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ABSTRACT 
Drawn arc stud welding with ceramic ferrules is a widely used joining process for joining sheet 
metal to studs, which can be threaded or sheared. During the welding process, various 
irregularities can occur which adversely affect the resulting mechanical properties. Arc blowing 
is one of the most common process defects. Arc blowing can result in an asymmetric weld bead 
which can increase the failure rate of the stud. An approach to stud testing is given in DIN ISO 
EN 14555. A sound probe carried out by an experienced welder provides qualitative 
information about the weld bead. The sound probe causes the stud to vibrate at its natural 
frequencies. If the eigenfrequencies can be calculated for each weld bead shape, the sound probe 
can be quantified. To this end, a new simulation approach is presented which allows the rapid 
calculation of the eigenfrequencies of the stud with different weld bead shapes. A data set is 
also generated and analyzed. 

Index Terms - Stud welding, numerical simulation, modal analysis, welding, sound 
probe, vibration 

1. INTRODUCTION
Drawn arc stud welding with ceramic ferrule is a welding process that joins a stud with a metal 
substrate by melting the tip of the stud and a small spot on the substrate with an arc. By moving 
the current-carrying stud up the arc is ignited. The melt pool is formed and by pushing the stud 
towards the substrate the joining is performed [1]. Furthermore, the melting pool is protected 
from the environment by a ceramic ferrule, which additionally forms the weld bead. The stud 
can have different dimensions in the range between 3 mm up to 25 mm in diameter and different 
lengths. Also, the shape and material can vary depending on the use case like studs with threads 
or shear connectors. Due to the speed and flexibility of the presented process it is often used in 
structural engineering as well as in mechanical engineering. Since the stud builds up a magnetic 
field inducted by the flowing current, the arc can be deflected, and an asymmetric weld bead is 
produced (Figure 1). The magnetic arc blowing depends on the position of the stud on the 
substrate and the electrical circuit between the welding machine, stud, and substrate. Those 
asymmetric welds can negatively affect the strength of the weld and cause rework of the 
welding. 
To check the quality of a stud weld DIN ISO EN 14555 [2] defines different approaches which 
include destructive testing like bending tests or tensile test. Moreover, there are non-destructive 
tests like x-ray investigations. Those test procedures are often performed on special specimens 
but not on the to be welded part. 
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In addition, Dong et al. [3] developed a methodology for ultrasonic inspection of stud welds. 
By step scanning the back of the plate where the stud is welded on, a cross-sectional image can 
be generated. They used A-scans and decomposed the echo signals with using wavelets. Using 
the frequency representation of the signal they found that the 5.5 MHz response can be used to 
characterize and measure the weld bead, particularly the weak zone, where the fusion zone is 
not fully formed. In a similar way to X-ray inspection, it is often only possible to inspect specific 
samples here due to the limitations of the accessibility. To control every welded stud new 
approaches are developed using the process parameters like the arc current or voltage to predict 
the weld bead quality [4–7]. 

 
Figure 1: Schematic illustration of the stud welding process with the magnetic field inducted by the current flow 

While Samardžić et al. [6,7] used classical statistical features on the current and voltage which 
are recorded during the welding process, Al Sahib et al. and Naddaf et al.[4,5] used machine 
learning algorithms to evaluate the weld quality. They all derived other features from the current 
and voltage, such as resistance or power. The lift of the stud during the welding is also a feature. 
They found that irregularities in the signals were an indication of defects in the weld. 
Independent Component Analysis (ICA) increases the size of the data set to provide more 
training data. Creating synthetic data gives better results with neural networks, which are used 
to classify the recorded signals. With known process variations such as contamination of the 
weld surfaces, six classes can be derived. When testing different neural network architectures 
such as ResNet, Encoder or classic multi-layer perceptron, the Encoder model showed the best 
results with an F1 score of 0.84 [5]. 
The non-destructive approaches presented show good results for general defects in the weld 
zone or process irregularities that can lead to weld bead defects. However, they are either 
limited to special cases where there is sufficient space to use the necessary equipment or are 
not covered by any standard. Arc blowing and in consequence an irregular weld bead shape is 
also not fully investigated in the approaches presented. 
A feasible proposal could be a sound probe which is also mentioned in [2]. The test can only 
be performed by an experienced welder. Here the welder hits the stud by a hammer and is 
analyzing the emitted sound qualitative. This process is highly subjective and different welders 
may classify welds differently which can lead to high error rates [8]. 
When a stud is struck by the hammer it will vibrate at its eigenfrequencies. In order to quantify 
the probe test, it is assumed that for asymmetric beads the eigenfrequencies will vary in a 
specific way so that the change in eigenfrequency can be used to infer the shape of the weld 
bead. To this end, a simulation model will be developed which is capable of providing 
information on the eigenfrequencies of different welded studs with different weld bead shapes. 
If it is possible to generate a sufficient amount of data reflecting possible real-world welds in a 
reasonable amount of time, the data can be used to develop other methods of recording the 
vibrations of the stud after hammering and predicting the weld bead shape and hence the arc 
blow direction. 
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2. MODELLING OF THE STUD 
In this study a head stud is used which is derived from the DIN ISO 13918 [9]. A real-world 
weld is shown in Figure 2 a). He has a length of 126 mm, and the diameter of the stud is 16 
mm. The head has a diameter of 32 mm. As a result of the manufacturing process, there were 
rounded corners on the edges of the stud. The material of the stud is set to S235J2. As a result 
of the weld process a weld bead is formed. To secure the bead from the atmosphere and to get 
the bead in an appropriate shape a ceramic ferrule is used during welding. With a maximal 
height of 8 mm and a maximal diameter of 20 mm the ferrule is placed on the stud and is broken 
after successful joining the stud with the underlying metal sheet. The shaped weld seam has an 
irregular height as well as width. To get the eigenfrequencies of the stud with the finite element 
method (FEM) the stud is modelled like it is shown in Figure 2 b). The rounded corners were 
removed, and the weld bead is modeled as illustrated in Figure 2 d). The bead is divided into 
eight sections and the height is discretized into five portions with a step size of 2 mm. This 
leads to 390.625 combinations which must been considered for calculating the eigenfrequencies 
of the different weld conditions. 
A first attempt is to use commercial software such as ANSYS to perform a modal analysis on 
the 3D model mentioned above. The model is meshed and the eigenfrequencies are calculated 
with FEM. As a volume model is meshed, the resulting nodes and element counts are high. 
Therefore, the computation time, which is proportional to the number of nodes, is also high. 
Additionally, the stud must be meshed for every combination of bead section heights. This also 
leads to high computation time. In conclusion the calculations for all combinations will last too 
long for an appropriate use in industrial context. 

 
Figure 2:Modeling method for the stud a) Real-world welded stud. b).3D model of the welded stud with segmented 
weld bead. c) Model of the new 1D simulation approach with CALFEM. d) Top View of the weld bead segments 
with section numbers and corresponding bead heights. 

To overcome this issue a new modeling strategy is developed in this paper. The stud can be 
modelled as a 1D beam with varying cross sections in his main axis. This reduces the number 
of elements drastically and therefore the computation time. Also, the meshing of the stud can 
be reduced to one initial meshing at the beginning of the calculation process. The resulting 
model is pictured in Figure 2 d). The element length is chosen to be a multiple of 0.1 mm to fit 
into the step sizes of the sectioned weld bead. 

3. CALCULATION OF THE EIGENFREQUENCY 
With CALFEM for Python [10] an appropriate software was found which allows to build up a 
calculation scheme for the eigenfrequencies with FEM from scratch. To calculate the 
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eigenfrequencies in 3D the beam3e function of CALFEM is used. The function considers 
different material and geometric parameters as input. In Table 1 the material parameters which 
kept constant during the calculations are listed. Additionally, the cross-section area 𝐴𝐴, the 
moment of inertia with respect to the y axis 𝐼𝐼𝑦𝑦, the moment of inertia with respect to the x axis 
𝐼𝐼𝑥𝑥, the polar moment of inertia 𝐽𝐽𝑡𝑡 and the St. Venant torsion constant 𝐾𝐾𝑣𝑣 are inputs to the 
function which returns the stiffness matrix for an element. Except the torsion constant all 
parameters are calculated with their analytical formulas. In case of the bead sections the areas 
and moments of inertia are the sum of the inner circle and the arc segments areas. 

model parameter formula sign value 
modulus of elasticity 𝐸𝐸 210 MPa 

shear modulus 𝐺𝐺 81 MPa 
density 𝜌𝜌 7850 kg/m³ 

Table 1: Model parameters which kept constant during simulation experiments. 

The exact formula for the torsion constant is given in equation (1), where 𝜙𝜙 is the torsion angle 
and A the area of the cross-section. With the external boundary in (3) and the internal boundary 
in (4) such that the equation (2) is fulfilled. 𝐴𝐴𝑒𝑒 is the area which is enclosed by the internal 
boundary and 𝑛𝑛 and 𝑠𝑠 are co-ordinate axes normal and tangent to the boundary. With respect to 
the boundaries (1) is only analytically solvable for basic geometries [11]. In (5) the formula for 
a solid circle with radius r is shown. For arbitrary sections only numerical approximative 
solutions using the finite difference method (FDM) are possible. 

𝐾𝐾𝑣𝑣 = 4 ∗ � 𝜙𝜙 𝑑𝑑𝐴𝐴
𝐴𝐴

 (1) 

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

+ 1 = 0 (2) 

𝜙𝜙 = 0 (3) 

�
𝜕𝜕𝜙𝜙
𝜕𝜕𝑛𝑛

𝑑𝑑𝑠𝑠 = 𝐴𝐴𝑒𝑒 (4) 

𝐾𝐾𝑣𝑣 =
𝜋𝜋 ∗ 𝑟𝑟4

2
 (5) 

The cross section is divided into an equally spaced grid of grid size 𝛿𝛿. Equation (6), derived 
from (2) and rewritten in terms of FDM terms, takes into account four surrounding points in the 
grid to calculate 𝜙𝜙0. With the condition in (3) that the values of 𝜙𝜙 outside the cross sections 
area are all zero, we can iterate over all cross-section points inside the area until the values 
converge. Summing up all the values gives the torsion constant. 
A ray-casting algorithm is used to check whether a mesh point is in the section. The outer 
boundaries of the area are approximated as a polygon. Next, a grid point is selected, and a 
horizontal line is drawn to the right. The number of times the line intersects the outer boundaries 
is counted. If the number of intersections is odd, the point is inside the boundaries and therefore 
inside the area. If the number is even, the point is outside the area. By iterating over all the 
points on the grid, the relevant points that are in the area and need to be calculated are known. 
The convergence criterion is defined as if the difference between the last calculated torsion 
constant and the actual one being less than 0.00001 mm4. 
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4
 (6) 

To investigate the effect of the grid size, several experiments are carried out with different grid 
sizes. For comparison, the torsional constant is calculated for the stud diameter without any 
bead section. This allows the deviation between the analytical and FDM results to be calculated. 
The grid space is varied in non-linear distance. Figure 3 b) shows the computation time as a 
function of the grid space. As excepted, the computational time increases as the grid size 
decreases. In contrast the deviation from the analytical solution becomes smaller. As a good 
compromise the grid-space is set to 0.08 mm. The absolute error is 84.32 mm4, which can be 
considered as sufficiently accurate. 
a) b) 

Figure 3: a) Calculation time and values of the first eigenfrequency as a function of the element size of the 
simulation. b) Calculation time and error of the torsional constant as a function of the element size of the FDM. 

Using the calculation scheme described above, a look-up table is calculated for all 256 
combinations of weld bead cross sections to be used in modal analysis. 
With the equation of motion in (7), the eigenfrequencies can be calculated. With U as the system 
displacement vector, K as the stiffness matrix of the system and M as the mass matrix of the 
whole system. Using the standard solution approach for homogeneous linear differential 
equations with constant coefficients, we obtain an algebraic system of equations. The 
eigenfrequencies are obtained by evaluating the eigenvalues of the system of equations. 

𝑀𝑀 ∗ �̈�𝑈 + 𝐾𝐾 ∗ 𝑈𝑈 = 0 (7) 
Since the CALFEM for Python function beam3e only returns the stiffness matrix, the 
calculation of the mass matrix for a beam element is implemented in the library. For this purpose 
the approaches of [12] were used and rewritten for use in CALFEM. Due to the fact that the 
values in the element matrices are somehow sorted, they can be easily assembled and provide 
a symmetric system stiffness and mass matrix. To solve the eigenvalue problem, the approach 
used in CALFEM is replaced by a faster algorithm based on LAPACK. This takes advantage 
of the fact that the matrices are symmetric to obtain faster results. 
Taking the boundary condition into account that the stud is fixed at the bottom, the 
corresponding column and row in the matrices are removed before solving the eigenvalues are 
calculated. 
Like the experiments with the grid space an investigation of the element size for the FEM 
simulation is carried out. In Figure 3 a) shows a similar behavior to the previous experiments. 
The computation time decreases as the element size increases. Contrary to the computation 
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time, the first eigenfrequency decreases with decreasing element size. Again, for the sake of 
comparison, only the stud without any weld bead is used. In order to generate a complete data 
set with all possible combinations of weld beads in time, a fast computation time is chosen with 
an assumed high accuracy of the eigenfrequencies. The calculations in this approach have been 
performed with an element size of 0.5 mm with a corresponding calculation time of 
approximately 0.7 seconds for one run. This leads to a total calculation time of 3.164 days for 
all combinations. All calculations are performed on the same general office personal computer 
with four kernels. Also, the python code is not optimized, or parallel computation is added. All 
other libraries used except CALFEM are standard python libraries. 
As result the first ten eigenfrequencies are returned and saved in a file. Also, the corresponding 
segment combination as well as the calculation time for the run are saved.  

4. RESULTS & DISCUSSION 
To evaluate the new simulation method, the results are compared with the ANSYS simulation. 
The experiments are performed with the same material properties and the mesh element sizes 
are varied. Figure 4 shows a similar behaviour to the new approach. However, the element sizes 
are chosen at higher levels. As the element size increases, the first eigenfrequency decreases. 
The computation time also decreases with increasing element size, but there is a limit of about 
3 seconds that cannot be undercut. The calculation time does not include mesh generation. As 
the eigenfrequency is only changing in a small range with small element sizes, it is assumed 
that 555 Hz is the first eigenfrequency. 

 
Figure 4:Comparison of different element sizes of the ANSYS simulation in function of the calculation time and 

the first eigenfrequency 

Comparing the new simulation approach with the ANSYS simulation, there is an absolute error 
of 10 Hz, which corresponds to a relative error of 1.8%. However, the computation time is 
reduced by a factor of four. Since the error can be expressed as a systematic error and since 
only the change in the natural frequency is assumed to be relevant for the prediction of the weld 
bead shape, the error rate can be accepted. To verify the resulting frequency of both simulations 
real world experiments should be carried out. 
Analyzing the obtained results from the simulation the first ten eigenfrequencies have their 
minimum at 565 Hz and their maximum at 24.976 Hz. The resulting eigenfrequencies accord 
to the different eigenmodes. The first modes are the bending of the stud. The other ones 
correspond to the torsional or normal displacements. While the first two eigenmodes have the 
greatest amplitude they will be analyzed further. 
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For the first eigenfrequency a mean frequency of 598 Hz can be observed with a standard 
deviation of 4.6 Hz. For the second eigenfrequency a mean of 601 Hz with a standard deviation 
of 3 Hz is observed. The variation of the eigenfrequencies is almost very small due to the small 
geometry changes. In comparison the higher eigenfrequencies like the fourth or the fifth 
eigenfrequency have a standard deviation of 33.8 Hz or 22.5 Hz with corresponding means of 
4189 Hz and 4213 Hz. 
It can be clearly seen that to get the weld bead shape in real world applications with the help of 
the eigenfrequencies a very sensitive system has to be used for measuring the vibration signal 
and getting the swinging frequencies. 

5. CONCLUSION 
In this paper, a new method for a fast simulation model is implemented using an existing 
software suite that has been updated and enhanced with relevant features. An appropriate 
modelling method has been developed for this purpose. It attempts to map the relevant 
information of the weld bead to the simulation model. A comparison between commercial 
simulation software such as ANSYS was also carried out. It was shown that with the chosen 
element size of 0.5 mm, the new approach makes an error of 10 Hz, but the calculation speed 
is accelerated by a factor of 4. The resulting eigenfrequencies of the 390,625 combinations of 
weld bead shapes were analyzed. Small variations were observed, confirming the assumption 
that eigenfrequencies can be used to predict weld bead shape. However, as a quantified method, 
a system with high sensitivity to small frequency changes must be used. In order to verify the 
developed model, real experiments should be carried out. Furthermore, the simulation can be 
accelerated with a more powerful computer system and an optimized code. This will allow 
smaller element sizes to be chosen, thus reducing the error. 
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