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ABSTRACT 

Electrical impedance tomography (EIT) is an imaging technique used to reconstruct the 
conductivity of a target object from boundary voltages. In this study, we investigate suitable 
image reconstruction algorithms for EIT to enable the reconstruction of the conductivity 
distribution in the forearm section inferring muscle contractions at different hand signs. As EIT 
image reconstruction is an ill-posed inverse problem, the Gauss-Newton algorithm needs many 
iterations for the determination of suitable values of the regularization parameter and 
corresponding calculations of the Jacobian matrix. To reduce computational effort, we propose 
to use machine learning algorithms to directly reconstruct the EIT image. We explore the Radial 
Basis Neural Network (RBNN) and a one-dimensional Convolutional Neural Network (1D-
CNN), which has been trained based on the measured EIT data for eight subjects, ten hand signs 
with ten trials. Both methods reach a low deviation at 0.0017 for RBNN and 0.0109 for CNN.  

Index Terms – Image reconstruction, EIT, CNN, RBNN, Hand signs 

1. INTRODUCTION

EIT is a non-invasive imaging technique that uses electrical currents to reconstruct the internal 
conductivity distribution of an object [1]. EIT is a radiation-free and cost-effective technology 
with applications in diverse fields such as medical imaging, geological exploration, industrial 
process monitoring, and environmental studies [2]. In EIT, low-amplitude electrical currents 
are injected between two electrodes on the surface of an object, and the resulting voltages are 
measured between other electrodes. These measurements are used to reconstruct a 2D or 3D 
image. Due to its portability and safety, EIT is increasingly being used in clinical filed such as 
monitoring lung ventilation, cerebral hemodynamics, breast cancer detection, and gesture 
recognition [3]. 

Hand signs (HSs) are a nonverbal communication approach in which the human hand expresses 
emotions or information. HSs are increasingly important in technology, particularly in human-
computer interaction. With the proliferation of touchscreens, motion sensors, and augmented 
reality devices, it has become an intuitive and natural way to interact with technology [4]. In 
healthcare, it's being used to develop more intuitive and non-invasive interfaces for medical 
devices, enabling doctors and surgeons to control equipment and medical data. As such, the 
potential for revolutionizing the way to interact with technology and making it more accessible 
and intuitive for everyone lies within the development of HSs technology[5]. Different 
movements in the wrist move the internal muscle tissue and bones, which alters the conductivity 
distribution in the forearm. EIT can be used to reconstruct the conductivity distribution of the 
forearm because the EIT electrodes are unaffected by the external environment [6].  
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Intelligent Algorithms can also be an alternative to traditional reconstruction algorithms, which 
are always considered a regression problem [7]. Therefore, it can be classified into evolutionary 
methods and Neural Networks (NN). Evolutionary methods primarily include the Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO) [8][9]  by lowering the root mean 
relative square error between simulated and measured data. The evolutionary algorithms are 
difficult to attain high precision, and the computation process is time-consuming. The NN 
method avoids the linearization of EIT image reconstruction because of the high nonlinear 
approximation ability [10]. The primary benefit of intelligent algorithms is that the Jacobian 
matrix solution was skipped entirely, removing the need for complex computations [11]. Due 
to the ill-posedness of the inverse problem of the EIT image reconstruction, the determination 
of appropriate values for the regularization parameter and corresponding calculations of the 
Jacobian matrix using the Gauss-Newton algorithm requires a significant number of iterations. 
To reduce computational effort, we propose to use machine learning algorithms to directly 
reconstruct the EIT image. We explore the Radial Basis Neural Network (RBNN), and a one-
dimensional Convolutional Neural Network (1D-CNN), which have been trained using 
measured EIT data of eight subjects, 10 hand signs with 10 trials. 

In our previous study [12], a geometric model of the human forearm was proposed to enhance 
the output of image reconstruction for different hand signs. This study aims to use intelligent 
tools as proof of concept for automatically reconstructing the internal conductivity of different 
gestures without referring to traditional algorithms. Traditional methods need more 
computation, and choosing a suitable regularization parameter is also challenging due to the 
complex nature of the human forearm. The input of the proposed network is a voltage vector, 
and the output is the corresponding conductivity vector. The possibility of using RBNN and 1D 
CNN for image reconstruction in EIT was applied to improve reconstruction as a regression 
problem. 
This paper is structured as follows: Section II presents the employed methods, encompassing 
the dataset, reconstruction algorithms, and performance evaluation metrics. Section III provides 
the reconstruction results of experimental data. Lastly, section IV draws a conclusion and future 
work. 

2. Methodology

2.1 Hand Sign Data 
Data were collected from eight healthy subjects who measured each of the ten American sign 
numbers (0-9). To accommodate the high muscle density in the region, an 8-electrode EIT band 
was positioned below the elbow at approximately 30% of the total elbow length, as shown in 
Fig.1. During the experiments, commercial Ag/Agcl gel-based electrodes were used to reduce 
skin impedance. Additionally, subjects were instructed to abstain from consuming substances 
such as coffee or alcohol for at least 7 hours before the tests, as these can affect conductivity 
readings. Prior to each measurement, a 4-minute rest period was provided to ensure that subjects 
had sufficient recovery time. This rest period aimed to reduce the influence of muscular fatigue 
on subsequent measurements, thereby improving the reliability of the data collected. In order 
to stimulate the region of interest, an excitation signal with a frequency of 40 kHz and a current 
of 0.15 mA was applied to the subjects' forearms using an adjacent driven pattern. 
Subsequently, 40 boundary voltage measurements were obtained for each sign to reconstruct 
the corresponding conductivity. 
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Fig.1: EIT system with 8 electrode band around the forearm of a healthy subject [8]

2.2 Image Reconstruction 
2.2.1 Gauss-Newton (GN) 
EIT presents a challenging inverse problem characterized by nonlinearity and ill-posedness. To 
obtain an approximate solution, a minimization technique is employed. The objective function 
is minimized by evaluating the difference between the measured data and the predicted data. 
The GN algorithm is specifically designed to address the EIT inverse problem by seeking a 
solution denoted as the minimum of a sum of quadratic norms as in equation (1). 

𝑥̂ = ||𝑧 − 𝑗𝑥̂||
2
+ ||𝑥̂ − 𝑥̂0||

2
 (1) 

where z is the change in voltage, x is the change in conductivity value, and J Jacobian Matrix. 
By solving equation (2), a linear one-step inverse problem is defined as : 

 B =  (J 𝑇WJ + λ2R)−1 J 𝑇W  (2)

Where B is the linear one-step inverse matrix, λ = σn/σx is the regularization parameter, 𝐽 is a 
Jacobian matrix,  J 𝑇 is the transpose of the Jacobian matrix, 𝑊 is the weight of the matrix, and 
𝑅 is the regularization matrix. After that, the impedance tomography was obtained, which 
depicts the conductivity distribution in the reconstructed image. Newton's One-Step Error 
Reconstructor (NOSER) is a linearization-based approach  where the R= diag (JT, J) is the 
regularization matrix used in the NOSER algorithm. The value of the exponent needs to be 
chosen correctly to keep a balance between stability and image contrast. 

2.2.2 Radial Basis Neural Network (RBNN) 
RBNN is a feedforward neural network; RBNN comprises three layers: input, hidden, and 

output. The number of hidden layers in RBNN is strictly restricted to one. This hidden layer is 
referred to as a feature vector. The input layer is a vector x = (Xl, X2, ..., XJ), j is the total 
number of elements in the hidden layer. The number of neurons in the hidden layer should be 
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greater than the number in the input layer. The radial basis function (RBF) is used as an 
activation function in the hidden layer. An RBNN differs from a standard neural network in 
that it uses RBF as its activation function precisely, a Gaussian RBF. The output layer includes 
a weighted sum of the neurons in the hidden layer that represent conductivity distribution equal 
to the number of triangles in the mesh. The mathematical calculations in the hidden layer are 
shown in equation 3, and the calculation in the output layer is described in equation 4. RBNN 
has excellent nonlinear mapping ability and global approximation ability. When applied to the 
nonlinear and ill-posed problem of EIT image reconstruction, the quality of the reconstructed 
image is expected to be improved. 

 𝑓(𝑥̂) = 𝑒−𝛽||𝑥−𝜇𝑛||2  (3) 

 ym(x) = ∑wn,m. f(x)

N

n=1

  (4)

Where β is a parameter that controls gauss function width and how fast the function will decay,
𝛽||𝑥̂ − 𝜇𝑛||2  stands for Euclidean distance, x is the input, µ is the prototype vector, and yk is 
the output vector y (x ) = (yl,y2, ...,ym). Voltage vector composed of 40 voltage measurements 
and Conductivity vector representing conductivity distribution as an output to the network. The 
following network parameters were set: The learning rate was set to 0.0001, and the batch size 
was set to 5. The number of iterations found to be the most effective was 170. The number of 
RBF layer neurons was set to 5000 and beta 1. Figure 2 shows the architecture of RBNN. 

Fig.2: RBNN architecture. 

2.2.3 Convolution Neural Network (CNN) 
CNN is a class of deep neural networks, which has a significant advantage over the classical 
network  in the automatic feature extraction ability. When using deep learning techniques in 
EIT, the following steps must be completed: collecting data, choosing an appropriate network, 
optimizing the network, and determining network parameters. 1D voltage data is used as input 
to 1D-CNN, and conductivity distribution as network output. The convolutional layers 
convolve around their input to extract features, max pooling, which calculates the maximum 
value. Dropout works by probabilistically eliminating a neuron from designated layers during 
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training or removing a certain connection to prevent overfitting and improves the training speed 
significantly. Flatten layer is the one in between the convolutional and fully connected layers. 
It is called "flatten" because it transforms the matrix of features into a representative vector that 
forms the input of the fully connected neural network. A dense layer means that each neuron is 
connected to all the neurons in the previous layer, so it is also called Fully connected.   
The input to 1D-CNN is a voltage vector with the size of 40x1. This model consists of three 
convolutional layers followed by three max-pooling layers, flatten layer, and three dense layers. 
To avoid overfitting batch normalization after each pooling layer and dropout layer with 50% 
after each dense layer have been added. The output layer is a conductivity vector with 2428 
elements for experimental data. Moreover, the sigmoid activation function was used in the 
output layers and the Relu activation function in the convolutional and dense layers. The 
convolution layers with padding = "same" and stride = 1. The sizes of the three convolutional 
kernels are 1 × 64 × 3, 1 × 32 × 3, and 1 × 16 × 3, as shown in Fig.3. Adam optimizer was used 
to calculate and update the parameters in the model training. The initial learning rate was set to 
0.001, the batch size was 5, and the number of epochs was 1000. We also implement callbacks, 
particularly early stopping to stop the training process when the loss doesn't change, and the 
learning rate scheduler (LRS) schedules the learning rate during training. In LRS takes a 
parameter called step decay(late) and its defined as: 

𝑙𝑟𝑎𝑡𝑒 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑟𝑎𝑡𝑒 ∗  (𝑑𝑟𝑜𝑝
,(⌊𝑥⌋))  (5)

 (𝑥̂ = 1 + 𝑒𝑝𝑜𝑐ℎ)/𝑒𝑝𝑜𝑐ℎ𝑠_𝑑𝑟𝑜𝑝  (6)

⌊x⌋ returns the floor of (x), the largest integer not greater than x. The drop = 0.5, epochs drop 
= 10.0 The patience in early stopping was set to 15. 

Fig.3: 1D-CNN architecture 

2.2.4 Performance Evaluation 
Mean square error (MSE) and image correlation coefficient (ICC) are used to evaluate the 

reconstruction performance. The mathematical equations for MSE and ICC are shown in 
equation 7 and equation 8. 

 MSE =
∑ ||𝜎∗ − 𝜎||2
𝑛
𝑖=1

𝑛
(7)
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 ICC =
∑ (𝜎∗ − 𝜎∗̅̅ ̅)(𝜎 − 𝜎)𝑛
𝑖=1

𝑛
 (8)

Where, σ* is the actual conductivity, σ predicted conductivity and number of data points, 𝝈∗̅̅ ̅ 
average of actual conductivity and 𝝈̅ Average of predicated conductivity. MSE; The lower the 
value, the better, and 0 means the perfect model, which means the reconstructed and   ground 
truth image are identical. Whereas ICC; the higher the value, the better, and 1 means the 
model is perfect when the ideal and reconstructed images are identical. 

3. Results

3.1 Radial Basis Neural Network (RBNN) 
The reconstruction results from GN in our previous study [12] were assumed to be an input to 
the network. However, choosing a suitable regularization parameter is also challenging due to 
the human forearm complex nature, which affect the results. The loss curve of the training and 
validation data are shown in Fig. 4. The X-axis depicts the number of existing epochs, while 
the Y-axis represents a loss. The blue curve shows how loss varies with testing data, whereas 
the orange curve depicts how loss changes with training data. As the iteration times increase, 
the loss curves of the training and testing show a similar pattern. MSE and ICC are used to 
evaluate the performance of the proposed method as listed in table 1.  During the training phase, 
they converge to a loss of 0.01, and ICC is 0.88 suggesting that the network high performance 
model, and the error is low. 

Fig.4: Loss curve for RBNN 

3.2 Convolution Neural Network (CNN)  
The loss curve for training and testing data using CNN is shown in Fig. 5. The curve of training 
and testing datasets follows a similar pattern as the iteration times grow. They converge to a 
loss of 0.0017 during the training phase, indicating a high-performance network. MSE and ICC 
were used to implement the comparison. To demonstrate the results of each image 
reconstruction method, we chose different hand signs, as shown in Fig.6.  RBNN and CNN 
showed similar performance and predict similar conductivity in GN except that the error in 
CNN is less than the error in  RBNN. The loss for RBNN is 0.0109, whereas, for CNN, it is 
0.0017. The ICC value for RBNN is 0.88, while for CNN, it is 0.93. Furthermore, CNN 
demands less time compared to RBNN which necessitate a higher number of epochs to 
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complete the  process. This assertion is supported by the observation that the ICC value is higher 
and the MSE value is lower in the CNN model as shown in table 1. As a result, the suggested 
CNN approach has a higher prediction accuracy, and the quality of the reconstructed images is 
improved.  

Fig.5: Loss curve for 1D-CNN 

Table 1: MSE and ICC  values for RBNN and  CNN 

              

Fig.6: Reconstruction using the algorithms GN, RBNN, and CNN   

Conclusion 

In this study, neural networks were utilized to reconstruct the internal conductivity of the human 
forearm using experimental data. The outcomes demonstrated the neural network capability to 
predict and reconstruct various signs without  need for conventional algorithms procedures such 
as Jacobian calculations and regularization setting, which are computationally complex. This 
preliminary work serves as a foundation for utilizing machine learning algorithms in real-world 
EIT systems, with a recognition that further enhancements are necessary. Subsequent research 
will focus on incorporating additional reconstruction and expanding the dataset to improve the 
reconstruction quality.

RBNN CNN 

MSE ICC MSE ICC 

Training 0.0093 0.92 0.0008 0.96 

Testing 0.0109 0.88 0.0017 0.93 

       GN      RBNN          CNN 

1 

2 

3 
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