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Abstract 
The contribution at hand presents and compares different online optimization 
approaches of dynamic illumination of matrix headlamps to improve automatic object 
recognition by neural networks. The approaches optimize, on the one hand, the 
network confidence and, on the other hand, the brightness of the image, the Weber 
contrast, and the gradient distribution on the image depending on the headlight beam 
pattern. The evaluation shows no objectively seen best cost function for the scenario 
studied, and selecting a cost function is a subjective decision. Optimizing the beam 
pattern to increase the confidence and intersection over union leads to inhomogeneous 
and subjectively disturbing beam patterns, and using contrast and gradient leads to 
similar results.  

Index Terms:  Matrix Headlight, Automated Driving, Optimization 

1 Introduction 
Automated object detection of traffic objects such as vehicles and pedestrians by 
computer vision, e.g., with neural networks, is similar to human perception but differs 
in some aspects, such as the dependence between the contrast of the object to its 
background and the resulting detection quality [1]. Previous studies have shown that 
higher contrast caused by stronger illumination of matrix headlights can reduce the 
quality of automatic recognition by computer vision [1]. Another aspect is that, unlike 
humans, a detection algorithm can communicate its confidence in the detected objects 
to the matrix headlight control algorithm faster than humans, enabling online 
illumination optimizations to maximize recognition quality with minimal energy 
consumption. Therefore, the different characteristics of automated computer vision and 
human vision require different and novel offline and online optimization approaches for 
the dynamic illumination of automotive matrix headlights to maximize traffic safety and 
system efficiency [2]. 
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An automatic object detection neural network approach, e.g., YOLOv8 [3], has four 
main outputs: the predicted class of the object, the confidence of this classification, 
and the size and position of the enclosing bounding box. Fig. 1 shows an example of 
object detection in a virtual model of the German city of Lippstadt. In offline 
optimization, as presented in [4], the ground truth properties, e.g., the best bounding 
box, of the traffic objects are known, and a beam pattern can be optimized for neural 
networks by minimizing the error between reality and network output. However, in 
online optimization of dynamic illumination, the ground truth information is missing 
while driving, so the Generalized Intersection over Union (GioU) [5] and a control error 
cannot be computed. This paper focuses on the online case.    

This contribution presents different novel online optimization approaches, mainly cost 
functions for high-definition (HD) matrix headlights, and the results are shown and 
compared. For this purpose, the optimization process is explained in the next chapter, 
and the possible cost functions are presented. The following evaluation chapter 
compares the different approaches based on the scenario shown in Fig. 1. A summary 
and an outlook conclude this paper. 

Figure 1: Automated detection of a pedestrian by the YOLOv8 [3] network in a virtual model 
of the German city of Lippstadt. The object class, confidence and bounding box are shown 
in blue. The ambient light is day-like only for this image and the ego-vehicle has a normal city 
light activated. In addition, the pedestrian is marked with a special light beam to remove his 
camouflage and improve the poor visibility due to the shadows of the leaves. 
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2 Online Optimization of HD Matrix Headlights 
One approach to optimize matrix headlights for computer vision is using the provided 
object detection quantities in a feedback loop. For the online case, this quantity is only 
the confidence and not the amount of overlap of the true and predicted bounding 
boxes. Therefore, a possible online optimization function would be to maximize the 
average confidence of all detected traffic objects [6]. The optimizer chooses the 
headlight parameters 𝒙 ∈  ℝ≥0 ∧ ≤1

𝑛p , which are the utilizations of the 𝑛p individual light 
sources called pixels to minimize the cost function. If 𝑐𝑖(𝒙) ∈  ℝ≥0 ∧ ≤1 is the confidence 
of the 𝑖-th object and 𝑛o objects are detected, then the optimization task is to 

min
𝑥

1 −
1

𝑛o
∑ 𝑐𝑖(𝒙)

𝑛o−1

𝑖=0

. (1) 

The advantage of this approach is that calculating the cost value is relatively simple 
and fast. However, the disadvantage is that the parts of the light distributions that do 
not illuminate the object and its background and thus do not contribute to its detection 
are not directly evaluated. Thus, the utilizations of pixels that do not emit light in the 
objects' direction are irrelevant and can, in principle, be arbitrary. This definition or cost 
gap can be solved by adding additional terms to (1), such as the energy consumption 
of the headlamp [6], but this leads to a weighted trade-off between the different 
aspects, e.g., best detection quality and minimal energy consumption, and can lead to 
unexpected results, such as the non-illumination of a pedestrian when the weights are 
set incorrectly. 

Another approach is not using the detection results but the camera's color image to 
calculate the cost value. This method considers the entire beam pattern and is a kind 
of automatic camera image adjustment by the matrix headlight. The problem is that an 
HD matrix headlight can simply project the optimal image onto objects that minimize 
the cost function but do not improve visibility. For example, the scene could consist of 
only one wall, and the task is to maximize the edges in the image. In that case, the 
matrix headlamp will likely project a bright checkerboard rather than the optimal 
dimmed and homogeneous illumination that could make the wall's imperfections 
visible. The presented solution uses the grayscale image 𝑰 ∈  ℝ≥0 ∧ ≤1

𝑟1×𝑐1  with 𝑟1 rows and
𝑐1 columns from the color image of the camera and compares it with all 𝑖-th intensity 
distributions 𝑰v,𝑖 ∈  ℝ≥0 ∧ ≤1

𝑟2×𝑐2  with 𝑟2 rows and 𝑐2 columns from all 𝑛m light modules of the
ego vehicle. The intensity distributions 𝑰v,𝑖 of the 𝑖-th module is normalized to its 
intensity maximum 𝐼v,Max,𝑖 of this module to make it comparable with the grayscale 
image. The comparison is made by applying the same criteria function 𝑓(𝑰), 𝑓(𝑰v,𝑖) to 
𝑰 and 𝑰v,𝑖, and calculating the difference or quotient of the results. This contribution 
uses division because it is easier for the authors to compare the course of the different 
cost functions. However, the influence of the choice between subtraction and division 
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was not further investigated. The general optimization task in this contribution is, with 
on the parameter vector 𝒙 depending 𝑰 and 𝑰v,𝑖, to  

min
𝑥

1 −
𝑛m 𝑓(𝑰(𝑥))

∑ 𝑓(𝑰v,𝑖(𝑥))
𝑛m−1
𝑖=0

 . (2) 

The criterion function involves averaging over all rows and columns, so 𝑰 and 𝑰v,𝑖 can 
have a different resolution and number of texture elements (texels). In this contribution, 
an image pixel is called texel to avoid confusion with the matrix light sources. The 
complete optimization loop for both approaches is shown in Fig. 2.  

Different approaches are possible for the formulation of 𝑓(𝑰). Since 𝑰 and 𝑰v,𝑖 have the 
same number type and range of values, 𝑓(𝑰) will be formulated only for 𝑰 in the 
following but can also be used for 𝑰v,𝑖. This contribution presents three main ideas: 
Analyzing the image directly, computing and measuring the Weber contrast [7], and 
computing and analyzing the image's gradients as a quantity for edge sharpness and 
homogeneity [8]. The Weber contrast 𝑡C,𝑖,𝑗 of the texel 𝑡𝑖,𝑗 ∈  ℝ≥0 ∧ ≤1 of the 𝑖-th row and 
𝑗-th column of 𝑰 is  

𝑡C,𝑖,𝑗 =
𝑡𝑖,𝑗 − 𝑡B,𝑖,𝑗

𝑡B,𝑖,𝑗
, (3) 

where 𝑡B,𝑖,𝑗 ∈  ℝ>0 ∧ ≤1 is the background of 𝑡𝑖,𝑗, more precisely, the average value of 
the texels surrounding it. It is ensured that 𝑡B,𝑖,𝑗 is always > 0 to avoid divisions by zero. 
𝑡B,𝑖,𝑗  can be calculated by the discrete convolution of 𝑰 with the kernel 𝑲B  ∈  ℝ3×3  as
𝑡B,𝑖,𝑗 = (𝑲B ∗ 𝑰)[𝑖, 𝑗] with zero padding around the image. To obtain the background,
the kernel is  

Intensity 
Distribution 

Figure 2: Online optimization loop of the illumination of the matrix headlamp. 
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𝑲B  =
1

8
 [

1 1 1
1 0 1
1 1 1

]. (4) 

The horizontal and vertical gradients 𝑡GH,𝑖,𝑗  = (𝑲H ∗ 𝑰)[𝑖, 𝑗] and 𝑡GV,𝑖,𝑗  = (𝑲V ∗ 𝑰)[𝑖, 𝑗] of
the 𝑖-th row and 𝑗-th column can also be calculated using discrete convolution and the 
Sobel operators [9] 𝑲H  ∈  ℝ3×3 and 𝑲V  ∈  ℝ3×3, which are

𝑲H  = [
1 0 −1
2 0 −2
1 0 −1

]  and 𝑲V  = [
1 2 1
0 0 0

−1 −2 −1
]. (5) 

The overall gradient 𝑡G,𝑖,𝑗 of the 𝑖-th row and 𝑗-th column is 

𝑡G,𝑖,𝑗 =  √𝑡GH,𝑖,𝑗
2 + 𝑡GV,𝑖,𝑗

2. (6) 

Both gradient and contrast are considered possible optimization criteria because they 
differ for relevant situations. Two of these interesting situations are, for example, a 
texel surrounded by eight identical texels and uniformly increasing values such as 

𝑰E1  = [
0.1 0.1 0.1
0.1 1 0.1
0.1 0.1 0.1

]  and 𝑰E2  = [
1 2 3
1 2 3
1 2 3

]. (7) 

For the example 𝑰E1, the contrast is 1−0.1

0.1
= 9 and the gradient 0, and for 𝑰E2, the 

contrast is 2−2

2
= 0, and the horizontal gradient is 4 ⋅ 1 − 4 ⋅ 3 =  −8. Since both 

quantities describe changes in brightness and lead to different values, both are 
considered as possible optimization criteria. The contrast is a kind of relative gradient. 
To illustrate the differences, Fig. 3 shows an image and the calculated contrasts and 
gradients of the same scene. One difference is that the lower right edge of the 
headlamp illumination is more visible in the contrast image than in the gradient image, 
but the roundness of the tree trunks is better seen at the gradients. 

For the calculation of 𝑓(𝑰v,𝑖) the entire 𝑰v,𝑖 is used, meaning that the outer texels of 𝑰v,𝑖 
are all zero. This zero padding ensures that 𝑰v,𝑖 becomes brighter at higher intensities, 
and the outer contrast and gradient increase, even if the beam pattern is entirely 
homogeneous, so there is some energy consumption penalty in 𝑓(𝑰v,𝑖). For an entirely 
homogeneous beam pattern, the contrast and the gradients are close to zero so that a 
"good" [8] beam pattern leads to a small 𝑓(𝑰v,𝑖), which minimizes the costs of (2). 

Figure 3: Comparison of a grayscale image with its contrast and gradient distribution. 
(a) Grayscale original image (b) Grayscale absolute contrast (c) Grayscale absolute gradient
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Several methods can reduce the captured grayscale image and its contrasts and 
gradients to a single value that can be used in (2). The individual 𝑡C,𝑖,𝑗 and 𝑡G,𝑖,𝑗 values 
themselves form an image with the same resolution 𝑟1 ×  𝑐1as 𝑰, but with possible 
values < 0 and > 1. Therefore, the following reductions can be applied for all three 
cases, but for simplicity, the formulas are formulated only for 𝑡𝑖,𝑗. One approach is 
calculating the mean absolute value of the image  

1

𝑟1 𝑐1
 ∑ ∑|𝑡𝑖,𝑗|

𝑐1

𝑗=0

𝑟1

𝑖=0

. (8) 

The mean absolute value is close to zero for a homogeneous beam pattern due to the 
magnitude calculation for the contrast and gradient case. Another reduction approach 
is to calculate the variance of the image 

1

𝑟1 𝑐1
∑ ∑(𝑡𝑖,𝑗 −  𝑡̅)

2

𝑐1

𝑗=0

𝑟1

𝑖=0

 with 𝑡̅ =  
1

𝑟1 𝑐1
 ∑ ∑ 𝑡𝑖,𝑗

𝑐1

𝑗=0

𝑟1

𝑖=0

. (9) 

Both approaches yield zero as the minimum for a dark input image that occurs when 
the headlight is off. Using two reduction methods for the three approaches gives six 
different ways to calculate the cost value for (2). The possibility of mixing the 
calculations and using one scheme for the image and another for the intensity 
distribution of the module is not considered in this contribution.  

3 Evaluation of the Usability of the Cost Functions 
The quality of automatic object detection generally depends on the selected network 
and how the detection was learned. It also depends on the objects and the background. 
For example, we have experienced people of the same size but with different clothing, 
especially color, giving different results and leading to different confidence values. 
However, the general recognition behavior under different illumination levels has 
remained the same in previous studies [1]. Therefore, the course and relationship of 
the cost values to each other will change slightly for each test scenario or collection of 
scenarios. 

The evaluation scenario chosen in this contribution is the detection of a pedestrian with 
the standard extra-large YOLOv8x [3] network from Ultralytics under urban 
environmental conditions. The YOLOv8 model is pretrained by Ultralytics on the COCO 
dataset, which consists mainly of daylight images. The model was not modified or 
explicitly trained for this contribution. Fig. 1 shows the daylight illumination scenario, 
and Fig. 4 shows the camera image for different headlight loads processed by the 
neural network. An in-house developed matrix headlight simulation based on Unreal 
Engine 5.1 called "See the Optimal Lighting" (SOL) [10] and its control algorithm [11] 
are used to generate the camera image, so the test scenario is virtual. The headlight 
has a horizontal beam angle of ± 4 ° and a vertical angle of − 1 ° (down) to 3 ° (up). 
The headlight has 16 columns and eight rows, and a pixel has a rectangular shape, a 
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homogeneous intensity distribution with a maximum intensity of 85,000 cd, and 
minimal overlap with its neighbors. Examples of the beam pattern can be seen in Fig. 
6. The light color is entirely white. The virtual environment model is the Friedrichstraße
in Lippstadt (GPS coordinates 51°40'35.7 "N 8°20'11.3 "E) measured and virtually
modeled by 3D Mapping Solutions GmbH. The pedestrian is from the Twinmotion
Posed Humans Winter Pack 1 by Epic Games. The ambient lighting is 0.3 lx, and the
leaves of the trees shade the pedestrian. When the headlights of the ego-person
vehicle are disabled, the neural network does not detect the pedestrian.

This contribution uses a two-step procedure to evaluate the different optimization 
criteria. In the first step, the intensity distribution of the headlamp is homogeneously 
changed from 0.01 % to 100 % of its maximum, i.e., all pixels are set to the same 
utilization value. The resulting beam pattern is almost perfectly homogeneous, with a 
minimal drop between the illumination of the pixels as in an ideal projector. The 
resulting behavior of the cost values is shown in Fig. 5. All curves are normalized to 
their maxima for better comparability, so zero is the minimum for all curves. The GIoU 
[5] is the degree of overlap between the predicted bounding box of the pedestrian and
a reference generated using the neural network to detect the object under daylight
conditions. A GIoU of 1 means a perfect match, 0.5 means 50 % overlap, and the GIoU
becomes more negative the farther apart the boxes are. To compare the GIoU and
confidence with the other novel cost functions, they are shown inverted in Fig. 5.
Comparing the curves in Fig. 5, three subjectively interesting intervals appear. The first
interval ranges from 5 % to 10 % utilization, where the one-minus confidence and GIoU
curves and the image and gradient variance cost functions have their minimum. As
Fig. 4a shows, the pedestrian is clearly visible at this illumination level, and the
background is dark. The next region is between 20 % and 30 % utilization, where the
confidence and GIoU curves do not change much, and the contrast and mean gradient
cost functions have their minimum. Here, the person and the background are well
illuminated (see Fig. 4b). The third interval begins at about 40 %, where the one minus
confidence curve rises sharply. At this point, the scene's illumination is subjectively too
intense (see Fig. 4c).

Figure 4: Camera image for three different headlight utilizations. All pixels are set to the same 
relative power value, so that the resulting intensity distribution is homogeneous. 

(a) 7 % Headlight utilization (b) 26 % Headlight utilization (c) 66 % Headlight utilization
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In addition to comparing the curves, the root mean squared error (RMSE) between the 
cost function curves and the confidence and GIoU curves was calculated and is shown 
in Table 1. According to the calculation, the mean absolute value of the gradient best 
matches the behavior of the confidence and GIoU curves in this test case. However, 
the variance of the gradient is the worst. 

For the second evaluation, the Matlab particle swarm optimizer [12] is connected to 
the headlight simulation in Unreal Engine via shared-memory interprocess 
communication and performs the optimization tasks of (1) and (2). The particle swarm 
parameters have the default configuration. The lower bound of the parameters is > 0, 
the upper bound is one, and the initial population is 100 homogeneous illuminations 
from 0.01 % to 100 % for all cases. The optimization terminates when either 100 
iterations have been performed, or the default criteria are met. In 62.5 % of the cases, 

Figure 5: Comparison of the behavior of the colored cost functions and the one minus 
confidence and GIoU curves in black for different headlight utilization rates.  

Table 1: Calculation of the Root Mean Squared Error between the cost function curves and 
the confidence and GIoU curve. All curves can be seen in Fig. 5.   
Criteria RMSE to Confidence Curve RMSE to GIoU Curve 
Image  Mean Absolut 0.2591 0.1820 
Image  Variance 0.1759 0.2638 
Contrast Mean Absolut 0.1538 0.1711 
Contrast Variance 0.1565 0.2490 
Gradient Mean Absolut 0.1375 0.1306 
Gradient Variance 0.4863 0.5992 
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the optimization ends before 100 iterations, and the mean number of iterations required 
is 83.25. Without the warm start, the optimization would require more iterations. 
Preliminary research has shown that the warm start does not affect the optimal 
parameters but only reduces the processing time. The final image taken at the end of 
the optimization with the optimal parameters and the resulting intensity distribution are 
shown in Fig. 6.  

In the author's opinion, some interesting evaluation results exist, but no clear best cost 
function exists. The chaotic light distributions (see Figs. 6a2 and 6b2) after optimizing 
confidence and GIoU support the argument from Chapter 2 that using these criteria 
alone does not result in a subjectively appealing and well-selling matrix headlight light 
distribution. Also, optimizing the GIoU results in the lowest confidence of all cases 
when the person is detected. Using the mean absolute brightness relative to the 
brightness of the headlamp results in the optimizer turning off the headlamp so that 

(a1) Confidence, 
final 𝑰   

(c1) Mean Absolut, 
final 𝑰   

(d1) Variance, final 𝑰 

(e1) Contrast Mean 
Absolut, final 𝑰   

(a2) Confidence, 
final 𝑰v,𝑖    

(c2) Mean Absolut, 
final 𝑰v,𝑖 

(d2) Variance, 
final 𝑰v,𝑖     

(e2) Contrast Mean 
Absolut, final 𝑰v,𝑖 

(f1) Contrast Variance, 
final 𝑰    

(g.1) Gradient Mean 
Absolut, final 𝑰    

(h1) Gradient 
Variance, final 𝑰   

(f2) Contrast Variance, 
final 𝑰v,𝑖     

(g.2) Gradient Mean 
Absolut, final 𝑰v,𝑖 

(h2) Gradient 
Variance, final 𝑰v,𝑖 

(b1) GIoU, final 𝑰  

(b2) GIoU, final 𝑰v,𝑖   

Figure 6: Comparison of final 𝑰 and 𝑰v,1 stored after the optimization is finished. The grayscale 
intensity distributions shown are scaled to 75 % of the possible maximum. The mean 
utilization for all cases is, in order from (a) to (h), 44.00 %, 40.93 %, 0.00 %, 10.08 %, 23.38%, 
21.99 %, 26.46 %, and 4.84 %. 
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only the ambient light is visible in the image (see the house wall in the background of 
Fig. 6c1). This is because the mean absolute value of 𝑰v,𝑖 approaches zero only when 
the headlight gets darker or is almost off, and the other variants can lead to values 
close to zero for a brighter headlight because the calculation depends on the mean 
value or the ratios of the pixel neighbors to each other. Therefore, this mean absolute 
image cost function is not valid. From an objective point of view, all remaining cost 
functions seem promising for further investigation because the differences in the 
RMSE in Table 1 and in the shape of the curves in Fig. 5 are too small for the authors. 
Optimization according to variance seems to result in a darker background and reduce 
the overexposure of the pedestrian in the foreground. At this point, the cost functions 
subjectively favored by the authors are the mean of absolute contrast (see Fig. 6e) and 
gradient (see Fig. 6g) since they have a subjectively good compromise between 
foreground and background illumination, resulting in homogeneous ray patterns with 
the lowest RMSEs.    

4 Summary & Outlook 
The contribution at hand has demonstrated several novel online optimization 
approaches for dynamic illumination of matrix headlights to improve automatic object 
recognition by neural networks. The approaches are maximizing the network's 
confidence, the image's brightness, and the Weber contrast and gradient distribution 
on the image concerning the headlight pattern. The evaluation shows no objectively 
seen best cost function in the evaluated scenario. Optimizing the beam pattern to 
increase the confidence and intersection over the union results in chaotic beam 
patterns. Using variance appears to result in a darker background, but it subjectively 
improves the visibility of the internal structure of foreground objects compared to the 
mean. Using the absolute mean and variance of contrast and slope seem promising 
for further research, and optimizing the mean brightness should be discarded as it 
resulted in a deactivated headlight. 

In further research, the presented evaluation should be extended to a collection of test 
scenarios to understand better the behavior of the cost functions and optimization 
under different conditions. Furthermore, it is planned to consider not only the changes 
in the contrast level and gradient but also the changes in their direction when 
formulating the cost function.  
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