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ABSTRACT 

A deep understanding of metal deformation processes is essential for producing complex 
geometries in many industrial applications. Although simulations using Finite Element 
Methods (FEM) have helped in steering toward that goal, they are particularly time-consuming 
for large 3D meshes. Searching for the process parameters that lead to the desired shape of a 
metal part can become extremely expensive in terms of man-hours and computational 
resources. We investigated how machine learning models, especially deep neural networks, can 
help in speeding up the design process of deep drawing and joining processes by allowing a fast 
interpolation of FEM simulations from minutes or hours to seconds. In this study, inspired by 
implicit representations of 3D objects using neural networks, an implicit approach is used to 
predict local properties such as the thickness of the metal sheet, its thinning, and plastic strain, 
using solely the process parameters defining the experiment. We observe that the low number 
of trainable parameters of the predicting model ensures a generalization to unseen process 
parameters and ultimately allows for a reliable fast inspection of the processes. 

Index Terms – FEM, Deep Neural Networks, Implicit Representations, 3D Meshes. 

1. INTRODUCTION

Metal deformation refers to the process of changing the shape or size of a metal sheet through 
applied forces. It is a critical aspect of various industries, including manufacturing, automotive, 
aerospace, and construction. Thus, simulation solutions play a vital role in understanding and 
optimizing metal deformation processes. Current simulation techniques, such as FEM, enable 
engineers to predict and analyze the behavior of metals under different loading conditions. In 
addition to its power and widespread use, FEM also has several disadvantages. Firstly, FEM 
requires expertise and careful implementation due to its complexity and the various steps 
involved. For parameter tuning during each experiment, new FEM simulations must be 
performed. Furthermore, FEM becomes computationally demanding for high-dimensional 
problems and large meshes. Mesh sensitivity is another issue, as inaccurate or poor-quality 
meshes can lead to incorrect results. The convergence of FEM solutions can be affected by 
several factors, such as the type of elements used, the nature of the problem (e.g., non-
linearities), and the numerical solution methods employed. Ensuring convergence and stability 
in all scenarios can be non-trivial and may require additional techniques, such as adaptive mesh 
refinement or stabilization methods.  

In recent years, deep neural networks (DNNs) have received significant interest in various 
engineering fields such as solid mechanics, aiming to address the limitations of traditional 
methods like FEM [1, 2, 3]. In comparison to FEM approaches, DNNs may offer several 
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advantages for metal deformation tasks. Firstly, a DNN is capable of learning patterns and 
relationships from large amounts of data. Neural networks would use the learned statistical 
underlying information provided through the data in the training phase to predict an outcome 
for unseen data from the same distribution. By training on extensive datasets containing 
instances of metal deformation, DNNs can capture complex non-linearities and intricate 
relationships that may be challenging to model explicitly using FEM. This data-driven approach 
can lead to more accurate and robust predictions. 
 
Neural networks in general can generalize well to unseen scenarios. Once trained on a dataset, 
they can interpolate and predict the behavior of metal deformation in situations that were not 
explicitly present in the training data. This ability to generalize can be particularly advantageous 
when dealing with novel or complex deformations. They also can be trained to incorporate 
sensor data, such as force measurements, into the deformation prediction process. This 
integration allows for real-time monitoring and control of metal deformation tasks, enabling 
applications such as online process optimization or quality control. 
 
Despite the advantages mentioned above, integrating DNNs with mesh structures, which is the 
main data type for FEM solutions, can present challenges. DNNs often operate on fixed-size 
inputs, and maintaining a consistent mesh topology and size can be difficult or even impractical 
in some cases. To overcome these limitations, we propose a novel approach that combines DNN 
with implicit representations, eliminating the need for explicit meshes in deformation tasks. 
FEM simulations typically require discretization of the domain into elements, leading to a high 
computational cost, especially for complex geometries and large-scale problems. In contrast, 
once trained, our proposed DNN can provide rapid predictions for new inputs, significantly 
reducing the computational time, which may not be possible in FEM simulations. The use of 
implicit representations allows for smaller networks since they do not require the entire mesh 
information to be fed at once. This approach enables efficient processing of large meshes by 
operating on implicit functions rather than explicit mesh data. It offers a balance between 
memory requirements and computational efficiency while handling complex 3D models. 
 
In Section 2, details about data acquisition are provided and the rationale for using implicit 
representations over explicit ones is presented. The section ends with the main structure of the 
models and the input/outputs of the network. In Section 3, the training process of each model 
is provided, and the results are presented.  
 

2. METHODOLOGY 
 
2.1 Deep Drawing and Joining Processes 
Deep drawing is a metal-forming process that transforms flat sheets into three-dimensional 
shapes. In this process, blank metal sheets are placed over a die and punched to give them a 
desired shape. Material is stretched and bent to achieve the desired shape, resulting in deformed 
parts. The joining process refers to the act of attaching different parts to form a unified structure; 
and its goal is to create a strong and reliable connection between the components, ensuring 
structural integrity and functionality. Joining operations can result in incomplete or improper 
fusion of the components. This can result in gaps or voids between the joined surfaces, 
commonly referred to as “pockets”. Pockets can negatively impact the structural integrity, 
strength, and overall quality of the joined assembly. Therefore, minimizing or eliminating 
pockets is crucial for ensuring a reliable and robust joining process. Figure 1 shows a schematic 
illustration of both the deep drawing and joining processes. To minimize the packet size, the 
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resulting shapes are compared with the target shapes from the dataset in a supervised manner 
to reduce the error. 
  

 
Figure 1. Schematic illustration of the deep drawing and joining processes. A metal sheet with specific features, such as 
thickness, alloy type, etc., will undergo a deep drawing process, with particular operation parameters, e.g., blank-holder force. 
Two of such formed objects are then used for the joining process to create the desired final object. A CAD model of the joining 
process is shown on the right. The ideal sequence of processes is one where the resulting object does not have wrinkles or 
pockets when joined (notice the contact area of the flat surfaces on the top and bottom objects are not completely aligned). It 
is worth noting that both sheet features and the operation parameters together are referred to as process parameters. 

 
2.2 Data Acquisition / Preparation 
During the BMBF project ML@Karoprod (01IS18055), we aimed to approximate the deep 
drawing and joining processes with functions, e.g., with neural networks, such that one could 
optimize the quality of the joining process to minimize the pocket size. Our partners at 
Fraunhofer IWU Dresden performed 725 successful simulations of deep drawing experiments, 
as well as 321 joining experiments. These simulations ranging from deep drawing to clamping 
and joining have been the fundamental aspect of mechanical engineering when it comes to 
optimization and parameter space exploration. Previous studies showed the importance of 
methodically exploring the design parameters to obtain a faster and more accurate production 
line [4]. However, the rigorous search and constant input from the expert renders such 
approaches laborious. Hence, finding an approximation of the process, a model with fast 
inference time, which regardless of the existence of its derivative as a function, can help in 
numerically solving an optimization problem. 
 
The deep drawing simulations start from a blank metal sheet, where the following different 
process parameters can be varied: the sheet thickness (from 0.99 to 1.48 mm), the drawing depth 
(30, 50, or 70 mm), the drawing gap (1.6 or 2.4 mm), the blank-holder force (from 10 to 500 
kN), the insertion position (-5 to +5 mm) and the material properties (RP0, from 133 to 293). 
Each simulation resulted in a triangular mesh with over 20,000 nodes, including for each mesh 
face a thickness value that allows computing the thinning and plastic strain. The joining 
experiments combined two of the 725 deep-drawn simulations, the upper part always having a 
drawing depth of 50 mm, the lower part either 30, 50, or 70 mm. The additional process 
parameters of the joining simulations are the Z-position of the four clamps and a clinch ID for 
each part. Thus, the process parameters in joining can be expressed by the process parameters 
of the two deep-drawn parts and the additional information of the joining operation itself. 
 
The simulation generates meshes representing the surface of the object, which would pose 
difficulties in terms of computational cost as well as possible inconsistencies in terms of 
geometry. However, given the discrete nature of a mesh, if a continuous representation of the 
surface is provided by interpolation, one could develop a model on such a domain directly. 
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UV mapping, initially proposed for texture mapping [5] to bijectively map 3D points onto a 2D 
surface, has been used in our setting to represent the surface with its additional signal 
information: thickness after deformation, thinning, and plastic strain. Figure 2 depicts the UV 
mapping from the 3D surface to 2D space for each variable. In both sets of experiments, a 
custom UV mapper, developed by our partner Scale GmbH1, has been employed.  
 

 
Figure 2. An illustration of UV mapping: 3D surface geometry of a reference mesh (the object on the left) is mapped onto a 
2D space, where each mapping shows the distribution of the corresponding encoded signal, e.g., thickness, deviation from the 
desired shape (displacement), and plastic strain. 

 
2.3 3D Implicit Representations 
Implicit representations, such as Signed Distance Functions (SDF), are mathematical 
techniques used to represent geometric shapes without explicitly defining their boundaries or 
surfaces. SDF assigns a signed distance value to every point in space, indicating the distance to 
the nearest point on the surface of the object. This representation allows for a compact and 
flexible description of complex shapes. Implicit representations are particularly useful in 
computer graphics, computer-aided design, and simulations, as they enable efficient rendering, 
collision detection, and deformation calculations. They also provide advantages such as easy 
blending and interpolation between shapes and robust handling of topological changes.  
 
The authors of DeepSDF [6] presented a deep network that embeds the shape of an object with 
implicit representation. The input to DeepSDF is a 3D point in Cartesian space, and the output 
is the signed distance from that point to the surface of the object. By training on a dataset of 3D 
shapes, DeepSDF can generate accurate and continuous representations of complex objects, 
allowing for various applications such as shape reconstruction, shape completion, and 3D shape 
generation. 
 
By extending the DeepSDF idea and adding a condition vector to the network, we were able to 
predict the deformation of a metal cuboid influenced by a point force [7]. The applied force is 
added to the network input as well as XYZ coordinates of points, to predict the signed distance 
values of the deformed shape. By changing the input parameters (position of the force vector 
and its magnitude), the network could predict the deformed shape in a few seconds, which is 
much faster than FEM simulations on the same mesh. To our knowledge, this was the first time 
that a neural network could successfully estimate a shape deformation using an implicit 
representation in 3D space. Unfortunately, this method could not be directly applied to the deep 
drawing and joining data, as it needs to assume a watertight mesh as input. A watertight mesh 
is free from gaps, holes, or cracks, ensuring that no fluid or air can pass through it, thereby 

 
1 https://www.scale.eu/de/aktuelles/forschungsprojekte 



© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 5 

dividing the space into inside and outside regions. For our metal shells, we cannot define such 
a signed distance. We decided to predict instead the attributes such as thickness, thinning, or 
plastic strain as if they were signed distances.   
 
2.4 Models  
In this section, the architecture of the neural networks learning implicit representations for deep 
drawing and joining processes is presented in more detail. An interesting aspect of the model is 
its low dimensionality in terms of having as few trainable parameters as possible, combined 
with the fully connected nature of each layer, which is especially useful when there is not an 
abundance of processing units such as GPUs. We show that such an architecture nevertheless 
has the expressive power to accurately approximate the simulation. Furthermore, despite the 
inherent difference between the deep drawing and joining processes, it is shown that our 
approach can simply model both processes, by changing the process parameters. Despite the 
similarity of the general structure of the designed models, the inputs/outputs are different. 
 
Instead of treating each FEM simulation as a unique sample for training an explicit model, the 
implicit approach instead relies on learning to predict relevant quantities at each node of each 
simulation. Not only does this increase the number of training samples, but it also reduces the 
number of inputs, leading to very small neural networks that are less likely to overfit and are 
very fast to use. In our framework, for each process, two fully connected neural networks are 
used, each taking as an input the process parameters of a simulation, as well as the UV 
coordinates of a single node. The output of the first neural network predicts the XYZ position 
of each node, while the second predicts the corresponding thickness, thinning and plastic strain. 
 
The rationale behind this approach depicted in Figure 3 is that the UV coordinates can be 
sampled uniformly between 0 and 1, while the XYZ coordinates would be specific to each 
experiment. As it was mentioned earlier, the sole difference between the models for the deep 
drawing process and the models for the joining process is the dimension of the process 
parameters that are given as part of the input. In the case of the deep drawing process, the input 
is the six process parameters of the simulation plus the UV coordinates. For a set of unseen 
process parameters at test time, one only needs to uniformly sample the UV space to recreate 
the geometry of the deep drawn part and its physical properties. The 725 deep drawing 
experiments are split into training and test sets, with 75 experiments used for validation.  

 
Figure 3. A schematic illustration of the models, and their inputs and outputs. Both models are given the process parameters 
(design parameters), e.g., blank-holder force, sheet thickness, etc., and a coordinate on the UV domain as input vector. The 
model on the left outputs XYZ coordinates of the geometry of the object after having undergone deformation, as a result of 
deep drawing, or after the joining process, corresponding to the UV coordinate given the reference mesh. The model on the 
right outputs the physical property of the position on the surface (XYZ position), such as thickness, thinning, and plastic strain. 
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Note that the only difference between the two models used in the deep drawing prediction vs the two models in the joining 
process prediction is the number of process parameters passed as part of the input. 

For the clamping and joining process, there are 18 process parameters involved, 12 of which 
are the deep drawing process parameters of the two parts, six parameters for each. Of the 
remaining six parameters, four denote the Z-position of the four clamps and two indicate the 
clinch ID of each part. For the testing phase of the model, 32 experiments are kept out of the 
321 simulations for validation. The upper and lower parts have their own UV coordinate 
systems. Two networks are trained as previously to predict the XYZ positions of each node of 
the two parts, as well as the physical properties such as thickness, thinning, and plastic strain.  
 
The optimal architecture of the neural networks is found using Bayesian hyperparameter 
optimization [8], varying the number of layers, number of neurons in each layer, the learning 
rate, and regularization level, while using the test MSE as the objective to minimize.  
 

3. RESULTS 
 
3.1 Deep drawing 
Given a reasonable search space for the hyperparameters of the neural network, the following 
hyperparameters have been shown to outperform in terms of MSE on the validation set, and as 
such are selected for inference: a neural network with five hidden layers (each with 256 
neurons), LeakyRelu as activation function, the Adam regularizer, and a learning rate of 0.001. 
The same architecture was used for the two networks predicting the XYZ coordinates and the 
physical properties, respectively. The network is trained for 100 epochs and batch size 32768. 
Both training and validation losses are below 10^-5 at the end of training.  
 
Figure 4 shows the output of the neural network for an unseen experiment of the validation set. 
The top row shows the predicted thickness, thinning, and plastic strain values in the UV space, 
while the bottom row maps these values onto the XYZ coordinates predicted by the first 
network. The residual quadratic error for all predicted quantities in the validation set is 
extremely low (below 1e-5), showing that the networks have learned to generalize the physical 
properties of the deep drawing experiments to unseen process parameters. 
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Figure 4. 2D prediction of thickness, thinning, and plastic strain for test experiment #883 (thickness 1.48, blank-holder force 
20, drawing gap 2.4, insertion position 0, drawing depth 30, RP0 235.160326). Above: predicted output value in the UV space. 
Below: mapped onto the predicted XYZ-coordinates. 

3.2 Joining 
For the joining process, the following hyperparameters have been also found to perform best 
within the search space: a neural network with five hidden layers (each with 256 neurons), 
LeakyRelu as an activation function, the Adam regularizer, and a learning rate of 0.001. 
Similarly, the goal was to minimize the mean square error loss on unseen data. The network is 
trained for 50 epochs. The training and validation losses are both below 10^-5 after training. As 
for the deep drawing models, the same architecture is used for both models predicting the 
geometry and the physical properties.  
 
Figure 5 shows the prediction of the two networks for a completely new design (the bottom and 
top parts were never clamped together in the training data). Similarly, the physical properties 
of these two parts after the joining process are predicted by the model in a few seconds, which 
would have otherwise taken at least two orders of magnitude more time in the simulation. In 
Figure 6, the cross-section of the joined objects is provided. These cross-sections are given by 
changing only the values in one of the two dimensions of the UV map, while the values on the 
other dimension remain unaltered. The pockets can be observed in the cross-section.  
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Figure 5. Prediction for a test experiment: clamping position [-3, -3, -5, 3], MID [5, 3], upper part (thickness 1.48, blank-holder 
force 400, drawing gap 2.4, insertion position -4, drawing depth 50, RP0 235.160326), lower part (thickness 1.01, blank-holder 
force 410, drawing gap 2.4, insertion position -5, drawing depth 30, RP0 138.226960). 

 

 
Figure 6. Cross-sections of the object after the joining process are shown. One could, using such a model, set an attainable 
goal to reduce the pockets’ sizes in order for the contact area to have no gaps, i.e. a much faster model for an optimization 
problem where the optimal values for the process parameters are searched.  

Figure 7 shows the exploration and inspection of the process parameters domain. The model 
can be used to interactively inspect the influence of the process parameters. The code 
underlying these simulations is freely available in GitHub2. 
 

 
Figure 7. Using the menu on the left, containing the process parameters, as well as the expected information on the output, 
e.g., distribution of the plastic strain or thickness across the object, one could interactively and significantly faster explore and 
inspect the impact of a given set of process parameters. After the training stage of the model, see Figure 3, given the UV 
mapping of a reference mesh, in the inference stage, different points from UV space are sampled and their corresponding XYZ 
coordinates are predicted by the model, which results in the geometry shown here. For information on the surface, for instance 
thickness, the corresponding values are predicted for each XYZ position, which is depicted as a heatmap. 

4. CONCLUSION 
 
In this study, we examined the advantages and limitations of Deep Neural Networks and Finite 
Element Methods for metal deformation analysis, primarily attributed to their reliance on mesh 
structures. The main advantage of our proposed approach is the ability to handle irregular and 
unstructured data for metal deformation tasks and joining process optimization. By using DNNs 
with implicit representations, it becomes possible to directly learn the underlying relationships 

 
2 https://github.com/hamkerlab/ML-Karoprod-MeshPredictor 
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between input data and desired outputs without explicitly relying on a mesh structure. This 
allows for more flexibility in handling complex geometries and varying mesh densities.  
 
Traditional FEM often requires manual adjustments and refinements of the mesh to account for 
changes in geometry or material properties. In contrast, DNNs can learn from a dataset of 
instances and potentially generalize well to new scenarios without explicitly re-meshing. This 
can save costs, both in terms of time and energy, in the modeling and simulation process, e.g., 
using such machine learning models, an engineer can quickly investigate the influence of 
various process parameters without having to run expensive FEM simulations. Our proposed 
model has a small number of trainable parameters, is capable of generalization, and is 
significantly faster in the inference phase than FEM simulations. 
 
However, it is important to note that there are also challenges associated with using NNs. One 
challenge is the need for large and diverse training datasets to capture the wide range of possible 
deformations accurately. Generating such datasets can be time-consuming and computationally 
expensive. Additionally, the interpretability of the models may be limited compared to 
traditional methods like FEM, where the mesh provides a clear representation of the physical 
domain. 
 
In conclusion, this paper presented a methodology for predicting deformation and thickness 
resulting from a single applied force on a metal sheet. However, to further enhance the 
applicability of this research in the future, it is suggested to extend the study to include a 
collection of different force vectors that are sequentially applied to the metal sheet, allowing 
for the achievement of desired shapes. By optimizing and fine-tuning the set of process 
parameters through a series of actions, this approach holds great potential for numerous 
industrial applications. Furthermore, the independence of our approach from mesh structure 
enables generalization across a wide range of sizes and structures. To accomplish this, a deep 
reinforcement learning scheme is proposed as a promising avenue for future investigation. 
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