groups: many-
to-one architecture, one-to-many architecture, and many-to-many architecture [9]. The way
of unfolding a basic RNN is shown in Figure 7.
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Figure 7. Unfolding a basic RNN. U, V, and W are the weights of the input layer, the output layer
and the hidden state, respectively; Ht, It, and Ot are the hidden state, input vector, and output
result at time t, respectively. Because of the loop in RNN, gradients can flow backwards through
unlimited numbers of virtual layers unfolded in space, so that they can be prevented from vanishing
or exploding. And this loop also makes it possible for the RNN to process entire sequences of data.

3. Recent Applications for Raman Spectroscopy

Classical machine learning techniques have been widely used for Raman spectroscopy.
Generally, data pre-processing, feature extraction (or feature selection), and data modelling
are necessary steps. On the contrary, with deep learning, the workload of such complicated
steps can all be done by a single neural network on condition that there exist sufficient train-
ing data. Based on the output types, deep learning applications for Raman spectroscopy
can be separated into four main parts: pre-processing, classification, regression, and high-
lighting, which are shown in Figure 8. After model training using a Raman spectrum
as input, a pre-processing model outputs another Raman spectrum (usually filtered or
denoised); a classification model outputs a label; a regression model outputs a number or
probabilistic value; and a highlighting model divides the input into different parts and
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usually outputs a certain region of interest (ROI) of the 1D spectral data. In this section,
recent achievements about these major applications will be introduced, as demonstrated in
Table 1.
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Figure 8. Four types of deep learning applications for Raman spectroscopy. Based on outputs,
there are four types of models: pre-processing, classification, regression, and highlighting. In a
pre-processing model, the output is another Raman spectrum; in a classification model, the output
is a label (e.g., “healthy”); in a regression model, the output is a number or probabilistic value
(e.g., “0.95”); in a highlighting model, the output is a certain spectral region of interest (ROI) of the
input spectrum.

3.1. Pre-Processing

As mentioned above, because the Raman effect is a weak effect, it can be easily
contaminated by noise and other corrupting effects. Thus, pre-processing is, traditionally, a
must. According to Bocklitz et al., and Guo et al., after getting raw spectra, spike correction,
wavenumber calibration, intensity calibration, baseline correction, and spectral smoothing,
spectral normalisation as well as dimension reduction are always needed [2,29]. Because
the computational complexity of the above-mentioned pre-processing sequence is high, and
simply no universal pre-processing technique exists, the definition and implementation
of the pre-processing (sequence) becomes a heavy burden [30]. Besides, there does not
exist standard pre-processing protocol for different laboratories and devices, and some
pre-processing sequences could be inappropriate [2]. Due to these facts, it is of vital
importance to find another way to solve the pre-processing challenge. Luckily enough,
recent research results have shown that deep learning is a powerful alternative for Raman
spectral pre-processing.

1D CNNs are commonly applied for Raman spectral pre-processing. For example,
Wahl et al., presented a single-step automated Raman spectral pre-processing method
using CNN [31]. In this method, signal peaks, baselines, and background noise are, firstly,
randomly added in order to create synthetic spectra. After that, a CNN model is trained
for mapping a set of input Raman spectra to the corresponding ideal spectrum. This CNN
model consists of a feature extraction block (four convolutional layers followed by batch
normalization and rectified linear unit (ReLU) layers; the first two are also followed by
average pooling layers) as well as a regression block (a dropout layer, a fully-connected
layer, and a regression layer). As a result, most pre-processed outputs had better signal
quality under these three criteria: root mean square error (RMSE), structural similarity
index measure (SSIM), and signal-to-noise ratio (SNR). Additionally, Valensise et al., also
implemented a 1D CNN model to remove non-resonant background (NRB) from broadband
coherent anti-Stokes Raman scattering (B-CARS) spectra [32], as demonstrated in Figure 9.
This model is called SpecNet, which consists of five convolutional layers followed by
three fully-connected layers. The convolutional layers have 128, 64, 16, 16, and 16 filters,
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respectively; the fully-connected layers have 32, 16, and 640 neurons, respectively, and each
layer has a rectified linear unit (ReLU) as activation function. After going through this
model, the distorted line shapes and the degraded chemical information can be corrected,
so that the analysis of B-CARS spectra can be greatly simplified and accelerated.
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it outputs a cleaned Raman spectrum.

Apart from the above-mentioned basic 1D CNNs, autoencoders and ResNets are
also widely used for Raman spectral pre-processing. A very typical example is the 1D
ResUNet implemented by Horgan et al., which is designed for the process of Raman spectral
denoising [33]. In their study, MDA-MB-231 breast cancer cells were cultured to obtain
both low SNR (0.1 s integration time per spectrum) and high SNR (1 s integration time per
spectrum) Raman spectra, so that the 1D ResUNet could then be trained for enhancing
the low SNR ones. This model has 20 convolutional layers, each of them is with a ReLU
layer, and they make up five residual blocks consisting of an encoder and a decoder. In
addition, Gebrekidan et al., used a similar ResUNet model to efficiently remove noise and
background from raw Raman spectra to increase signal quality [34]. The encoder of this
ResUNet consists of four repeated sequences (each has two 5 × 1 convolutional layers, one
batch normalization layer, and one max-pooling layer) followed by two 5 × 1 convolutional
layers; the decoder of this ResUNet also consists of four repeated sequences (each has two
5 × 1 convolutional layers, one up-sampling layer, and one concatenation layer), followed
by a 1 × 1 convolutional layer at the end.

Some other impressive studies about deep learning for Raman pre-processing have
also been developed by researchers. For example, Pan et al., used a CNN with seven
2-dimentional convolutional layers (each has 100 filters of the size 100 × 1 and is followed
by a 100-channel batch normalization layer, a ReLU layer, and a max-pooling layer) and
one fully-connected layer at the end [35]; Houhou et al., compared a long short-term
memory network (LSTM) made up of the input gate, the forget gate, the output gate, and
the cell state with maximum entropy method (MEM) and Kramers-Kronig relation (KK)
for CARS phase retrieval, which performs well and does not need background removal in
advance [36].

3.2. Classification and Regression

To the best knowledge of the author, most applications of deep learning algorithms
for Raman spectroscopy are usually about spectral classification. When the output of a
deep learning algorithm is a value describing the (estimated) probability of belonging to a
certain class, it can be seen as a regression problem. If a classification threshold is added
to such a regression algorithm, then it can become a classification algorithm. Therefore,
in most applications, classification and regression are usually mixed in practice. So, these
two types of applications will be introduced together in this section. 1D CNNs are the
most commonly applied models among these algorithms, and ResNets are very popular as
well. Most of the studies train the model from the very beginning, while few use transfer
learning to simplify the weight-updating process and to adapt to the small dataset size.
Usually, these deep learning-based Raman spectral classification models feature good test
performances in terms of their accuracies or receiver operating characteristic (ROC) curves.
In the following, a number of recent classification examples are summarised.
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Same as pre-processing, 1D CNNs also play a very important role in Raman spectral
classification. For example, to distinguish human and animal blood, Dong et al., used
a simplified network modified from LeNet-5 architecture with only two convolutional
layers for feature extraction followed by one fully-connected layer for classification, which
achieved an accuracy of 96.33% [37]; to detect prostate cancer, Lee et al., used another 1D
CNN for Raman spectra from extracellular vesicles (EVs) [38]; to assess the disease activity
of ulcerative colitis (UC), Kirchberger-Tolstik et al., used a 1D CNN as well and reached
a mean sensitivity of 78% and a mean specificity of 93% for the four Mayo endoscopic
scores [39]. Besides, an accuracy of 93% has been reached for classifying lymph node
carcinoma of the prostate (LNCaP), prostate cancer cell line (PC3), and red blood cell
(RBC) and platelet. This model does not require any external data pre-processing step, its
three convolution-max pooling layers extract features from spectral data, and then its four
fully-connected layers output classification labels at the end of neural network. To detect
microbial contamination, Maruthamuthu et al., used a 1D CNN for distinguishing Raman
spectra of Chinese hamster ovary (CHO) cells from 12 types of microbes, which achieved
the accuracy of 95–100% after training by Adam optimizer and the five-fold leave-one-out
cross-validation (LOOCV) strategy [40]. This model is composed of three parts: an initial
convolutional layer with the kernel size of 7 (followed by a batch normalization layer and a
ReLU layer), eight residual blocks with the kernel size of 3 and a fully-connected layer at
the end. To identify materials rapidly, Boonsit et al., implemented a 1D CNN as well for
low-resolution Raman spectra collected from NaNO3, BaSO4, Ba(NO3)2, KNO3, Pb(NO3)2,
and CH4N2O, and the accuracy of which was found to be 96.7% [7]. This model consists of
four convolutional blocks (each contains a convolutional layer, a ReLU layer, and a max-
pooling layer) for feature extraction and one output layer for spectral classification. Apart
from the above, a 1D CNN composed of only two convolutional layers was applied into
a nanoplasmonics biosensing chip (NBC) by Cheng et al., which could correctly identify
91% of the 100 spectra on validation dataset for hepatocellular carcinoma (HCC) or healthy
patients [41]. The two convolutional layers of this model are with 8 or 16 kernels of the size
3 × 1, respectively. A batch normalization layer is attached to each convolutional layer,
and a 2-by-1 max-pooling layer additionally follows the first convolutional layer. At the
end, a concatenate layer, a fully-connected layer as well as a softmax function are used for
outputting the classification results. Furthermore, a novel approach called “deep learning-
based component identification” (DeepCID) was invented by Fan et al., for successfully
detecting 167 types of pure components (methanol, ethanol, acetonitrile, etc.) based on
Raman spectral information [42], as illustrated in Figure 10. DeepCID is a four-layer CNN
model consisting of two convolutional layers (each with a 5 × 1 convolutional kernel and
a 2-by-1 max-pooling operation) and two fully-connected layers. As a result, DeepCID
achieved an accuracy of 98.8% for all 167 components and 160 of them achieved 99.5%.
Because of this satisfying result, the non-negative least squares (NNLS) algorithm and
DeepCID were later combined by Fu et al., which also worked impressively well in their
lactose-dominated drug (LLD) quantitative model [43].

Apart from the 1D CNN algorithms in the above, autoencoders and ResNets are also
quite popular for Raman spectral classification. For example, in terms of autoencoder,
Houston et al., combined one with a locally connected neural network (LCNN) to create a
two-step classification model for being accurate and robust in the presence of negative out-
liers [44]. In this model, the LCNN was designed for training data, while the autoencoder
was utilised for outlier detection. In terms of ResNet, Ho et al., implemented one network
with 25 convolutional layers for rapid bacteria identification [45]. The antibiotic treatment
identification accuracies of their model were 97.0 ± 0.3%. In addition, a new framework
entitled “diverse spectral band-based deep residual network” (DSB-ResNet) was proposed
by Ding et al., which had the best performance of detecting tongue squamous cell carci-
noma (TSCC) with 97.38%, 98.75%, and 98.25% for sensitivity, specificity, and accuracy,
respectively [46]. DSB-ResNet has a global convolution and slice (CS) layer after input, and
then is equally divided into four quarters. The outputs of the CS layer and four quarters
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are sent into five 34-layer ResNets, respectively, which are followed by a concatenation and
dropout layer and a fully-connected layer before the final output. Additionally, another
new framework using residual blocks named “multi-feature fusion convolutional neural
network” (MCNN) was designed by Chen et al., which had the highest accuracy among its
competitors for thyroid dysfunction diagnosis with serum Raman spectra collected from
199 patients [47]. MCNN has three 1D convolutional layers immediately after the input,
and these three layers also contain two residual blocks. The fourth layer of MCNN is a
concatenate layer, which is followed by a flatten layer as well as two fully-connected layers
before the final softmax output layer.
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Figure 10. An example of using 1D CNN for Raman data classification (source: [42]). For classifying
167 different components, a set of DeepCID models with the same architecture were used. Each
DeepCID model is a 1D CNN, which consists of four convolutional layers and two fully-connected
layers. For training and evaluating each model, 20,000 samples were split into three datasets: training
dataset, validation dataset, and test dataset.

There are many other types of CNN-related algorithms for Raman spectroscopic
classification in the research field as well. For example, an optimal Scree-CNN model was
implemented for classifying salivary NS1 SERS spectra with 100% accuracy [48]. This Scree-
CNN consists of a feature extraction part and a classification part. The feature extraction
part contains an input layer, a convolutional layer, and a ReLU layer; the classification
part contains a multilayer perceptron (MLP) and a softmax output layer. Besides, Pan
and his colleagues even increased the Raman data dimension from 1D to 2D by wavelet
transform before classification [49,50]. In addition, a single-layer multiple-kernel-based
convolutional neural network (SLMK-CNN) containing one convolutional layer with five
different kernels, one flatten layer, and two fully-connected layers was created for Raman
spectra obtained from porcine skin samples [51]. Notably, for pathogen classification, Yu
et al., even combined Raman spectroscopy with GAN to achieve high accuracy when the
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training dataset size is limited [52]. In their GAN model, the generator G (a multilayer
perceptron) worked for data augmentation and the discriminator D (a multilayer deep
neural network) acted as a classifier.

When it comes to the limitation of dataset size, some other researchers have shown
that using transfer learning is very helpful to the training process of classification models
for Raman spectroscopy. For example, Thrift and Ragan tried a CNN-based single molecule
SERS quantification method that transferred the knowledge from Rhodamine 800 (R800)
domain to methylene blue (MB) domain. Their SERS quantification method could be highly
satisfactory even with only 50 new MB training samples [53]. Their CNN model is inspired
from the classic LeNet architecture, which begins with an entry flow of four convolutional
layers followed by two max-pooling layers, respectively, and ends with an exit flow of a
flatten layer, a dropout layer and two fully-connected layers. Furthermore, Zhang et al.,
pretrained a source dataset made of Bio-Rad and RRUFF databases and increased their
CNN classification accuracy by 4.1% with just 216 new spectra from the target dataset [54].
However, these applications of transfer learning greatly depend on a spectroscopic source
dataset, therefore the feasibility of using more general source datasets (e.g., ImageNet) still
remains to be analysed.

3.3. Spectral Data Highlighting

As introduced above, most deep learning models can directly predict the classes of
Raman spectra in a classification approach or predict continuous values, even without
pre-processing and spectral highlighting, consequently, the need of highlighting important
regions of spectra is not that high. Therefore, spectral data highlighting is not that often
seen for Raman spectroscopy as the three afore-mentioned application scenarios. But there
exist a few studies on the topic, e.g., answering the question of which spectral features are
important for a given task. To give an instance, Fukuhara and his team highlighted the
important regions of a given Raman spectrum by a CNN [55]. This CNN begins with two
convolutional blocks (each has a convolutional layer followed by a max-pooling layer) and
ends with two fully-connected layers. In their model, Raman peaks were extracted, and
near-zero feature values at background region were obtained. From another perspective,
the Raman spectral highlighting task can as well be considered as the supplement or
preparation for pre-processing steps. Therefore, further research about deep learning
algorithms purely for Raman spectral highlighting still needs to be conducted.

Table 1. Examples of typical deep learning applications for Raman spectroscopy.

Application Examples

Pre-processing Wahl et al. [31], Valensise et al. [32], Horgan et al. [33], Gebrekidan et al.
[34], Pan et al. [35], and Houhou et al. [36]

Classification/
Regression

Boonsit et al. [7], Dong et al. [37], Lee et al. [38], Kirchberger-Tolstik
et al. [39], Maruthamuthu et al. [40], Cheng et al. [41], Fan et al. [42], Fu
et al. [43], Houston et al. [44], Ho et al. [45], Ding et al. [46], Chen et al.
[47], Saifuzzaman et al. [48], Pan et al. [49,50], Sohn et al. [51], Yu et al.
[52], Thrift and Ragan [53], and Zhang et al. [54]

Highlighting Fukuhara et al. [55]

4. Challenges and Shortcomings

Although deep learning has already improved Raman spectroscopic research, there
still exist many challenges connected with the application of deep learning for Raman
spectra. The most important issue is about training and data preparation. First of all, deep
learning algorithms are highly data-demanding, but it is quite hard to acquire large sets of
(independent) Raman spectroscopic data. Therefore, small sample sizes of Raman datasets
might lead to low algorithm performance. Secondly, currently there no large open-source
Raman spectroscopic dataset exists to pre-train DL models for transfer learning, and the
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effectiveness of using more general datasets, such as ImageNet, still remains unknown.
Thirdly, the generalisation ability of the trained models is questionable, because a model
that performs quite well on one dataset might produce disappointing results on another
dataset due to overfitting. Last but not least, because Raman spectra are often of low quality
and contaminated with noise, extra pre-processing and enhancing steps are often needed,
which increase the complexity of data analysis.

5. Conclusions

As introduced above, deep learning is a representation learning method and it has
been widely used in the research field of Raman spectroscopy, especially during recent
years. Generally, there are different (and often applied) deep learning models, such as
CNNs, ResNets, autoencoders, GANs, RNNs, etc, which were introduced in this contribu-
tion. We grouped the applications of these models into four major Raman spectroscopic
application scenarios where these models are usually implemented: pre-processing, clas-
sification, regression, and (spectral) segmentation. The two most common applications
are pre-processing and classification, and the least common application is Raman spectral
segmentation/variable highlighting. In terms of Raman spectroscopy, segmentation often
merely plays a preparatory role before pre-processing or classification steps. Regarding
pre-processing, deep learning methods have already shown the great ability to surpass their
conventional counterparts, especially that the time requirement of deep learning methods
is lower than their classical counterparts. Many types of 1D CNNs, especially variants
of ResNets and autoencoders, are largely used for Raman pre-processing. These recent
achievements are significantly helpful to the next steps of Raman spectral data analysis.

On the other hand, deep learning even makes it possible to reduce the complexity of
pre-processing and allows for an automatic pre-processing solution in comparison with
subjective pre-processing workflows. Some deep learning models directly combine all the
pre-processing steps together with the ultimate goal, such as classification or regression, in
just one single network. For these scenarios, 1D CNNs and ResNets are very popular tools
as well, and sometimes GANs and autoencoders are also applied. Notably, there always
exists the problem of Raman spectral dataset size limitation, thus, implementing GANs for
data augmentation can be highly effective but needs further systematic research. Besides,
transfer learning has become another option to avoid this data size problem by reusing the
knowledge gained from source datasets of other domains. However, currently these source
datasets only concentrate on Raman spectra databases, so it still remains to be analysed in
respect of the feasibility of applying more general options similar to large, annotated image
datasets, e.g., ImageNet.

With the rapid development of computer science, there arise more and more deep
learning-related algorithms conquering other fields, but their effectiveness for Raman
spectral data is unknown. In brief, although deep learning has already demonstrated its
great potential for Raman spectroscopy, there are still many open questions to be answered,
especially relating to the estimation of the prediction quality of deep-leaning models on
small datasets with complex co-variance structures. There are other questions about the
influence of GAN-based data augmentation and how transfer learning can be applied
reliably for Raman spectroscopy.
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