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Abstract 
In light-processing systems, light energy is converted into a photocurrent due to the 
photoelectric effect. This project focuses on the development of a high-precision 
energy-to-voltage conversion technique to optimize signal processing in light-
processing systems, specifically for applications in space analytics or solid state 
physikcs, such as Mössbauer spectroscopy. Analog circuit development plays a vital 
role as downstream voltage conversion is necessary for signal processing. The 
objective is to enhance the signal quality and improve the signal-to-noise ratio through 
the design, optimization, and comparison of various circuits for voltage conversion. 
The development process involves the design and optimization of amplifier circuits, 
supplemented with the incorporation of filters and/or regulators for further 
improvement. A transimpedance amplifier is approximated as a second-order low-pass 
filter, while a state controller is designed and analyzed to efficient transient oscillation 
of the system towards optimal amplitude values for subsequent signal processing. The 
project's results contribute to the advancement of light-processing systems, enabling 
more precise analysis of light energy in Mössbauer spectroscopy. The findings are 
presented in a series of scientific publications, showcasing the effectiveness of the 
developed circuits and their impact on signal quality. Future work could focus on further 
optimization and validation of the circuits in real-world applications to confirm their 
performance and reliability. Overall, this project emphasizes the significance of 
meticulous circuit development and optimization for enhancing signal processing in 
light-processing systems, thus supporting their application in space analytics. 
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1 Introduction 
As extraterrestrial application, the miniaturized Mössbauer spectrometer MIMOS II was 
very successful on the planet Mars as part of the NASA Mars exploration rover mission 
Spirit and Opportunity, as IDD payload. “Mössbauer spectra measured on Mars by the 
Spirit rover during the primary mission are characterized by two ferrous iron doublets 
(olivine and probably pyroxene) […].” “The ubiquitous presence of olivine in soil 
suggests that physical rather than chemical weathering processes currently dominate 
at Gusev crater.” [1]. For this reason the MIMOS II (miniaturized Mössbauer 
spectrometer) serves as a proven and reliable measuring instrument [2][3]. Detected 
gamma rays are converted into a current pulse by a PIN diode and converted into a 
usable output voltage via an amplifier board located behind it [2][3]. MIMOS originally 
devised by Göstar Klingelhöfer, is further developed by the Renz group at the Leibniz 
University Hanover in cooperation with the Hanover University of Applied Sciences and 
Arts [2][4]. In this context here, the transmission behavior of the initially simulated 
amplifier circuit is to be determined. It serves as a basis for a later control, with which 
the circuit is to be improved regarding its dynamics [4]. A special focus is placed on 
the operational amplifier in the circuit analysis [4][5]. This is examined with regard to 
its amplification characteristics [4]. 

2 The Amplifier 
A transimpedance amplifier (TIA) is an electronic circuit which converts the input 
current, the so-called photocurrent 𝑖𝑖ph(𝑡𝑡), into an output voltage 𝑢𝑢a(𝑡𝑡) is converted. In 
principle, a linear relationship between 𝑖𝑖ph(𝑡𝑡) and 𝑢𝑢a(𝑡𝑡)  is assumed [5][6][7]. 

Figure 1: Basic presentation of a Transimpedance 
Amplifier 

• 𝑖𝑖ph(𝑡𝑡): Photocurrent

• 𝑢𝑢a(𝑡𝑡): Output Voltage

• 𝑅𝑅: Negative feedback resistor

𝑈𝑈a(𝑗𝑗𝑗𝑗) = −𝑅𝑅 ⋅ 𝐼𝐼ph(𝑗𝑗𝑗𝑗) (2.1) 
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2.1 First Order TIA 

The transimpedance amplifier is already known from previous publications. So far, the 
system description is available in the Fourier or Laplace domain as a low-pass filter of 
first and second order [4][5][6]. Figure 2 shows the previously published version of the 
extended 1st order transimpedance amplifier [4][6]. It must be mentioned here that the 
input impedance 𝑍𝑍in(𝑗𝑗𝑗𝑗), the maximum open-circuit voltage gain 𝐴𝐴0 and the transit 
frequency 𝑓𝑓T of the amplifier must be infinitely high in order to create the optimal 
conditions for the previous mathematical description. In application, however, it turns 
out that often a parallel capacitor 𝐶𝐶 to the negative feedback resistor 𝑅𝑅 has to filter out 
high frequency components. This results in a low-pass characteristic, which can be 
described [5][6][7]: 

Figure 2: TIA with capacitive feedback 

• 𝑖𝑖ph(𝑡𝑡): Photocurrent

• 𝑢𝑢a(𝑡𝑡): Output Voltage

• 𝑅𝑅: Negative feedback resistor

• 𝐶𝐶: Parallel capacitance

• 𝑓𝑓T: Transit frequency

• 𝐴𝐴0: Maximum open circuit voltage
gain of the TIA

In order to create a better overview with regard to the mathematical modeling, the 
Fourier representation is changed to the Laplacian representation. 

Since only the transmission behavior is relevant, now follows a transition in the required 
mathematical direction: 

𝑈𝑈𝑎𝑎(𝑗𝑗𝑗𝑗) =
−𝑅𝑅

1 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
⋅ 𝐼𝐼ph(𝑗𝑗𝑗𝑗) (2.2) 

𝑈𝑈a(𝑠𝑠) =
−𝑅𝑅

1 + 𝑠𝑠 ⋅ 𝑅𝑅𝑅𝑅
⋅ 𝐼𝐼ph(𝑠𝑠) (2.3) 

𝐺𝐺(𝑠𝑠) =
𝑈𝑈a(𝑠𝑠)
𝐼𝐼ph(𝑠𝑠) =

−𝑅𝑅
1 + 𝑠𝑠 ⋅ 𝑅𝑅𝑅𝑅

(2.4) 
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2.2 Second Order TIA 

Figure 3 shows an extension of the previous circuits of the TIA to extend the system 
order of the mathematical description of the transmission behavior to 𝑛𝑛 = 2  

[4][5][6][7]. 

Figure 3: Transimpedance Amplifier for 2nd Order 
Description  

• 𝑖𝑖ph(𝑡𝑡): Photocurrent

• 𝑢𝑢a(𝑡𝑡): Output Voltage

• 𝑅𝑅: Negative feedback resistor

• 𝐶𝐶: Parallel capacitance

• 𝑓𝑓T: Transit frequency

• 𝐴𝐴0: Maximum open circuit voltage
gain of the TIA

• 𝐶𝐶ph: Parallel capacitance of the
diode

• 𝑅𝑅ph: Parallel resistance of the
diode

𝐺𝐺(𝑠𝑠) =
𝑈𝑈a(𝑠𝑠)
𝐼𝐼ph(𝑠𝑠) ≈

𝐾𝐾P ⋅ (𝜔𝜔0)2

𝑠𝑠2 + 2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 ⋅ 𝑠𝑠 + (𝜔𝜔0)2 
(2.5) 

𝑢̈𝑢a(𝑡𝑡) + 2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 ⋅ 𝑢̇𝑢a(𝑡𝑡) + (𝜔𝜔0)2 ⋅ 𝑢𝑢a(𝑡𝑡) = 𝐾𝐾P ⋅ (𝜔𝜔0)2 ⋅ 𝑖𝑖ph(𝑡𝑡) (2.6) 

The step response of the system is shown in figure 4. 

Figure 4: Step Response of the System 
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3 State Space Description 
In the state space, stability and controllability can each be studied independently and 
a state controller can be designed. Unlike conventional controllers, which can only take 
a single signal variable to influence the output of a system, state controllers are used 
to influence the output of a system and to utilize multiple state variables in the signal 
recording for this purpose. That is, if the distance y is to be influenced, both distance 
values and velocity values are used for the controller design. This increases the 
possibility of the influence enormously and leads with suitable execution of the method 
to a better result in relation to the control [4][9][10]. 

Figure 5: Standardized Blockdiagram of the State Space Description 

Figure 5 shows a standardized block diagram of a system in the state space. In order 
to specify a system in the state space, we first define the states and inputs of the 
system are defined. The states 𝑥𝑥i are summarized in the state vector 𝒙𝒙(𝑡𝑡) and the 
inputs 𝑢𝑢i in the input vector 𝒖𝒖(𝑡𝑡) [4][9][10]. 

𝒙𝒙(𝑡𝑡) = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥n

� , 𝒖𝒖(𝑡𝑡) = �

𝑢𝑢1
𝑢𝑢2
⋮
𝑢𝑢m

� 

The relationship between the states and the inputs is: 

𝒙̇𝒙(𝑡𝑡) = 𝑨𝑨 ⋅ 𝒙𝒙(𝑡𝑡) + 𝑩𝑩 ⋅ 𝒖𝒖(𝑡𝑡) (3.1) 

The outputs are specified as follows: 

𝒚𝒚(𝑡𝑡) = 𝑪𝑪 ⋅ 𝒙𝒙(𝑡𝑡) + 𝑫𝑫 ⋅ 𝒖𝒖(𝑡𝑡) (3.2) 

The system matrix 𝑨𝑨 can take many different forms, the only important thing is that the 
correlation information between the differentiations 𝑥̇𝑥i and the non-differential states 𝑥𝑥i 
are in a unique relationship and the influence of the inputs 𝑢𝑢i is represented by means 
of the input matrix 𝑩𝑩 which adjusts in each case. The outputs 𝑦𝑦i are defined by the 
output state matrix 𝑪𝑪 and the direct relationship between inputs 𝑢𝑢i and outputs 𝑦𝑦i 𝑫𝑫 [4]. 

𝑢𝑢a = 𝑥𝑥1, 𝑥̇𝑥1 = 𝑥𝑥2 
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𝑨𝑨 = � 0 1
−(𝜔𝜔0)2 −2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 � 

(3.3) 

𝒃𝒃 = � 0
𝐾𝐾P ⋅ (𝜔𝜔0)2�

(3.4) 

𝒄𝒄T = [0 1] (3.5) 

�𝑥̇𝑥1
(𝑡𝑡)

𝑥̇𝑥2(𝑡𝑡)� = � 0 1
−(𝜔𝜔0)2 −2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 � ⋅ �

𝑥𝑥1(𝑡𝑡)
𝑥𝑥2(𝑡𝑡)� + � 0

𝐾𝐾P ⋅ (𝜔𝜔0)2� ⋅ 𝑢𝑢(𝑡𝑡) (3.6) 

𝑦𝑦(𝑡𝑡) = [0 1] ⋅ �𝑥𝑥1
(𝑡𝑡)

𝑥𝑥2(𝑡𝑡)�
(3.7) 

3.1 Stability and Controllability in the State Space 

The stability and controllability of a system are basic requirements for good control. 
For this reason, both aspects of a system must be illuminated in each case. First, the 
stability of the system is considered in more detail and set up for each state. This is 
followed by a controllability analysis, also related to each individual state. Only after 
these investigations a controller design can be made and the state controller K be 
determined so that each state can be controlled and so each eigenvalue shifted to a 
favourable position. 

3.1.1 Stability in the State Space 

The stability of the system is defined by the eigenvalues 𝜆𝜆i of the system matrix 𝑨𝑨. If 
these eigenvalues all have a negative real part, the system is stable [8][9][10].  

𝑅𝑅𝑅𝑅{𝜆𝜆i} < 0, i = 1, … n 

If almost all eigenvalues are in the left half plane and one eigenvalue is on the 
imaginary axis, the system is limit stable.  

𝑅𝑅𝑅𝑅{𝜆𝜆i} < 0, i = 1, … n − 1, 𝑅𝑅𝑅𝑅{𝜆𝜆n} = 0 

All other cases indicate an unstable system. 

det(𝜆𝜆 ⋅ 𝑰𝑰 − 𝑨𝑨) = 0 

� 𝜆𝜆 −1
(𝜔𝜔0)2 𝜆𝜆 + 2𝐷𝐷𝜔𝜔0

� = 𝜆𝜆2 + 2𝐷𝐷𝜔𝜔0𝜆𝜆 + (𝜔𝜔0)2 = 0 (3.8) 

𝜆𝜆1,2 = −𝐷𝐷𝜔𝜔0 ± 𝜔𝜔0�𝐷𝐷2 − 1 = −𝐷𝐷𝜔𝜔0 ± 𝑗𝑗𝜔𝜔0�1 − 𝐷𝐷2 (3.9) 

𝜆𝜆1,2 = 𝛿𝛿 ± 𝑗𝑗𝜔𝜔d (3.10) 
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𝛿𝛿 = −𝐷𝐷𝜔𝜔0 (3.11) 

𝜔𝜔d = 𝜔𝜔0�1 − 𝐷𝐷2 (3.12) 

Due to the fact that the real part of the eigenvalues 𝜆𝜆i is negative 

𝑅𝑅𝑅𝑅{𝜆𝜆i} = 𝛿𝛿 = −𝐷𝐷𝜔𝜔0 < 0,   {𝐷𝐷,𝜔𝜔0} > 0, 

it is a fully stable system. 

3.1.2 Controllability in the State Space 

The controllability of a system is defined by the controllability matrix 𝑸𝑸S. If this matrix 
has full rank, controllability exists. Alternatively, the determinant of the controllability 
matrix can be formed for quadratic matrices [4][9][10]. 

𝑸𝑸S = [𝑩𝑩 𝑨𝑨 ⋅ 𝑩𝑩 𝑨𝑨2 ⋅ 𝑩𝑩 … 𝑨𝑨𝑛𝑛−1 ⋅ 𝑩𝑩] (3.13) 

rank(𝑸𝑸S) = 𝑛𝑛, det(𝑸𝑸S) ≠ 0 

𝑛𝑛 indicates the system order and is thus to be taken as an indicator of full rank. 

𝑸𝑸S = � 0 𝐾𝐾P ⋅ (𝜔𝜔0)2

𝐾𝐾P ⋅ (𝜔𝜔0)2 −2 ⋅ 𝐷𝐷 ⋅ (𝜔𝜔0)3 ⋅ 𝐾𝐾P 
� (3.13) 

det(𝑸𝑸S) = [−(𝐾𝐾P ⋅ 𝜔𝜔0
2)2] ≠ 0 (3.14) 

Since each state 𝑥𝑥i is controllable, there is complete controllability of the entire system, 
so that by means of a state controller 𝑲𝑲 each eigenvalue of the system can be shifted 
to a position favourable for operational purposes. For this reason, the state controller 
𝑲𝑲 is designed in the next section. The method of Ackermann is used to achieve a 
system speed and accuracy that is favorable for operational purposes. 

4 The Controller 
The state space model or description of the system (fig. 4) opens up a whole range of 
further and, above all, multidimensional control options. The state controller 𝑲𝑲 feeds 
back each state under scalar change and in this way it shifts the eigenvalues of the 
system (fig. 6). 
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Figure 6: State Space Model and State Controller 𝑲𝑲 

4.1 Ackermann Method 

In the continuous case, Ackermann's pole specification is used to determine a 
feedback vector 𝒌𝒌T in the state space. For this purpose, in the first step a controllability 
analysis as in the previous section has to be done. Usually the determinant of the 
controllability matrix 𝑸𝑸S according to Kalman is sufficient. Since the system has only 
one input signal, it is sufficient to design 𝑲𝑲 as a singlerow control vector 𝑲𝑲 → 𝒌𝒌T and 
𝑽𝑽 becomes a scalar value 𝑽𝑽 →  v. The feed forward control v of the system is used to 
scale the output signal as desired. Mostly v is used to normalize the step response of 
the controlled system to the value one. Using Ackermann's method, new poles 𝑠̃𝑠p,i can 
be specified for the system dynamics of the controlled system. [9][10].  

Π𝑖𝑖=1𝑛𝑛 �s − 𝑠̃𝑠p,𝑖𝑖� = 𝛼𝛼0 + 𝛼𝛼1 ⋅ 𝑠𝑠 + 𝛼𝛼2 ⋅ 𝑠𝑠2 + ⋯+ 𝛼𝛼n−1 ⋅ 𝑠𝑠n−1 + 𝑠𝑠n (4.1) 

𝑸𝑸S = [𝑩𝑩 𝑨𝑨 ⋅ 𝑩𝑩 𝑨𝑨2 ⋅ 𝑩𝑩 … 𝑨𝑨𝑛𝑛−1 ⋅ 𝑩𝑩] (3.13) 

𝒕𝒕1T = [0 … 0 1] ⋅ 𝑸𝑸S
−1 = [𝟎𝟎 1] ⋅ 𝑸𝑸S

−1 (4.2) 

𝑷𝑷α(𝑨𝑨) = �𝛼𝛼𝑘𝑘 ⋅ 𝑨𝑨𝑘𝑘
𝑛𝑛−1

𝑘𝑘=𝑜𝑜

= 𝛼𝛼0 ⋅ 𝑰𝑰 + 𝛼𝛼1 ⋅ 𝑨𝑨1 + ⋯+ 𝛼𝛼n−1 ⋅ 𝑨𝑨n−1 + 𝑨𝑨n 
(4.3) 

𝒌𝒌T = 𝒕𝒕1T ⋅ 𝑷𝑷α(𝑨𝑨) (4.4) 

v = [𝒄𝒄T ⋅ (𝒃𝒃 ⋅ 𝒌𝒌T − 𝑨𝑨)−1 ⋅ 𝒃𝒃]−1 (4.5) 

𝑛𝑛 denotes the system order. 𝑷𝑷α(𝑨𝑨) carries in the form of 𝛼𝛼i the coefficients of the 
corresponding new characteristic polynomial function together with new pole 
specification of the system. 
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4.2 Controller 

Applied to the second order system under consideration, it follows: 

𝑸𝑸S
−1 = �

∗ ∗
1

𝐾𝐾P  ⋅ (𝜔𝜔0)2 0 � 
(4.6) 

𝒕𝒕1T = [𝟎𝟎 1] ⋅ 𝑸𝑸S
−1 = �

1
𝐾𝐾P  ⋅ (𝜔𝜔0)2 0� (4.7) 

The matrix 𝑷𝑷α(𝑨𝑨) carries the information of the new poles and has to be chosen 
carefully. In the considered case there is a 2nd order system and only two new poles 
can be chosen.  

�𝑠𝑠 − 𝑠̃𝑠p,1� ⋅ �𝑠𝑠 − 𝑠̃𝑠p,2� = 𝑠𝑠2 − �𝑠̃𝑠p,1 + 𝑠̃𝑠p,2� ⋅ 𝑠𝑠 + 𝑠̃𝑠p,1 ⋅ 𝑠̃𝑠p,2 
= 𝑠𝑠2 + 𝛼𝛼1 ⋅ 𝑠𝑠 + 𝛼𝛼0 

𝛼𝛼0 = 𝑠̃𝑠p,1 ⋅ 𝑠̃𝑠p,2, 𝛼𝛼1 = −�𝑠̃𝑠p,1 + 𝑠̃𝑠p,2� 

(4.8) 

For the controller, therefore, the following description results for the case under 
consideration: 

𝒌𝒌T = 𝒕𝒕1T ⋅ 𝑷𝑷α(𝑨𝑨) = 𝛼𝛼0 ⋅ 𝑰𝑰 + 𝛼𝛼1 ⋅ 𝑨𝑨1 + 𝑨𝑨2 

= 𝑠̃𝑠p,1 ⋅ 𝑠̃𝑠p,2 ⋅ �
1 0
0 1 � − �𝑠̃𝑠p,1 + 𝑠̃𝑠p,2� ⋅ �

0 1
−(𝜔𝜔0)2 −2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 � + � 0 1

−(𝜔𝜔0)2 −2 ⋅ 𝐷𝐷 ⋅ 𝜔𝜔0 �
2

(4.9) 

At this point it is only clear that the new poles must lie on the left side of the complex 
Laplace plane, otherwise there is no stability. Now it must be decided according to the 
further application how the exact position of the poles has to be chosen. If the system 
is to react as fast as possible, a slight overshoot must be expected. If it is not allowed 
to oscillate, the poles have to be selected differently and may lead to greater delays. 
Furthermore, the exact dimensioning depends on how much leeway the real 
implementation offers. For example, capacitors must be selected for any feedbacks. 
These limit the mathematically possible range on their practicability and lead thereby 
to deviations from the exactly calculated values of the new poles – it must be urgently 
paid attention to tolerances. A further influencing factor is the signal noise and can also 
lead to a strong shift of the poles in case of a rough deviation, sometimes also to 
instabilities. 

The choice of the correct pole position is selected at this point according to how the 
previous poles are already positioned and how much faster the new system response 
must look in relation to them. The old response is shown in figure 7.  
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Figure 7: Step Response of the System 

In terms of unregulated system response, the new poles are selected so that the 
system response requires only 57 percent of the old settling time. 

Figure 8: Step Response of the Controlled System 

5 Conclusion 
In conclusion, this project aimed to develop a high-precision energy-to-voltage 
conversion technique to enhance signal processing in light-processing systems, 
specifically for applications in space analytics, such as Mössbauer spectroscopy. 
Analog circuit development played a crucial role as signal processing could only be 
performed after downstream voltage conversion. The development primarily focused 
on amplifier circuits, with the addition of filters and/or regulators for optimization. These 
enhancements resulted in a significant improvement in the signal-to-noise ratio and 
overall signal quality. Furthermore, a transimpedance amplifier was approximated as 
a second-order low-pass filter, while a state controller was specifically designed and 
further analyzed. The state controller proved instrumental in achieving the system's 
precise and efficient oscillation towards optimal amplitude values for subsequent signal 
processing. The outcomes of this project contribute to advancing the performance of 
light-processing systems and enable more accurate analysis of light energy in 
Mössbauer spectroscopy. Future work could focus on further optimizing the developed 
circuits and validating their performance and reliability in real-world applications. 
Overall, this project underscores the importance of careful circuit development and 
optimization in improving signal processing quality in light-processing systems, thereby 
supporting their applications in space analytics. 

- 22 -



16. Internationales Forum für den lichttechnischen Nachwuchs
Ilmenau, 23. – 25. Juni 2023 

©2023 by the authors. – Licensee Technische Universität llmenau, Deutschland.

Acknowledgements 
The authors would like to thank Hannover School for Nanotechnology (hsn) Leibniz 
University Hannover (LUH) Laboratory of Nanotechnology and Quantum Engineering 
(LNQE), Hanover University of Applied Sciences and Arts (HsH) and the UMB-II 
project. 

References 
[1] R. V. Morris, G. Klingelhöfer, B. Bernhart, C. Schröder, D. S. Rodionov, P. A.

de Souza, JR., A. Yen, R. Gellert, E. N. Evlanov, J. Foh, E. Kankeleit, P.
Gütlich, D. W. Ming, F. Renz, T. Wdowiak, S. W. Squyres, and R. E. Arvidson;
SCIENCE ,6 Aug 2004, Vol 305, Issue 5685, pp. 833-836

[2] M. Blumers, B. Bernhardt, P. Lechner, G. Klingelhöfer, C. d’Uston, H. Soltau,
L. Strüder, R. Eckerhardt, J. Brückner, H. Henkel, J.G. Lopez, J. Maul, ‘The
miniaturised Mössbauer spectrometer MIMOS II A: Increased sensitivity and
new capability for element alanalysis‘, Nuclear Instruments and Methods in
Physics Research A 624 (2010) 277–281, journalhomepage:
www.elsevier.com/locate/nima, 2010

[3] G. Klingelhöfer, B. Fegley, R.V. Morris, E. Kankeleit, P. Held, E. Evlanov, O.
Priloutskii, Planetary and Space Science, 44, 11, 1277-1288 (1996).

[4] M. Beyki, J. Pawlak, R. Patzke, F. Renz, ‘Simulation of the electronic part of
Mössbauer spectroscopy’, Proceedings of the 2nd OPU-HsH Japanese-
German Symposium 2023: Industry 4.0 and Society 5.0 for Smart Society,
DOI: https://doi.org/10.25968/opus-2459, 2023

[5] B. Razavi, ’A CIRCUID FOR ALL SEASONS – The Transimpedance
Amplifier’, University of California Los Angeles 2019, Los Angeles, USA,
http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_1_2019.pdf

[6] X. Ramus, ‘Transimpedance Considerations for High-Speed Amplifiers‘, Texas
Instruments: Application Report – SBOA122 November 2009,
https://www.ti.com/lit/an/sboa122/sboa122.pdf, 2009

[7] R. Patzke, ’Schnelle und rauscharme Photonenmessung mit pin-Fotodioden‘,
Hochschule Hannover – University of Applied Sciences and Arts, Fachgebiet
Integrierte Schaltungen und Eingebettete Systeme (IES),
DOI: https://doi.org/10.25968/opus-2315, 31/July/2022

[8] M. Beyki, R. Kutzner, U. Lindemann, ’Systemtheorie & Optimale Regelung –
Teil I Einführung in den Zustandsraum’, 1st edition, Hochschule Hannover –
University of Applied Sciences and Arts, DOI: https://doi.org/10.25968/opus-
2441, 2023.

- 23 -

http://www.elsevier.com/locate/nima
https://doi.org/10.25968/opus-2459
http://www.seas.ucla.edu/brweb/papers/Journals/BR_SSCM_1_2019.pdf
https://www.ti.com/lit/an/sboa122/sboa122.pdf
https://doi.org/10.25968/opus-2315
https://doi.org/10.25968/opus-2441
https://doi.org/10.25968/opus-2441


16. Internationales Forum für den lichttechnischen Nachwuchs
Ilmenau, 23. – 25. Juni 2023 

©2023 by the authors. – Licensee Technische Universität llmenau, Deutschland.

[9] M. Beyki, R. Kutzner, U. Lindemann, ’Systemtheorie & Optimale Regelung –
Teil V Zustandsregelung’, 1st edition, Hochschule Hannover – University of
Applied Sciences and Arts, DOI: https://doi.org/10.25968/opus-2442, 2023.

[10] O. Föllinger, U. Konigorski, B. Lohmann, G. Roppenecker, A. Trächtler,
’Regelungstechnik: Einführung in die Methoden und ihre Anwendung’, 13th
edition, VDE VERLAG GMBH, 2022, p. 168 – 188.

- 24 -

https://doi.org/10.25968/opus-2442



