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Abstract

We study traces of weighted Triebel-Lizorkin spaces Flsj,q(lR{”, w) on hyperplanes
R"k, where the weight is of Muckenhoupt type. We concentrate on the example
weight w, (x) = |xn|a when |x,| <1, x € R", and w,(x) = 1 otherwise, where
a > —1. Here we use some refined atomic decomposition argument as well
as an appropriate wavelet representation in corresponding (unweighted) Besov
spaces. The second main outcome is the description of the real interpolation
space (B, (R”‘k),B;ZZ,pZ(R"‘k))Q,r, 0<p,<py<oo, 5;=5s—(ax+k)/pi
i=1,2, s> 0 sufficiently large, 0 <8 <1, 0 <r < co. Apart from the case
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1/r = (1 —0)/p; + 6/p, the question seems to be open for many years. Based

on our first result we can now quickly solve this long-standing problem. Here we
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benefit from some very recent finding of Besoy, Cobos and Triebel.
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1 | INTRODUCTION

We study functions which belong to some weighted spaces of Besov and Triebel-Lizorkin type, B}, ,(R",w) and
Fls,,q(lR”, w), thus including Sobolev spaces, where the weight function belongs to some Muckenhoupt class. Such spaces
have been treated systematically by Bui et al. in [7-10]. Later this topic was revived and extended by Rychkov in [28],
including also approaches for locally regular weights.

Our main attention here is to determine the traces of such weighted spaces on hyperplanes. Trace questions are of par-
ticular interest in view of boundary value problems of elliptic operators, where some singular behaviour near the boundary
(characterised by the appropriate Muckenhoupt weight) may occur. A standard approach is to start with assertions about
traces on hyperplanes and then to transfer these findings to spaces defined on bounded domains with sufficiently smooth
boundary. Further studies may concern compactness or regularity results, leading to the investigation of spectral proper-
ties. First partial results can be found in [24, 31] for domains Q with smooth boundaries dQ and Muckenhoupt weights of
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type w(x) = (dist(x,3Q))”, y > —1. This was further extended to fractal d-sets I in [27], using the atomic approach [16]
and based on ideas for the unweighted case in [34]. Parallel observations for special weights can be found in [15, 17].

The example weight we are interested in here is the weight w,(x), @ > —1, defined by w,(x) = |xn|a when |x,| <1,
and w,(x) = 1 otherwise. As it is well-known, w, belongs to the largest Muckenhoupt class A, when a > —1. We can
prove that, appropriately interpreted,

(a+k)
trpni S o (RT, wg) = BY /P (mnk),
where0 < p < 0,0<g< o0,k e{l,...,n—1},a>—1,ands — (a + k)/p > (n — k) max{(1/p) — 1, 0}. In particular, we
construct a linear and bounded extension operator extfrom B, , (@+ho/p (R"*) to F}, , (R", w,, ) such that trgs-o ext s the

5— (oc+k)/p(Rn k)

identity in B), We refer to Sections 2 and 3 for the details and deflnltlons. This result extends previous find-

ings in [15, 26]. We prove it based on an atomic decomposition result [16] in combination with the wavelet decomposition
of (unweighted) Besov spaces in [36, Theorem 1.20]. In that way everything is shifted to the argument on the sequence
space side.

Our second main goal is the answer to a long-standing problem in real interpolation theory, mentioned already by Peetre
in [25, p. 110]. It is well known, that the real interpolation space

( zllp/lpl(Rn) BZZ’;/sz(Rn)) B~ 1/P(Rn)

where 0 < p; < p, <0,0<6<1,1/p=(1-06)/p; +6/p,,and s —1/p; > nmax{(1/p;) — 1,0}, j = 1,2. But what
is the resulting space in the more general situation

gi—/p s—a/p.
( P1,P1 I(Rn) BPZ,Pz Z(Rn))e,r’

where o > 0,and 0 < r < oo, butr # p? It seems that no answer has been obtained so far. Based on our results in Section 3
we can now easily describe the resulting space via its wavelet representation. Here we benefit from the very recent outcome
in [5]. In the very end we present an alternative argument which works for all o« € R.

The paper is organised as follows. In Section 2 we collect some notation, and the basic facts about Muckenhoupt weights
and function spaces of Besov and Triebel-Lizorkin type, as far as needed in the sequel. In Section 3 we concentrate on the
trace space trpn-«F}, 4 (R", Wy ) whereas Section 4 is devoted to the new result in real interpolation of Besov spaces.

2 | WEIGHTS AND FUNCTION SPACES

We start with a brief introduction of the Muckenhoupt classes A,. For a Lebesgue measurable set E C R", we denote
by |E| the Lebesgue measure of the set E on R” and by a weight w we shall always mean a locally integrable function
we LIIOC(IR”) and positive almost everywhere. Let M stand for the Hardy-Littlewood maximal operator given by

Mf(x) = sup |B(1 ~ / [ 1ol xew, 1)

r>0

where B(x,r) ={y € R" : |y — x| < r} and |B(x, r)| denotes the Lebesgue measure of the ball B(x, r).
Definition 2.1. Let w be a weight on R".

(i) We say that w belongs to the Muckenhoupt class A,, 1 < p < oo, if there exists a constant C > 0 such that for all balls
B the following inequality holds,

1 1/p 1 y 1/p
_ — -p'/p
<|B| /Bw(x)dx> <|B| /Bw(x) dx) <cC

where1/p+1/p' =1.
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(ii) We say that w belongs to the Muckenhoupt class A, if there exists a constant C > 0 such that

Mw(x) < Cw(x)

for almost every x € R".
(iii) The Muckenhoupt class .4, is defined as

Ao= |J 4,

1<p<oo

During the rest of the paper we are going to focus mostly on the following well-known Muckenhoupt weights.
Remark 2.2. Since the pioneering work of Muckenhoupt [21-23], these classes of weight functions have been studied
in great detail, we refer, in particular, to the monographs [13, 29, 30] for a complete account on the theory of Mucken-
houpt weights. Among the various features of such weights we would like to mention a somehow surprising one, the
so-called “reverse Holder inequality”: if w € A, with p > 1, then there exists some number r < p such that w € A, (the
monotonicity in the other direction is clear). In our case this fact will re-emerge in the number

row) :=inf{r>1 :we A4}, wedA,, (2.2)

that plays an essential role later on.

Example 2.3. Let a € R and define the weight w, for x = (xl, s xn) € R" by

|xn|a if |x,| <1,
= 2.3
el) {1 if [x,| > 1. @3

For1 < p < oo, the weight w, € A, if, and only if, -1 < a < p —1and w, € A, if, and only if, -1 < o < 0. We write

if —1<a<o,

. 1
ro(wy) =inf{r>1: w, € A, } = maxfa + 1,1} = {a+1 Fas 0

(See [16, Proposition 2.8 and Remark 2.9/(b)]).

Let (Q, u) be a measure space, let 0 < p < co and 0 < r < co. We recall that the Lorentz space L, ,(Q, 1) is the set of all
measurable functions f : Q — C with finite quasi-norm

® ar\"”"
1/p)" 4t ;
</0 [t (YP] - ) ifo<r< o,

”fle,r(Qr ,L{)“ =
sup tup()/P ifr = oo,
>0

where

ur() = u({w € Q 1 |f(w)] > 1}).

For p = r, the Lorentz space L, ,(Q, ) coincides with the Lebesgue space

1/p
Ly(Q,p) = {f : Q — Cmeasurable : ||f|L,(Q,w)| = </ |f ()P d,u> < oo}
Q
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with equivalent quasi-norms. (See, for example, [37, Theorem 3.15], [14, Proposition 1.4.9], or [2, Chapter 2, Proposition
L8]). If w is a weight on R" we simply write L, .(R", w) for Lorentz spaces defined on the measure space (R", w(x) dx)
and L,(R", w) for the related Lebesgue spaces.

Remark 2.4. Note that for p = oo one obtains the classical (unweighted) Lebesgue space, L,,(R",w) = L (R"), w € A,
which explains that we restrict ourselves to p < oo in what follows.

Definition 2.5. Let (4, || - |A||) be a quasi-Banach space, let (2, 1) be a measure space, andlet0 < p < coand 0 < r < .
We define L, ,(A; Q, u) as the space of all (equivalence classes of) strongly measurable functions f : QO — A which have
finite quasi-norm

[ FILp (A QW) = [[IIFOIAN L, (Q, w]|-

See, for example, [3, 19, 31].

Example 2.6. Now we collect some concrete examples of these spaces that will appear later.

If A = C, then Lp,,(A; Qu) = Lp’,(Q,,u).
* If p=r,thenL, ,(A;Q, ) is the Lebesgue space

Ly(A; 0, 4) = {f © Q — Ameasurable : [|f1L,(4;Q, 0| = [IFOIAINILHQ, w|| < oo}

with equivalent quasi-norms.
+ If Q = R" and u is the Lebesgue measure, we put L, -(A) := L, ,(A; Q, w).
¢ Ifwisaweighton R", we put L, (4, w) := L, (A;R", w(x) dx).
* Let Q=Nyg=NU{0}, seR, A=C, and let u = ZjeNo 256, be the (weighted) counting measure, that is, where

1, jEB,
6j3(B) = J and B C Q measurable. Then
0, j€&B,

1/p
£ 1= Lp(C.No) =44 = (4)) L € C 216} ||—(zzfsp|u> <ol

JENg

If s = 0 we just write ¢,
s IfQ = Zn, M= 2 5{m} and A = C, then

mezZn

1/p
t’p ::LP(C,Z",,M) =11 = (/‘lm)mGZ” cC: ||/1|‘€p|| = ( Z |/1m|p) < oo

mezn

. IfQ=N0,SER,ILL=ZA

N 2756, and A = €, then we denote by ¢} (€},) the space

€5(€p) 1= Ly(€p;No, )

qa/p
(o) €€ e el =| 3 zfsq( ¥ uj,mr’) <ol

JENy mezn

with the usual modification in case of ¢ = oo.
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We recall here two well-known assertions related to the boundedness of the Hardy-Littlewood maximal operator in
(2.1) that will be useful later. The first one corresponds to [1, Formula (1.5)].

Lemma 2.7. Let1 < v < oo. Then there is a constant C,, > 0 such that

1/v

1/v
( / IMf(x)I“w(x)dx> scu< If(x)l”w(x)dx> ,
Rn R7

forall f € L,(R",w)if, and only if, w € A,,.
The next one can be found in [1, Theorem 3.1/b] or [13, Remark V.6.5].

Lemma 2.8. Let1 <r,v < oo. Then there is a constant C,,, > 0 such that

1/v 1/v

v/r v/r
/ (Z |ij(x)|’> w(x)dx <Gy / <Z |fj(x)|r> wx)dx| ,
Rn Rn

JENp JENg
forall (f;) € Ly(¢,,w) if, and only if, w € A,.

Now we deal with the function spaces we have in mind, i.e., Besov and Triebel-Lizorkin spaces. Let S(R") be the
Schwartz space of all complex-valued rapidly decreasing infinitely differentiable functions on R". By S’(R") we denote
the space of all tempered distributions on R” and for any f € S’(R") we put f for its Fourier transform and f" for its
inverse Fourier transform.

Let ¢y € S(R™) with

po(x) =1if|x|] <1 and ¢(x)=1if|x| > 3/2,

and for j € N put ¢;(x) = @y (277/x) — ¢o(27/*'x), x € R". Since

Z pj(x) =1 forallx € R",
j=0
the sequence (g) j) N forms a dyadic resolution of unity.
0

JjE

Definition 2.9. Lets € R,0 < p, q < co. The Besovspace B, ,(R")isformed byall f € S '(R™) having a finite quasi-norm
1/q

q

) <o

Convention. If p = g, sometimes we simply write B;,(R") instead of B}, ,(R").

(2:£) 1L, R")

1 1B (R = <sz“’
j=0

with the usual modifications if p = o0 and/or q = oo.

Remark 2.10. The spaces Bi)’q(R”) are independent of the particular choice of the smooth dyadic resolution of unity appear-
ing in their definition. They are quasi-Banach spaces (Banach spaces for p,q > 1), and S(R") & Blsj,q(R”) < S'(RM),
where the first embedding is dense if 0 < p, g < oo; we refer, in particular, to the series of monographs [32, 33, 35] for
a comprehensive treatment of the spaces. There is a parallel approach when interchanging in the above norm the L,
and ¢, norm, this leads to the scale of Triebel-Lizorkin spaces F ;,q(R”). We postpone their formal definition to the next
section when we shall deal with their weighted counterparts.

Now we review some results related to the wavelet representation of Besov spaces By, ;(R"). We follow mainly the
notation in [36, Section 1.2.2] and [18].
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For u € N, let C*(R") be the space of all complex-valued continuous functions on R having continuous bounded
derivatives up to order u inclusively. Let pr € C*(R) and 3, € C*(R) be real compactly supported Daubechies wavelets
with

/ Yy(x)xdx =0 forallv e Ny, v<u.
R

We enumerate the set {F,M}" = {G,,...,G } with G, = (F,F,...,F) and G, = (G;, ...,G;‘) where G}, € {F, M} for all
r=1,..,nand ¢ =2,3,...,2". Put

P(x) = 11 Yr(x,—m,) and @] (x)=2/"> 11 Yo (2/x, —m,), 24)

for jeNg,m = (my,...,m,) € Z",¢ =2,3,..,2" and x € R".
For any j € Ny and m € Z" we define

n

Qj’m = Qiflrz'l = Z_Jm + 2_j_1(_1’ 1)” = H (Z_jmr - 2_j_1, z_jmr + z_j—l)’
r=1

that is to say, dyadic cubes centered at 2~/m of side length 27/, We denote by y j,m the characteristic function of Q; ,.

Remark 2.11. Observe that as ¢ and ), are compactly supported, there exists C > 0 such that supp ¢r C (—C,C) and
supp ¥ € (—C, C). Therefore

supp ¥, C 2CQp,, and supp 1,bé’m C 2CQ§’m,
forevery j e Ny, m € Z" and ¢ = 2,3, ...,2".
Now we introduce the sequence space related to the wavelet representation of Bf,,q(lR”).

Definition 2.12. Lets € Rand 0 < p,q < co. We define b}, ,(R") as the collection of all sequences

quasi-normed by

1/q

1/p n a/p
| 11b}, o(R™)|| = < Z |/1m|p) + Z Z 2j(S—n/p)q< Z ’/li;ﬂp)
mezn =2\ jeNy mezn

with the usual modifications if p = o0 and/or q = oo.

For a € R we put &, = max{a, 0}. The following characterization of Besov spaces B}, ,(R") in terms of wavelets can be
found in [36, Theorem 1.20].

Theorem 2.13. Lets € R,0 < p,q < oo and let {gbm, i,m tmeZ, jeNy, € =23, ...,2”} be the wavelets in (2.4) with
u > max {s, n(l/p-1), — s}. Let f € S'(R™). Then f € By, ,(R") if, and only if, it can be represented as
o y _
F= 2 Andmt 2 X Y A2l with 1€ b (RY),
mezZn =2 jeNy mezn

unconditional convergence being in S'(R™). The representation is unique with A, = (f,1,,) and A6 = gin/2 (f, ¢é ) and
the operator
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is an isomorphism from B}, ,(R") onto by, ,(R").

3 | TRIEBEL-LIZORKIN SPACES WITH WEIGHT W,

Weighted Triebel-Lizorkin spaces have been systematically studied in [7, 8] with subsequent papers [9, 10]. We focus
here on Triebel-Lizorkin spaces F, , (R", w, ) where w,, is the weight defined in (2.3). The spaces F}, ; (R", w,,) are also a
particular case of the spaces studied in [16, 26].

Definition 3.1. Let0<p<o00,0<g<o00,a>—1,s€R and let (qoj) be a smooth dyadic resolution of unity. The
weighted Triebel-Lizorkin spaceF, (IR”, wa) is the set of all distributions f € S’(R") such that

oo 1/q
11} (R, w,) | = (221‘“1 <¢jf>v<->)q> 1Ly (R, w,) | < oo
j=0

with the usual modification if g = 0.

Remark 3.2. The spaces F), ,(R", w) (as well as their Besov space counterparts) are independent of the particular choice of
the chosen smooth dyadic resolution of unity, they are quasi-Banach spaces (Banach spaces for p,q > 1), and the embed-
ding of S(R") is dense in F, ;(R",w) for g < co. In case of w € A, these spaces have been studied first by Bui in [7,
8], with subsequent papers [9, 10]. It turned out that many of the results from the unweighted situation have weighted
counterparts: e.g., we have Fg,z([R”, w)=nh p(IR”, w), 0 < p < oo, where the latter are Hardy spaces, see [7], and, in partic-
ular, hp(R", w) = L,(R",w) = Fg’Z(IR”, w),1 < p < oo, w€E A,. Concerning (classical) Sobolev spaces W’g(IR”, w) (built
upon L,(R", w) in the usual way) it holds W’;(R”, w) = F’;’Z(R", w), k €Ny, 1 < p<oo,w€E Ap,ct [7].

Observe that if o = 0, the spaces F' Is)’q(lR", wo) coincide with the classical Triebel-Lizorkin spaces F), ,(R"), briefly
mentioned in Remark 2.10 already.

3.1 | Atomic decomposition of spaces F; (R",w,)

Now we recall the atomic decomposition of spaces F, , (IR”, wa) given in [16].
Definition 3.3.

(a) Suppose that K € Nj and b > 1. The complex-valued function a € CX(R") is said to be an 1x-atom if the following
assumptions are satisfied:
(i) suppa C bQ, for some m € Z",
(ii) |D5a(x)| <1for|B| <K,x € R".
(b) Suppose that s €R, 0 < p < c0, K,L €N, and b > 1. The complex valued function a € CX(R") is said to be an
(s, p)k r-atom if for some j € N, the following assumptions are satisfied
(i) suppa C bQ; , for some m € 7",
(i) |DPa(x)| < 27/6=n/P+Il for |B] < K and x € R",
(iii) /g, ¥"a(x)dx = 0 for |y| < L.

In the sequel we write a; ,, instead of a if the atom is located at Q; ,,,, i.e., supp @; ,,, C bQ; .1, j € Ng, m € Z".

Our aim is some decomposition of elements from Flsj,q ([R”, wa) by atoms, similar to the wavelet decomposition recalled
in Theorem 2.13. For that reason we also need:
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Definition 3.4. Let 0 < p < o0, 0 < g < o0 and a > —1. We define f, ,(R",w,) as the set of all sequences (1;,,) of
complex numbers with finite quasi-norm

1/q
q
121£p.q (R", wq) || = <Z 2 |Aj,mx§?,1<->|> 1L, (R", w, )

jeNy mezn
where )(;pn)q(x) = 2Py n(X).

Subsequently, given an arbitrary index set I and two sets of positive numbers {a; : i €I} and {b; : i €I}, we write
a; S b; if there is a positive constant ¢ such that a; < cb; for all i € I. We put aq; ~ b; if a; < b; and b; < a;. Recall our

~ ~

notation r (wa) as introduced in (2.2), see also Example 2.3.

Theorem 3.5. Let 0<p<oo, 0<g<o, se€ER and a>-1. Let K,LeN, with K>s and
L > n(1/min (p/(ro(wg)),q) — 1);. A tempered distribution f € S'(R") belongs to Ff,,q(IR”,wa) if, and only if, it can
be written as a series

fx)= Z Z Ajm@;jm(x) convergingin S’'(R"), (3.1

JjENg mezn
where a; ,(x) are 1g-atoms (j = 0) or (s, p)x r-atoms (j € N) and 1 € fp’q(lR", wa). Furthermore
[1£1Fp.q (R, we ) || ~ inf {[|A1f5,q (R, we )|},
where the infimum is taken over all admissible representations (3.1).
We refer to [16, Theorem 3.10] for a proof, see also [6].
Proposition 3.6. Let0 < p < 00,0 < g < o0, a > —1 and let (E j,m) be a sequence of Lebesgue measurable sets on R" each

of them included in the corresponding dyadic cube Q; ,, and satisfying that |E; ,,| ~ |Q; | for every j € Ny and m € Z".
Then

1/q
”llfp)Q(Rn’wa)” ~ (2 2 |Ajsm|q2jnq/pXEj'm(')) |Lp(Rn’woc) P

JjeENg mezn
where XE; stands for the characteristic function of the set E ,,.

Proof. We follow the ideas in the proof of [12, Proposition 2.7]. As E; ,, C Q;, for every j €Ny and m € Z", it is
straightforward that

1/q
(2 Z |’1J,M|q2jnq/pXEj.m(')> |Lp(Rn’wa) S||’1|fp,q([Rn’wor)“'

JjeENy mezn

We prove now the reverse inequality. Note that for every j € Ny and m € 7", y; ,, SM ( )(Ejm). We assume first that
0 < g < o0.Taking 0 < A < min(p/(ro(w,)), q) and applying Lemma 2.8, we obtain

1/q
<Z > |/11,m|q2j”q/”x;,m(-)> L (R, w,)

JjeNy mezn

1/A

Alq
) /A
) (Z Z <|/1j,m|A2mA/p>q Xj,m(‘)) |LP/A(Rn’wa)

JENg mezn
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1/A
" q/A Alq
< il 2A) T Mo ) Iy a (R wg)
jENOMGZ”
q/A Alq /4
= |/1] m| 2]nA/p> )(Ejm>() |Lp/A(Rn,woc)
jENOMGZ"
A/q 1/A
q/A
S < jom] 2’nA/p) XEj,m(')> ILp/a(R", we)
]eNomEZ”
1/q
= ( |2]nq/PX ()> |Lp(Rnawoc)~
]ENOmEZ"
Now we study the case ¢ = c0. For 0 < A < p/(ro(wy)),
”pr,m(Rn’ wa) ” = ||sup |/lj,m|2jn/p)(j,m(')|Lp(R", wa)
J.m
1/A
= ||sup Ajm|” 27472 x5 L (RY, W)
J.m
1/4
5 S}lp M],m|A2jnA/pMXEJ-,m(')|Lp/A(Rn;woc)
J.m
1/A
A .
< |IM(sup [Ajm| 24P g, YOILp/a (R, wy)
J.m
1/4
A .
< ||sup |4),m] zjnA/p)(Ejym(')le/A(Rnﬁwoc)
J.-m

= ||sup 2|22 x5, (IL, (R™, wg) |
Jm

where we have used Lemma 2.7.

3.2 | Trace and extension operators on F} (R",w,)
letneNandk=1,2,..,n—1.Ifx = (xl, ...,xn) € R" and p € S(R"), the trace operator trpa—« is defined as
trpn-k  @(x) — @(X1, ..., Xy, 0,0, ..., 0).
Let A and B be two-quasi Banach spaces such that
S(R") & A< S'(R") and S(R"F) & B o S/(R™F).
Suppose that there exists ¢ > 0 satisfying

|trra—k@|B|| < cllelA|l for every ¢ € S(R™).

1677

(3.2)
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Although the punctual definition of the trace operator might not make sense in general on A, if S(R") is dense, the
inequality (3.2) can be uniquely extended by completion to the whole space A. Due to the density of S( R”) inF ;,q(R”, Wy)

if0 < p,q < oo (see [7]), this is how we are going to understand the operator trg.-« acting on spaces F}, ; (R", wy). In case

of g = oo one may strengthen an embedding argument as explained in some detail in [35, Rem. 1.170], but using now that
ife > 0, then F}, . (R", wy) < Fy 5 (R", wy) (see [7, Theorem 2.6/(1)]).

Theorem 3.7. Let0 < p<00,0<g<o0,a>—-1lands—(a+1)/p>(n—1)((1/p)—1),. Then
tar—lF;,q(Rn, wa) = tar—lB;_(‘x/p)(Rn) = B;_(a+1)/p(Rn_l).

Proof. This result corresponds to [15, Proposition 2.4] with a correction in the values that s can take, regarding [26, Theorem
4.4)withd = n —1and T’ = R"~! and [33, Section 4.4.1/(i)]. O

Here trpn-1F ;,q(R”,wa) = B;_(“H)/ P (R”_l) means that, firstly, the trace operator acts linear and bounded from
F5 o (R", w,) into B;,_(“H)/ P(R"~1), and, secondly, that for any g € B;,_(‘Hl)/ P(R"71) there exists an f € F5 ,(R", w,)

such that trgs-1 f = g and

JtB 7P )| ~ i {71F g (R, wa) | = s = ).
Theorem 3.8. Let0< p< 0, 0<g<o0, ke{l,..,n—1},a>-lands—(a+k)/p>m—-k)(1/p)—1),. Then

(@) trgak : Fy (R",wy) & B;_(‘Hk)/ P (R"=K) is linear and bounded, and
(ii) there exists a linear and bounded extension operator

ext : By (k) S B (R, w,)
such that trgn-roext = id : B;_(Hk)/p(lR"_k) - B;_(a+k)/p(R”_k).
In particular,

trpn-k F5 o (R, wy ) = B @TH/P (rnk),
Proof. As for the trace result (i) we combine Theorem 3.7 with the iterative application of the well-known trace assertion
for the unweighted spaces as formulated in [33, Section 4.4.1] basedon s — a/p > n((1/p) — 1) + k if p < 1. One may also
consult [38, Theorem 2.13]. There one finds some further (historical) references.

For proving (ii), we are going to build the extension operator using the wavelet representation of Besov spaces given in
Theorem 2.13 and the atomic decomposition of weighted Triebel-Lizorkin spaces in Theorem 3.5. We follow some of the
ideas in [38, Section 2.2.2], based on [36, Section 5.1.3].

Take f € B;_(Hk)/ P (R”_k) and consider its wavelet representation of order

u > max{s, (n — k)(1/p) — Dy — s+ (a + k)/p,n(1/(min(p/(ro(wy)), @) — 1) — s},

on—k
FO =Y Aun+ Y DY A2 iRyl (x), forevery x € R*E,
mezn—k =2 jeNg mezn-k ,
where
n—k ) n—k
P(x) = HlpF(xr - mr) and Ipém(x) = 2/(n=k)/2 H ZpG; (zjxr - mr)’
r=1 r=1

A=A = () and A, =250 (F) = 2002 (f,9) ),
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and
”le;—(OC‘Fk)/P(Rn—k) ” - ”Mb;,—;“‘*k)/P(Rn—k) ” (3.3)

in view of Theorem 2.13.
Take y € C(‘)”([Rk) with supp ¥ € (=1,1)% and y(y) = 1ify € [-1/2,1/2]%. For every x € R"* and y € R¥ we define

zn—k
o . )
extf(,0) = Y, Amdm(XO)+ Y, Y, D, An 271y (ox(2y).
mezn—k t=2 jeNy mezn-k
n—k
We can rewrite it as ext f(x,y) = 2221 g-(x,y) with
_ it ¢ _ —k
gf(xay) - 2 2 lj,(m,M)aj,(m,M)(x’y)’ f - 1’“.’2}'1 B
JjeNy (m,M)ezn—kxzk
and being
P () x () if¢ =1,j=0and M =0,
aj’(m,M)(x, y) = 2_1'“_"/1’)2_1'(”_")/21/);,m(x))((ij) if¢ =2,..,2" % and M =0,
0 otherwise,
and
Am if¢=1,j=0and M =0,
2y = PP i€ =2, 2" Fand M =0,
0 otherwise.

Now we prove that these are atomic decompositions of g, in Fls,’q (R", wa) according to Theorem 3.5.

1. Let¢ =1. Then
(i) supp a(l)’(m’o) Csupp ¥, X (—1,1)F bQo(m) using Remark 2.11, and

2. Let? = 2,...,2" K Then '
(i) supp af(m o) C Supp zpé X (=271 27k ¢ bQj im0 using Remark 2.11, and

n—k

i ¢ = 2—J(s=(n/p)+jIBl

(i) |D/3aj,(m’0)(x,y)| — 9—i(s—(n/p)+jIB

r=1

< C27J6=/P)+ilBI - for all (x,y) € R" and || < u.
(iii) /Rn zyaf (m 0)(z) dz =0, for every |y| < u, in view of the vanishing moments for the wavelets.

Thus we get

1/q
llg11Fp R, wo)| S [ fpg (R we) || = ( > |’1m|qXQo,(m,o)(')> |Lp (R", we)

mezZn—k
1/p 1/p
N< > |/1m|"/ wa(z)dz> ~< > |/1m|"> , (3.4)
mezn-k Qo,(m,0) mezn—k

since o > —1.
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_ . ok
LetE; ,, = Q;nmk) X (2_] —2,27J _1) C Qin()m 0 For ¢ = 2,...,2"~¥, using Proposition 3.6, the fact that E ' m are disjoint
and [, wg(z)dz ~ 27J(@tn) e have
Jj.m

g 1Fp.q (R™, we ) [| S 11271 fp g (R", we )|

1/q
= ( Z Z W‘f‘q2j(s—n/p)q2jnq/pXQj,(m,0)) |LP(R”,wa)

mezZn—k jeNg

A ’q

1/q
)(Ej,m> ILp(Rn’wa)

Y5 g

mezn—k jeN,
1/p
Af;;f|pz—f<"+“>)

14

(2 3 2

JENg mezn-k

1/p
:<Z Z 2J'p(s—(n—k)/P—(oc+k)/p)|/1iyf'p) ) (3.5)

JENg mezn—k

And from here, we can prove

1/p ok 1/p
e @i s (3 wl) ¢ 3 (3 3 el )
t

mezn—k =2 \jeNg mezn—k
- ”le;—(CH'k)/P(Rn—k)”
in view of (3.3). Thus
ext : By “HO/P(Rrky o p5 (R",w,) is bounded,

and trgn-ro ext = id : B;_(Hk)/p(lR”_k) - BZ_(Hk)/p(R”_k). O

For the particular case of weighted Sobolev spaces the previous result reads as follows.
Corollary 3.9. Letl<p<oo,meN k e{l,..,n—1}and -1 < a < p — 1 such that m > (a + k)/p. Then

@) trgas @ W)H(R", wy) & Bg_(ﬁk)/p(l]%”_k) is linear and bounded, and
(ii) there exists a linear and bounded extension operator

ext : By TP (Rrk) LW (R, w, )
such that trga-roext =1id : Bpm_(“k)/ P(RrK) > B;"_(“Jrk)/ P(Rrk).
In particular,

tar—k Wz’l (Rn, wa) — B;n—(a"'k)/l) (Rn_k).
Remark 3.10. Here we recover the result which has been first obtained in [31, Theorem 2.9.2] for k = 1 and all spaces
WI’,”(IR”, wa) with 1 < p < o0 and —1 < a < mp — 1, using quite different techniques. It can be found as well in [27,
Proposition 4.10] in the context of traces on fractals. However, if 1 < p < co and p — 1 < a < mp — 1, then it is not clear
whether one still has the Littlewood-Paley assertion W' (R, w,) = F;"Z (R",w, ), mentioned in Remark 3.2.
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Remark3.11. Let0 < p < coand 0 < gy, q; < o0.Assumesy — s, = (1/p)(ap — a1) and —1 < a; < ot < 00. It follows from
[20, Theorem 1.2] that

FIS;:C]O (Rn’ wao) e F.f)l,Ch (Rn’ wa1 )’
in particular,
By (R™,wg,) & Fj 4 (R, wy) < By (R, wg, ), (3.6)

if, in addition, s, p and « are chosen such that sy —s = (1/p)(ay —a), s—s; = A/pla—o;), -1 <oy < a < ay < oo,

and 0 < g < o0. Assume, furthermore, that s — (e + 1)/p > (n — 1)((1/p) — 1),.. Then Theorems 3.7 and 3.8 imply that
s—(a+1)/p
p

be sufficient to prove both theorems for the spaces B; (IR”, wa) first, and to apply afterwards (3.6). But we prefer the above
direct approach. This will be also of some service for us later on.

all spaces in (3.6) have the same trace space B (R”_l) and a common extension operator. In particular, it would

4 | INTERPOLATION OF BESOV SPACES

By a quasi-Banach couple (Al, Az) we mean two quasi-Banach spaces A;, A, which are continuously embedded in the
same Hausdorff topological vector space A.
For a quasi-Banach couple (A;,A4,), 0 <6 <1 and 0 <r < co the real interpolation space (A, A,),  consists of all

o0 1/r
rodt
= <'/0 [t_eK(t, a)] T) ,

changing the integral by the supremum if r = . Here, K(t, a) is the Peetre’s K-functional defined by

a € A; + A, having finite quasi-norm

Ha|(A1,A2)9J

K(t,a) = K(t,a;Al,Az) = lnf{”allAl” + [”a2|A2” .a=a;+ay, aj EAJ}, t>0,ae Al +A2

If t = 1, the K-functional K (1,;4;,A,) coincides with the usual quasi-norm on A; + A,. The spaces (A}, 4;) 6.q AT

quasi-Banach spaces and they satisfy the interpolation property, that is to say, if (Bl, Bz) is another quasi-Banach couple
and T is a linear operator bounded from A; into B; for j = 1,2, then T is also bounded from (A;, 4;) or into (By,B,) or
See, for example, [3, 31] for more details about interpolation theory.

Let A be a quasi-Banach space, (€, u) a measure space, 0 < p; < p, < 00,0 <r < o0 and 0 < 8 < 1, then

(Lpy (A3 Q). Ly, (A; Q. ), = Ly (A;Q, 1) With1/p = (1= 6)/p; +6/ps, (4.1
(see [31, Section 1.18.6, Theorem 2 and Remark 5]). This formula is the key for proving that under the previous hypothesis
(F3, o(R™), Fy ((R™)) 6r = FiL,,(R"), seR,0<q< oo, (4.2)

where FgL, (R") is the set of all f € S’(R"™) with finite quasi-norm

1/q
IF 1Ly (R = <szsq (qojf)vqu) 1L (R

JENg

Formula (4.2) was proven by Triebel in [31, Theorem 2.4.2/(c)] in the Banach case using the retract and coretract method
and for the quasi-Banach case a new approach was given by Yang, Cheng and Peng [39, Theorem 6] based on the wavelet
characterization of spaces F;Lp,r([R{”). In [33, Chapter 4] and [38, Section 2.2.1], Triebel describes four key-problems for
Triebel-Lizorkin and Besov spaces A}, ,(R"), A € {B, F}: traces on hyperplanes, invariance with respect to diffeomor-
phisms of R” onto itself, the existence of linear extension operators of the corresponding spaces Asp’q(Rﬁ) on R to
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A3} o(R™) and several types of pointwise multipliers. For FyL, (R"), three of these key-problems can be treated satis-
factorily using the interpolation formula (4.2) (see [5]). However, this is not the case for the problem of traces as we are
going to see now.

Let0< p<0,0<q,r<o0,s—1/p>m—1)((1/p)—1),. Then, for 0 < p; < p < p, < o0 and 0 < 6 < 1 such that
1/p=Q-6)/p;+6/p,ands—1/p; > (n—1)((1/p;) - 1)+,j = 1,2, applying Theorem 3.8 with k = 1 and & = 0 we
get

trpe-t 1 Fy g(R™) — Bf,;l/ P (rr-1),

for j = 1,2 and using the interpolation property and (4.2) we have

et @ FyLy, (R — By /P (1), By VP (R0

9,}"

Analogously, ext : (B;,:l/pl(R”‘l),Bj,zl/pz([R{”‘l)) — F3L,,(R") and
o,r

trgn-10ext = id : (Bj,jl/pl(Rn—l),B;j/PZ(Rn—l))s — (B;f/"l(R"—l),Bj,j/PZ(R"—l))e :
r N

Ifr = p, then

<B;:1/P1 (Rn—l),B;;l/Pz (Rn-1) )6 ) _ B;_l/p (R-1),

see [32, Theorem 2.4.3]. But for r # p the characterization of this interpolation space is an open problem already stated
by Peetre in his monograph on Besov spaces [25, p. 110]. However, some of the ideas of the construction of the extension
operator in Theorem 3.8 will allow us to get a description of these spaces and, more generally, we are going to get a
description of the interpolation space

(B;:“/Pl (Rn)’ B;;“/Pz (R”)) o

for0<p, <p, <o, xd €R,0<6<1and0 < r < o0. As a consequence, this gives a characterization of the trace of the
Triebel-Lizorkin-Lorentz spaces FyL, ,(R").
We will need first some technical results.

Definition 4.1. Let 0<p < o0, 0<g,y <0 and a > —1. We define qup,,([R{”,wa) as the set of all sequences
A= (4j,) C Csuch that

1/q

i @)l = (B3 Btinl )ty @) <o
JENg mezn

If p = r, we use the notation f,, , (R",w,) :=f,L, ,(R", wy) = f,L,(R", w).

Remark 4.2. Under the hypothesis of Proposition 3.6, we can also prove that

1/q
”pr,q(Rn’wcx)HN (Z Z |/1j,m|q?(Ej,m(')> |Lp(Rn’wa) .

JjENg mezn
Proposition4.3. Let0 < p; < p, <00,0<0<1,1/p=1-0)/p1 +6/p2,0<q,r < 0,and —1 < a. Then

(f

Pl,Q(Rn’wa) f (Rn’wa))e,r = qup,r(Rn’wa)’

> D29

with equivalent quasi-norms.
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Proof. For the case of unweighted spaces this result can be found in [5, Theorem 3.5]. Let i = 1,2. Given any
ref, (R”, wa), let R(1) be the sequence of functions defined as

RA)(X) = (Ajmxjm(X))-

ThenR : f, ,(R",wy) — L, (¢4(€4q), we) is bounded and [|R(DIL,, (£4(€q), wa )|l = |41y, 4 (R™ we ) ||, i = 1,2.
Let 0 < A < min(p; /(ro(wg)), p2/(ro(wy)), q). We consider now the operator

Py i Ly (€4(€q) wa) = £5,4(R" we)

defined as

1/A
st =| (i ot ow) |

Applying Lemma 2.8, one obtains

Al 1/A
. q/A
A
”PA(gj,m)|fp,-,q(Rn’wcx)” = Z < / |gj,m| (y)dy> Xj,m(') |Lp[/A(Rna woc)
&\ 1Qiml Yoy,
mezZ"
A/d 1/A
<l X (Mlginl") | Ipya(R7we)
JENy,
mez"
n 1/A
q/A
sl X (leml”) ILp/a(R", we)
JENo,
mezZ"
= |1(8j,m)1Lp; (€4(€q), wa) -
Note also that PyoR(4) = ||, for every 1 € £, ,(R", w,).
The linearity and boundedness of R imply that for every 1 € £, (R",wg) +£,, 4(R",w,)
K(t’R(/D;Lpl(fq(€q>’wa)’Lpz(fq(fq)’wa)) 5K(t’l;fpl,q(Rn’wa)’fpz,q(Rn’wa))' (4.3)

On the other hand, due to the lattice properties of f,, , (IR", wa), we can rewrite its K-functional as

K(t, ;1

p1g (R", w,), fpz,q(Rn’ we))

= inf{ |11y, g (R™, we) || + 2216, q (R w )| © (2] <21, + 22,20, .22, >0},

1.9 Jm® jm-j,m =

(see, for example, [11, Lemma 3.1]). This together with the fact that |P,g| < C4(P4(g1]) + P4(lg2])) if g = g1 + &, imply
that

K(t,Pag; fpl,q(Rn’wa)’fpz,q(Rn’wa)) N ”PA(|g1|)|fp1,q(Rn’wa)” + t”PA(|gZ|)|fpz,q(Rn’wor)”
N ”gl'Lpl(fq(t’q)’wa)” + t||g2|Lpz(€q(£q)’wa)”

and taking the infimum over all possible decompositions we obtain that

K(t,Pag; fpl,q(Rn’ wa)’fpz,q(Rn’wa)) S K(t’g;Lpl(fq(fq)’ wa)»Lpz(fq(fq)’wa))



27Nl MATHEMATISCHE BESOY ET AL.
NACHRICHTEN

forevery g = (gjm) € Lp, (€4(€q)>Wa) + Ly, (€4(€q), we). Thus
(t Aty q(IR”,wa),pr,q(R”,wa)) =K(t, 1] fp,, q<Rn’wa)’fpz,q(Rn’wa))
’ P1Q(Rn’w“)’fP2’Q(Rn’wd))

SK t’R(’D;Lpl(fq(fq)’woc)’Lpz(fq(fq)’wa))' (4.4)

(
K(t,P4oR(A);
(

From (4.3), (4.4) and (4.1), we derive

H’“ P q(IR”,wa),pr’q(lR”,wa))e,r” ~ HR(’m(Lpl(fq(fq)’wa)’]“pz(fq(fq)’wa))a,

= ||R(/1)|Lp,r(fq(fq)’woc)||
= ||A|qup,r(Rn’wa)“' 0

Remark 4.4. In the hypothesis of Definition 4.1, if E; ,,, C Q;, and |E; ;| ~ |Qjm|. j € Ng and m € Z", then applying
Remark 4.2 and Proposition 4.3, we have the following equivalence of quasi-norms:

1/q
<Z Z Mj’m'qXEﬁm(')) |Lp,r (R, wg )|

JENy mezn

”quLp,r([Rn’ wa) | ~

forevery 1 € f,L,,, (R", w,).

k
Letk € Nand let (Ag ) P be a finite sequence of quasi-Banach spaces. We consider the space H’;zl Ap =A; X+ XA
quasi-normed by

al’ |HAf

—Z”GHA(” ap EA{, t=1,..,k.

Proposition 4.5. Let ((4,, Az))f .
(Bl,Bz) is a quasi-Banach couple and forany 0 < 8 < 1and 0 < r < oo,

be a finite sequence of quasi-Banach couples and put B; = H’;zl Ai), i=1,2. Then

k

(B1.B2),, = [T (4. 47),.,-

=1
with equivalent quasi-norms.

Proof. First note that
k
B < [ (Al +42), fori=1,2.
£=1

Indeed, let a = (ay, ..., a;) € B;, then

k k k
al[T(ap+a2)| =Y |actal + 42| < 3 [lactal | = llalBi].
=1 t=1 t=1

Now we prove that (Bl,Bz) < Ht, L (A},A?,)er .Fixt > 0andleta = (ay,..,a;) € B + B,. For every £ > 0 we can

decompose a = a' +a w1th al (all, allc) € B;,i = 1,2, and such that

=

llal|By || + t]|a2IB,|| = Z ([laz1a] + el|az1az|)) < K(t.a:Br. By +e.
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Then, lezl K(t, af,Al AZ) < 2’;:1 (Haé |Aé“ + t“a?lA?”) <K(t,a;By,B,) +¢, for every € > 0. From here we deduce
that

1/r
k i~ k
al [] (AL, 42), ZHaf| (a542),, ]| ~ / t_9’<ZK(t,af,A1 A2)> ‘:t
=1 ’ 0 -
o0 dt 1/r
< </ =K (t,a; By, B,) T> = Ha|(31,32)6’r”.
0
An analogous argument works for the other direction. O

_ , ik
LetE;,, = Q;flmk) X (27/72,27771)" be as in the proof of Theorem 3.8.

Proposition 4.6. Let 0<p;, <p, <o, a>-1, neN, k=12,..,n—1, s—(a+k)/p; > n—-k)Q1/p;)— 1), for
i=1,20<6<1land0<r < co. Then

<B;] (a+k)/p1 (Rn k)’B;z (a+k)/p2 (Rn k) )s r

isthesetofall f € S’ (R"‘k) that admit a wavelet representation on R"*

2n—k
FO =Y Apn+ Y Y Y A2 iRyl (x) forevery x € R (4.5)
mezn-k ¢=2 jeNy mezn-k ’
and
”fl( B (Ol+k)/P1(|Rn k), Bzz(a+k)/pz([Rn k >er” ~ AL, (R, wy ) || < oo,
where
on— k
NOE =Y Al + Y Y 2218 Wl;@ (x),x € R,
mezn—k =2 mezn-k j=0

Proof. By Theorem 2.13, we know that ( BS@th/m (R"=K), B;;(Mk)/ P2 (Rn—k )) is the setof all f € S’(R"~¥) that can
o,r

be represented as in (4.5) and

pi-(ati/p —k\ ps—(a+k)/p k
”fl 1(Rn ) sz Z(Rn

”/U b (Cf+k)/P1(Rn ), b;;(oc+k)/pz<Rn—k)>

6,r ’

n— k
Leti = 1,2. Consider the operator T : b, (‘Hk)/p‘([R” k) - H; L £5.1(R", we, ) defined as

. A if¢ =1,j=0and M =0,
T((/lm), (A0, - (/1’ 2 )) (xlf(m M)) =210 if¢ =2,..,2"Fand M = 0,
0 otherwise,

with j € Ny, (m, M) € R" ¥ xRF and ¢ = 1,2, ...,2" . From (3.4) and (3.5) with g = 1, we deduce that T is bounded.
Now we consider the operator

on—k

H 1 R wa N bs (oc+k)/p,(|Rn k)

(’15<mM)>_)((’1°’<’"’°)) (2 l}(mm) (2 “i'é»’fm))
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Observe that PoT =id : b;i_(aJ'k)/p" (R"F) - b;l__(“k)/pi (R"=%),i=1,2, and using Remark 4.2,

on—k 1/Pi

1/pi
[Pty <7 @) | =< ‘}‘ <m0)| ) + Z (Z Z 2 .Z_j(ﬁk))

on—k

t2

O(mO)|XEO(m0) Pz R wa

o0
z‘ ; | J(mo)|XEJ(m0)| pi(Rn’wa)

on—k

|/1|H (R wg)|

Then, applying Proposition 4.5, Proposition 4.3 and Remark 4.4, we have

on—k on—k
[ (3 7P (k) by O/ () )] T(A)(H (R, wg), prz,l(R",wa)>
t=1 o,r
2n—k
~ T Bl (R, wg)
t=1
~ A OILp (R, we ) - O

Corollary 4.7. LetO< p; < p, <0, a>0,neN,0<08<1,0<r<occands € R. Then
( S “/Pl(Rn) BS “/PZ([Rn))

is the set of all f € S'(R") that admit a wavelet representation on R"

2"
)= Y A+ XY Y a2yl (), xeR”, (4.6)
mezn £=2 j=0 mezn '

and Hfl B~ c‘/pl(IR”),B;?x/pz(l]%”))ar” ~ AL, (R, wy_q ) || < o0, where

j,f
e |XE,m(x), x € R™1,

2" 00
NO®) = Y, |Alxz,, @0+ Y, DX Y2

mezn t=2mez" j=0
— oW —j=2 5—j-1 n+1
NowEj,, = Q) x (27/72,27771) c R™*1.

Proof. By Theorem 2.13, we know that (B ( s=a/p HRM), BS «/p *(RM) o is the set of all f € S’(R") that can be represented
asin (4.6) and ’

it et |~ e o, |

Let § > max{a/(py) + n(1/(p1) — Dy, a/(p2) + n(1/(p2) — Dy} = a/(p1) + n(1/(p1) — 1)+ Then
I: b;[—“/Pi(Rn) —_— b;i_“/Pi(Rn)

A= ((lm)’ (/lir,ll), s </lf,’12n>> — ((Am), (2](8—5)1{1;1),.“’ <2j(s—s‘)1£;2”)>’
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is an isometry for i = 1,2 and applying Proposition 4.6 we get
H/ll 5 “/Pl(Rn)’bs “/PZ(Rn) ” ~ ”I(/l)| S “/Pl([Rn)’ bS “/PZ(Rn))er”
~ [|ASADIL (R, wey ) |

= ||AS(’1)|LP,V(RH1’ we—1) |- O

Remark 4.8. Using directly results of interpolation theory, we can also obtain Corollary 4.7. Assume first that s = 0. Observe
that b_a/p‘(lR”) =t X Ht’ , € _(a+")/p‘ (€p,) fori = 1,2 and notice also that

€, =Ly (Z" 1) with t= Y Sp,
mezZn
Eo P () = Ly (Nox Z0,0)  with =Y 3 2y,
j=0 mezn
By Proposition 4.5, we have
2n
( a/Pl(Rn) b—a/PZ(Rn))e = Lp,r(Zna/") x HLPJ(NO % Zn,,&).
’ =2

Now for any s € R,
Is . S “/Pz(Rn) N b_a/Pz(Rn)
A= (s A1), (277)) = (), P2, o, (222577) )
is an isometry for i = 1,2 and using Theorem 2.13 we get
||f|(Bs “/Pl(Rn)’BS “/PZ(RVL) @ H ~ ”/1' S “/Pl(Rn), bS “/PZ(Rn))er
”I (/1)| —“/Pl(Rn) b—a/PZ(Rn))e’r”
on _
~ N ALy 2" )+ 3 (2251, (No x 2% 1)
=2

= ”tl_l/rcard{m EZ" i || > t}l/p|Lr(|R)”

1/p
20sp): f| > z}) IL®R)|].

2"
+ Z t= 1”(22 J("+"‘)card{me 7"

=2 J

This quasi-norm is equivalent to the one given in Corollary 4.7. Indeed, as E; , in Corollary 4.7 are disjoint sets with
fRn 1 XEj (X)wy_;(x)dx ~ 279@*+M then for dft = w,_; dx in R"*1, it is clear that

2"
B({x € R™ 1 |AS(f)| > t}) =card{m € Z" : |4, | >t} + Z 22_1(”+“)card{m e7":
£=2j=0

213/15;;"0| > t}
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and

IAS L (R, we g )| ~[|e1 7 card{m € 2" : |2, > N L)

1/p
22| > t}) IL®R)]|.

2n ©
+ Z tl‘l/’<2 2‘1(”+“)card{m ezZ":
=2

j=0

Finally, notice that with the interpolation approach, the argument works for any « € R, we do not need to assume
that « > 0. One might understand this, at first glance, astonishing fact in the way that for smaller « the corresponding

smoothness of the involved Besov spaces B;l__“/ bi (R™),i = 1,2, increases such that the Besov spaces themselves are getting
smaller. Accordingly the assumptions to the sequences representing them become more and more restrictive as can be
observed from the argument including the cardinality above.

Remark 4.9. Peetre’s request in [25, p. 110] to study the real interpolation space

(Bj?ll’lh (Rn)’ B;ZLQZ(RH))QJ

for p; # p,, without any coupling of r with the other parameters, seems to be a rather tricky problem. Using wavelet repre-
sentations one can transfer nowadays this problem to the real interpolation of corresponding sequence spaces. But beyond
the well-known classical assertions this appears to be a rather hopeless task in general. Corollary 4.7 might be considered
as the first non-standard assertion in the literature. The additional assumptions p; = g1, p» = qa, 81 + a/p1 = S, + a/pa,
and a > 0in Corollary 4.7, or @ € R in Remark 4.8, respectively, are essential for the method. The question arises whether
this type of argument can be extended to further cases. We do not know of any other non-standard results yet. But it
is clear now that Lorentz spaces and Lorentz smoothness spaces appear naturally. More recent results about wavelet
characterizations and real interpolation of the Besov-Lorentz spaces By L, -(R") may be found in the recent paper [4].
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