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ABSTRACT 

This study explores the potential of audible range airborne sound emissions from Gas Metal 

Arc Welding (GMAW) to create an automated classification system using neural networks 

(NN) for weld seam quality inspection. Irregularities in GMAW process (oil presence, 

insufficient shielding gas) may lead to porosity imperfections in weld seams. Using Directed 

Energy Deposition-Arc additive manufacturing, aluminum (Al) and steel wall structures were 

produced with varying shielding gas flows or applying oil. Acoustic emissions (AE) generated 

during the welding process were captured using audible to ultrasonic range microphones. Mel 

spectrograms were computed from the AE data to serve as input to NN during training. The 

proposed model achieved notable accuracies in classifying both Al weld seams (83% binary, 

68% multi-class) and steel welds (82% binary, 58% multi-class). These results demonstrate that 

employing audible range AE and NN in GMAW monitoring offers a viable method for low-

latency monitoring and valuable insights into improving welding quality. 

Index Terms - Airborne Sound Analysis, Weld Process Quality Monitoring, GMAW, 

DED-Arc 

1. INTRODUCTION

Metal structure manufacturing encompasses various techniques, including powder bed fusion 

(PBF) and Directed Energy Deposition (DED). Within DED-Arc, methods like GMAW, 

tungsten inert gas welding (TIG), and plasma processes are employed in additive 

manufacturing. These processes involve the gradual buildup of a structure by melting and 

depositing a wire-shaped filler material [1]. The presented study focuses on DED-arc, 

specifically using the GMAW process. The GMAW [2], is a widely used welding process that 

involves melting the edges of metals or their alloys using a concentrated arc, with a wire 

electrode fed to the arc and melted under a shielding gas jacket. The shielding gas surrounds 

the liquid melt pool, protecting it from contaminants and preventing oxidation during the 

welding process. GMAW is known for its precision and ability to weld small and delicate parts, 

making it widely used in industries such as automotive, aviation, aerospace, precision 

engineering, medical techniques, electronics, and welding of pipelines and pressure valves [3, 

4, 5, 6].  

However, despite its advantages, workpieces welded with the GMAW process may 

suffer common imperfections such as porosity, undercut and excessive spatter, which can 

negatively impact the quality of the welds. Porosity appears as gas bubbles in the weld metal 
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and is usually caused by the presence of contaminants such as moisture, oil, rust, and inadequate 

shielding gas coverage. This imperfection in the GMAW process can have several negative 

effects such as weakened mechanical strength, decreased durability, reduced productivity, and 

poor aesthetic appearance of weld joints [7]. The detection and classification of the weld 

process irregularities causing this kind of imperfection in GMAW are therefore of the utmost 

importance to ensure the integrity and reliability of the welded components. 

Several conventional state-of-the-art non-destructive testing methods, including Visual 

inspection [8], X-ray radiography [9], Eddy current testing [10], and Ultrasonic testing [11], 

have been employed for defect detection. The application of these methods is limited due to 

challenges in implementation in low-latency systems and high costs [12]. AE analysis, on the 

other hand, offers a non-contact approach and allows for inspecting a larger area compared to 

Ultrasonic testing. The importance of AE in monitoring the arc welding process has been 

recognized for a long time. Still, there are limited published studies that explore sound waves 

as a valuable source of information for monitoring welding operations. The first studies on 

acoustic waves during the GMAW process were conducted by [13] and [14], who discovered 

synchronization between sound waves and short-circuiting and identified that sound pressure 

increases with arc length and welding current. Some of the research has been conducted to 

assess the suitability of different arc signals for online monitoring in automated welding, aiming 

to improve productivity, reduce costs, and enhance the reliability of welded components. 

Rostek [15] utilized computer-aided acoustic pattern recognition to analyze acoustic signals 

and observed the impact of operational parameters on frequency amplitude and noise spectra 

characteristics. Arata's [16] measurements highlighted the influence of sound on the molten 

pool behavior and overall welding process quality. Jožef et al. [17] employed audible sound to 

evaluate and monitor the welding process, as well as predict its stability and quality. Through 

experimental analysis, this study reveals two primary mechanisms that generate noise: the first 

being the impulse-like nature of arc extinction and ignition, while the second involves the arc 

itself functioning as an ionization sound source. Additionally, Mayer [18] explored the use of 

acoustic signals for online monitoring in submerged arc welding [17]. 

AE based fault detection methods provide low-latency fault detection capabilities, 

prompt identification, and intervention in industrial processes. They are highly sensitive to 

internal imperfections, capturing acoustic signals within the material, and allowing for the 

detection of hidden faults at early stages. These methods offer non-destructive testing, ensuring 

integrity and functionality without invasive procedures, and reducing downtime and 

maintenance costs. AE based fault detection in welding poses several challenges, such as 

background noise interference [18, 19], signal distortion due to the welding process, the 

complexity of distinguishing between normal and faulty sounds, and the need for sophisticated 

signal processing techniques to extract meaningful information from the recorded AE. Many 

processes, including DED-Arc, suffer from a scarcity of data suitable for the effective 

utilization of machine learning techniques. Moreover, limited data availability, lack of diversity 

in data, imbalanced datasets, and inadequate quality annotations further hinder the development 

and efficacy of automated quality monitoring systems in industrial environments [20, 21]. 

In DED-Arc specifically, sample sizes are typically limited due to the time-intensive nature 

of manufacturing, sample preparation, and testing. Labelling the data is a particularly time-

consuming task. Data augmentation presents a valuable approach to augmenting both the size 

and quality of the training data, offering a means to address these limitations [1]. By applying 

techniques such as random erasing [22], mixup [23], and SpecAugment [24], the augmented 

data introduces new variations and increases the diversity of the training samples. This enables 

the model to learn robust and invariant features, improving its ability to generalize to unseen 

data and enhancing overall performance, even with limited original training data. Johnson et al. 

[25] utilized image augmentation techniques (such as grid distortion, random brightness, 
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random erasing, random rotating) on Industrial Sound Analysis datasets. This showcases the 

suitability of the suggested image augmentation methods when dealing with audio data. 

 

2. WELDING EXPERIMENTS AND AE MEASUREMENT SETUP 

 

To investigate the potential of AE analysis for DED-arc, an experimental setup needed to be 

designed for recording a dataset in this domain. An acoustic chamber was built around the 

process using molleton as an absorber to minimize the influence of environmental sounds. 

Figure 1 illustrates the configuration of the experimental setup to produce the Al and steel walls. 

 

    
(a)                                                                   (b) 

Figure 1.  Experimental setup showing all audio microphones mounted around a metal frame (a) and the named 

hardware (b) used to record the AE from the Al and steel welds 

 

To ensure a constant sound pressure level, the microphones were mounted on special fixtures 

(see Figure 1a) with a fixed distance and angle to the arc. During the welding process, the 

emitted sound is captured in layer by layer using audible range microphones, namely the sE8 

and MK202, with a sampling rate of 50 kHz. Additionally, an ultrasonic range microphone 

(MK301) with a sampling rate of 200 kHz is employed. Dewesoft is used as the data acquisition 

system for this purpose. 

Initially, experiments were conducted using Al weld seams, followed by experimentation 

with steel. Using a Fronius TPS 500i welding machine and a Kuka KR60 as a handling system, 

additive-manufactured Al alloy (AlMg4.5) walls with 50 layers per wall are produced in the 

laboratory environment (Figure 2a, b). The diameter of the AlMg4.5 wire is 1.2 mm. The 

welding speed was fixed to 0.6 m/min. As a welding program, the Cold Metal Transfer Mix 

[26] was used with a wire feed rate of 8 m/min and a contact tube to workpiece distance of 12 

mm. The produced walls have a length of 150 mm. All the walls are welded either by randomly 

changing the shielding gas (Argon 4.6) flow rate in each layer or by randomly applying oil (with 

a brush) to the surfaces of the layer before. This approach of randomizing the layers with 

different shielding gas flow rate and applying oil was taken to ensure the creation of a realistic 

welding scenario. When oil was applied to the surface of the layer before, the next layer is 

always welded with a shielding gas flow rate of 15.0 l/min. A weld seam with a shielding gas 

flow rate of 15.0 l/min without oil is considered to result in good quality weld seams, while one 

with a lower shielding gas flow rate of 13.5 l/min, 12.0 l/min, 10.5 l/min, and 7.5 l/min or oil 

was considered to produce imperfection in the weld seam. This assumption was made based on 

expert reviews and industry norms. 
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                                 (a)                                                      (b)                                     (c) 

 
Figure 2. Illustration of DED-Arc based additive manufactured Al wall structure (a) and layer pattern for the Al 

(b) and for steel (c) 

 

To study the impact of the change in shielding gas flow rate and application of oil in steel 

material, we further generated 6 walls of steel weld with 50 layers in each wall. The steel 

structures were constructed using a 1.2 mm diameter steel electrode (1.4430), building up layer 

by layer. The welding process employed the Cold Metal Transfer Mix with a wire feed rate of 

5.2 m/min and a contact tube to workpiece distance of 14 mm. The welding speed was adjusted 

to 0.4 m/min. A mixture of Argon with 18% of CO2 is used as shielding gas. The steel weld 

pattern is different from the Al weld experiments (see Figure 2c). This approach was adapted 

to prevent the potential impact on the layer welded with a shielding gas flow rate of 15.0 l/min 

and without any oil due to the layer welded before by reduced shielding gas flow rate or the 

application of oil. 

The duration of each audio file is 15 seconds for the Al samples, while for the steel samples, 

each file is 22 seconds long. In all welding experiments (both Al and steel), welding parameters 

such as weld speed, current, voltage, and direction of welding are kept constant. Parameters 

such as welding sessions, amount of oil applied, layer pattern in case of Al structures, 

environmental conditions, and background sounds are variable. 

 

3. DATASET PROPERTIES 

 

Using the recording configuration described in the previous section, a required dataset was 

generated for Al and steel material. The scope of this study is focused on the frequency range 

within the limits of human hearing, which spans up to 20 kHz. Hence, the data recorded with 

audible range microphone MK202 is considered, and the remaining data is out of scope. Based 

on the expert review, the small changes in shielding gas flow rate between the neighboring gas 

classes were insufficient to discern any distinct trends within the data samples. As a result, a 

decision was made to exclude all intermediate gas classes from further analysis and instead 

focused exclusively on the highest (15.0 l/min) and lowest (7.5 l/min) shielding gas flow rate 

classes, in addition to the Oil class. By narrowing our focus to these specific classes, we aimed 

to capture the most significant variations in the data. 

The labelling scheme for the welded layers in both Al and steel walls is as follows: Layers 

welded with 15.0 l/min shielding gas and no oil was labelled as GasMax. Layers welded with 

15.0 l/min shielding gas and oil were labelled as Oil. Layers welded with 7.5 l/min shielding 

gas and no oil were labelled as GasMin. In the case of steel welds, a total of three walls (50 

layers per wall) welded with specific layer arrangements were considered for this study. The 

first wall consisted of 50 consecutive GasMax layers. The second wall followed a pattern where 

two consecutive GasMax layers were followed by one GasMin layer. This pattern repeated 

throughout the wall. The third wall featured a pattern where two consecutive GasMax layers 

were followed by one Oil layer. This pattern was repeated until the 50th layer. In the case of 
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consecutive GasMax layers, we only consider the top layer as there is a possibility that the 

bottom GasMax layer gets influenced by either of the bottom non-GasMax layer and the base 

plate. This further decreases the count of GasMax layers. The corresponding number of files 

(audio recordings from each layer of the wall) per class for both Al and steel materials is shown 

in Figure 3. This is evident from the file count that both the Al and steel datasets are highly 

imbalanced. 

 
 

Figure 3. Number of audio files per class in the dataset for steel and Al materials (captured with the MK202 

microphone) 

 

4. EXPLORATIVE DATA ANALYSIS 

 

An explorative data analysis (EDA) was performed on recorded audio signals to compare 

welding irregularities with standard (GasMax) class of shielding gas flow rate. To examine the 

unique patterns of the measured signals in time, frequency and amplitude, a short time fourier 

transformation method was applied to compute the amplitude spectrogram. In the amplitude 

spectrograms of the signals, a periodic pulse train was observed along the time axis. These 

pulses are inherent to the welding process. It is important to note that the amplitude spectrogram 

could not reveal any strong distinctive information between the standard and other welding 

irregularity classes. Nevertheless, smaller variations in signal amplitudes were observed, which 

lead us to further analysis of the root mean square (RMS) level distribution within and between 

data classes. 

 To understand the data distribution and the average signal strength within each class, 

we computed the RMS of the acoustic signals. The process for calculating the RMS value of a 

signal involves several steps. Firstly, each sample in the signal is squared. Next, the squared 

samples are averaged by computing the arithmetic mean of all the samples. Lastly, the square 

root of this average is obtained, resulting in the RMS value of the signal. Furthermore, the RMS 

values were transformed to the decibel scale (RMS level) to provide a more understandable 

representation. As a next step, these RMS levels are plotted class-wise with the help of the 

violin plot as shown in Figure 4.  

As observed in the case of Al metal welds (Figure 4a), violin for all three classes shows 

nearly the same RMS level range indicating a stable recording process. The GasMax class 

shows two wide regions (along vertical axis) with different data distributions indicating the 

difference in the RMS level of the recordings from the different sessions. Similarly, in the case 

of steel welds (Figure 4b), GasMax and GasMin classes also show relatively two wide regions 
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indicating that there were two different data distributions for samples recorded at different 

sessions. The median of the RMS level (white dot in the centre of violin plot whisker) value for 

all classes has nearly the same value in the Al and steel datasets. No other substantial deviations 

were detected in relation to the process parameters, indicating consistent recording conditions. 

No differences were observed between the three classes based on the RMS level.  

 

 
                                         (a)                                                                                (b) 
Figure 4. Violin plot showing the RMS level(dB) and data distribution for each of the three weld layer classes for 

Al (a), and steel (b) material (recordings for MK202 microphone) 

 

To get a deeper look into the data distribution and to examine the correlation among the audio 

recordings from various classes in the Al and steel datasets, Principal Component Analysis 

(PCA) [27] was performed.  

 

              
(a)                                                                                   (b) 

Figure 5. PCA plot for the data samples from the Al (a) and steel (b) wildings with log Mel Spectrogram feature 

(recordings for MK202 microphone) 

 

In the beginning, PCA was applied on conventional features. These conventional 

features were calculated by combining metrics like 'RMS', Spectral roll-off, Spectral 

bandwidth, and others. No significant clustering pattern was observed among the classes. The 

Mel spectrogram is a time-frequency representation of audio signals that mimic the human 

auditory system's perception of sound.  So, the Mel spectrogram was chosen as the next feature 

type and performed PCA on them. The features were computed using an FFT size, window 

size, hop size of 128, 128, 64 samples respectively. The number of Mel bands was set to 16. 

Further, the features were logarithmically scaled in magnitude to reduce its dynamic range. 

Each snippet of the audio had a length of 1 second and was separated by a hop of 0.5 seconds. 

The PCA plot in Figure 5a show that all three classes exhibit partial overlap with each 

other indicating shared features or similarities between the classes. No dense cluster is observed 

in all three classes. Examining the cluster plot further, it becomes evident that all three classes 
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exhibit low inter-class variance. On the other hand, the intra-class variance is high, implying 

significant variability within each individual class. Overall, the PCA cluster plot provides 

insights into the relationships and characteristics of the three classes under investigation.  

Further PCA method applied on steel dataset with same feature settings, although no 

clustering was observed (see Figure 5b). The absence of distinct clusters implies that there is 

minimal separation between the classes in the reduced-dimensional space. The results indicate 

that simple linear classifiers are inadequate for the automatic analysis of AE of DED-Arc 

welding using the GMAW process. Instead, a non-linear classifier is necessary to achieve better 

detection and classification results. Based on our previous work [28] a non-linear classifier 

based on neural networks was chosen for further analysis. The classifier is discussed in more 

detail in the next section. 

 

5. AUTOMATED CLASSIFICATION EXPERIMENTS 

 

As discussed in the welding experiments and AE measurement, experiments were aimed to 

simulate the standard and the weld seam with irregularities (by varying the shielding gas flow 

rate and oil contamination). To understand the differences between different welding 

irregularities that may cause pores in weld seams, EDA was performed on AE data using PCA. 

However, the results indicated that linear separation was not possible among the considered 

weld process parameters. 

To address this, classification experiments using neural networks were conducted in two 

tiers. In the first tier, binary classification was performed to detect the difference between the 

GasMax and GasMin classes. Subsequently, binary classification was conducted between 

GasMax and Oil. Although GasMax and Oil share the same weld process parameters, the 

presence of oil contamination could impact the quality of weld seam, which might be reflected 

in the AE signals. In the second tier, a multiclass classification involving three classes: GasMax, 

GasMin, and Oil was conducted. This was done to examine how the AE signals differed from 

the standard process parameters represented by GasMax. Both tiers of experiments were 

conducted using datasets comprising Al and steel welds, separately. 

For the detection and classification tasks, a CNN was employed. The subsequent section 

will discuss the CNN architecture, feature extraction method, and training details. 

 

6. NEURAL NETWORK BASED PIPELINE 

 

Based on the observation, it was noted that the PCA method did not achieve linear separation 

between classes. Therefore, the decision was made to proceed with utilizing a neural network 

instead. The log Mel spectrogram was chosen as the preferred input feature type. All the 

configuration to compute this feature representation remains the same as discussed in previous 

sections. The input feature representation has a size of 391x16, representing 391 timeframes 

and 16 Mel bins. To ensure consistency and remove potential transient effects, the first 1 second 

of each audio recording was discarded before computing the input features. 

Next, the architecture of the CNN network used for the detection and classification of 

the weld parameters is shown in Figure 6. Here, the input data is augmented with Gaussian 

noise [29] (standard deviation of 0.001) to enhance generalization. L2 regularization (with a 

coefficient of 0.035) is applied to the weights to prevent overfitting. The model architecture 

begins with a 2D convolutional layer followed by a ReLU activation function, which introduces 

non-linearity. A max-pooling layer is then employed to reduce the spatial dimensions and 

capture the most salient features. Subsequently, a dropout layer with a rate of 0.1 is utilized to 

prevent overfitting. Another 2D convolutional layer with ReLU activation and a subsequent 

max pooling layer follow this. The output is then flattened and fed into a dropout layer with a 
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rate of 0.25. A fully connected layer is introduced to learn complex patterns, followed by 

another dropout layer with a rate of 0.5 to further regularize the model. Finally, a fully 

connected layer and a Softmax layer are employed for classification purposes, providing the 

probability distribution over the output classes. 

 

 
 

Figure 6. CNN model architecture used for classification of welding irregularities for Al and steel welds. Here, n 

refers to the number of target classes 

 

Given the smaller size of the Al and steel datasets, the dataset was partitioned into a training 

and testing set using a 60:40 ratio. This means that 60% of the data was utilized for training the 

neural network model, while the remaining 40% was reserved for testing its performance. 

Further, dataset was balanced by applying random oversampling technique.  This involves 

supplementing the training data with multiple copies of the minority classes to match the 

majority class sample count. A 3-fold cross-validation strategy was employed to ensure robust 

evaluation of the model's performance. During the training of the model, the categorical cross-

entropy loss function is employed: The training process was carried out over 100 epochs. The 

Adam optimizer [30] is a popular choice for training deep neural networks due to its adaptive 

learning rate and momentum-based updates, which allow for efficient convergence and better 

generalization. The learning rate of the optimizer is set to 0.001. This combination of data 

splitting, cross-validation, epoch selection, and optimizer configuration provided a systematic 

approach to training the neural network model and optimizing its performance on the given 

dataset. In addition, random erase, SpecAugment and mixup data augmentation techniques 

were used to tackle the less data problem for the Al and steel weld datasets. 

 

7. RESULTS 

 

The results of the detection and classification experiments discussed in this section are as 

follows: For the Al dataset, a binary classification conducted between the GasMax and GasMin 

classes, achieving a mean accuracy of 82.6% on the test dataset (Figure 7a). Another binary 

classification was performed between the GasMax and Oil classes, resulting in a mean accuracy 

of 65.3% on the test dataset (Figure 7b). Subsequently, a more comprehensive multiclass 

classification was performed among the GasMax, GasMin, and Oil classes (Figure 7c) resulting 

in a mean accuracy of 68.1% on the test dataset.  

As a result of analyzing the confusion matrices, it was observed that the model tends to 

misclassify instances from the GasMax class as Oil class instances, and vice versa. This 

misclassification could be attributed to the similarity in shielding gas flow rates between the 

GasMax and Oil classes. The impact of heat input from the welding arc causes the oil to trickle 

down the wall, resulting in potential similarities between the AE of these two classes. 
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Conversely, the GasMin class exhibits relatively fewer misclassifications, suggesting a 

significant difference in emitted sound compared to the other two classes. Furthermore, another 

possible reason could stem from the data labels, meaning that the welding parameters used to 

produce irregularities may not consistently result in irregularities during the welding process. 

This inconsistency in irregularity production may lead to false labels, which could be verified 

by analyzing the welded structures. By assessing their quality, labels can be corrected. 

 

 
                        (a)                                         (b)        (c) 
Figure 7. Confusion matrices for GasMax vs GasMin (a), GasMax vs Oil (b), and GasMax vs GasMin vs Oil (c) 

classification for Al data (results of MK202 microphone) 

 

Regarding steel welds, the model attained a mean accuracy of 81.6% and 85% for binary 

classification experiments involving GasMax vs. GasMin (Figure 8a) and GasMax vs. Oil class 

(Figure 8b) pairs, respectively. 

 

 
                       (a)                                            (b)                                                    (c) 
Figure 8. Confusion matrices for GasMax vs GasMin (a), GasMax vs Oil (b), and GasMax vs GasMin vs Oil (c) 

classification for steel data (results of MK202 microphone) 

 

For the three-class classification experiment (Figure 8c), a mean accuracy of 57.8% is achieved 

on the test dataset.  

It is evident from the confusion matrices that model confuses GasMin class with GasMax 

class most of the time. Similar trend was observed with binary and multi-class classification 

result between the Oil and gas classes, where many Oil class instances are misclassified as 

GasMax class and never as GasMin class. It is plausible that reduced shielding gas flow rate 

and oil welding irregularities might not result in significant imperfections in the steel weld 

seams. The tricking of oil down the steel wall during welding, caused by the heat of the welding 

arc, could lead to misclassification of the Oil as GasMax class. This misclassification may occur 

due to the similar AE characteristics between the GasMax and Oil classes, given their shared 

shielding gas flow rate. Further, one valid reason for the poor detection performance of the 

model for GasMin class could be, compared to Al welds, steel welds were not affected by the 

lack of shielding gas because steel has a higher melting point and is less reactive than Al. 
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8. CONCLUSION 

 

In this paper, we investigated the potential of using audible range microphones and 

convolutional neural networks (CNN) to detect and classify weld process irregularities that 

could potentially lead to the formation of pores in weld seams. We conducted experiments in a 

controlled laboratory setting, simulating weld process irregularities in aluminum and steel 

additive manufactured wall structures using the DED-Arc method, which utilizes the GMAW 

(Gas Metal Arc Welding) technique. 

Exploratory data analysis was performed on the aluminum and steel weld datasets. 

However, linear separability could not be achieved between different weld process parameters. 

Nevertheless, we found that a non-linear classifier, specifically a CNN trained on log Mel 

spectrograms, was capable of distinguishing between standard weld process parameter GasMax 

and deviations from standard parameters, such as Oil and GasMin. 

We encountered challenges when classifying oil-contaminated weld seams (represented 

by the Oil class) due to their similarity in process parameters with the GasMax class. 

Consequently, our classifier model misclassified some instances of the GasMax as Oil class. 

This highlights the need to examine the physical irregularities in the weld structure when 

assigning data labels. It is possible that the aforementioned weld irregularities may not always 

result in the formation of pores, which may not be reflected in the acoustic emissions. 

Consequently, the models were unable to classify these differences accurately.  

In summary, our results demonstrate that weld process irregularities that may lead to 

imperfection in weld seams can be detected using airborne sound in the audible range. However, 

further investigation is needed to improve the classification accuracy by considering the 

physical characteristics of the weld structure for data labeling. 
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