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ABSTRACT 

This paper addresses the challenge of ever-smaller structures in the semiconductor industry and 
the resulting requirements for high-performance mechatronic systems, especially wafer 
scanners, in lithography processes in the context of mechatronic system design and analysis. 
As a result, the development of sophisticated methods for modeling, control, and analysis of 
control systems has become necessary. To meet this need, advanced analysis methods of 
multivariable control systems are investigated, in particular the combination of classical 
stability analysis methods like the Nyquist criteria and use of Individual Channel Analysis and 
Design (ICAD) methods. 
For this purpose, the requirements for the analysis of multivariable control systems are 
summarized and put in the context of classical methods of system analysis, for example, the 
use of Nyquist methods to evaluate the stability of the control loop. Subsequently, the paper 
provides a rationale for why the use of Single-Input Single-Output (SISO) methods to assess 
stability and robustness is not sufficient and how these can be extended to Multiple-Input 
Multiple Output (MIMO) methods to meet the requirements. A set of tailored Nyquist-like 
MIMO analysis methods are theoretically derived, including the ICAD method and classical 
Nyquist stability analysis and its use in the analysis of multivariable control system is explained. 
A coupling ratio parameter, quantifying the coupling of multivariable systems, is derived from 
the extended ICAD method. The iterative design process is explained, which allows 
conclusions to be drawn about individual system parameters and how to optimize them to 
achieve high performance. To compare the methods, a model of a mechanical payload with 
variable eigenfrequencies is derived. Subsequently, the suitability of the respective method for 
multivariable stability analysis is tested in different system configurations. 
In conclusion, this paper provides insight into the analysis of stability and robustness of 
multivariable control systems and presents the challenges and opportunities of using these 
advanced methods to design high-performance mechatronics in the context of increasing 
requirements due to the shrink in semiconductor manufacturing. This provides a valuable 
contribution to the design of high-performance mechatronic systems. 

Index Terms – Stability analysis, Multivariable control, Multivariable analysis, 
Multivariable systems 

1. INTRODUCTION

Moore's Law is an empirical observation in semiconductor technology that states the number 
of transistors on a chip tends to double approximately every two years. It has driven the 
exponential growth of computing power and miniaturization since it was initially stated in 1965 
by Gordon Moore [1]. This trend arises from advancements in lithography and semiconductor 
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manufacturing techniques. As transistor dimensions approach atomic scales, maintaining the 
pace of Moore's Law becomes increasingly challenging, necessitating innovation in materials, 
device architectures, and fabrication methods to continue pushing the limits of semiconductor 
technology. Traditional practices in the development and design of semiconductor 
manufacturing technology must be augmented with advanced modeling, simulation, and 
optimization techniques. An integral part of that is the model-based analysis and design of high-
performance mechatronics. In the following, a method in assessment of system stability will be 
presented. 
In the field of control system design and analysis, stability is a crucial system property that must 
be ensured before evaluating other properties such as performance or robustness. Control 
engineers have access to various methods to analyze the stability of single-input single-output 
(SISO) systems, as documented in e.g. [2]. 
A widely used approach to achieve high-performance position control for mechanical and 
optical payloads with up to six degrees of freedom (DoFs) is static decoupling through 
scheduling matrices [3]. This method allows the decoupling of the system behavior into six 
independent SISO degrees of freedom, ensuring that each input only affects one output. In 
general, the dynamic properties of the mechanical and optical payloads are determined by the 
occurrence of flexible eigenmodes above a certain frequency range. 
To improve the performance of the position control, the following strategies can be used: 
increasing the bandwidth to extend the frequency range in which the control loop is effective 
and reducing the mass of the mechanical and optical payloads to achieve higher accelerations 
with the same actuator forces. However, lightweight designs usually result in lower stiffness, 
which leads to the occurrence of resonances and flexible dynamics at low frequencies. As a 
result, static decoupling is less effective over a wider range as the flexible eigenmodes shift and 
the bandwidths are higher, making decoupling non-trivial. 
For these reasons, it is assumed that static decoupling alone cannot meet the ever-increasing 
demands for high-performance position control. Consequently, the consideration of multiple-
input multiple-output (MIMO) modelling, control and analysis techniques is imperative to 
ensure a more accurate and advanced design of mechatronic systems. 
In the model-based development of mechatronic systems, the selection of an appropriate 
analysis method is crucial for mechatronic systems engineering. Therefore, this paper focuses 
on the derivation and comparative evaluation of different Nyquist-based methods for MIMO 
stability analysis. To compare the methods, a multi-mass oscillator is modeled, which allows 
the representation and investigation of different system behaviors. Therefore, this paper extends 
and adapts the performance analysis discussed in [4]. For a more comprehensive understanding 
of MIMO system analysis, see e.g. [5]. 
 

2. MULTIVARIABLE STABILITY ANALYSIS 
 
In the analysis of stability for Multiple-Input Multiple-Output (MIMO) systems, control 
engineers have access to a variety of methods, similar to those available for Single-Input Single-
Output (SISO) systems [6]. While many of these methods provide a binary assessment of 
stability (i.e. stable or unstable), obtaining more detailed information about the structural 
stability of the system comparable to the Nyquist criterion requires the use of advanced 
methods. For instance, it is often challenging to determine which individual Transfer Functions 
(TFs) contribute to instability or have the least robust performance. This paper presents classical 
and well-known methods for MIMO stability analysis and extends them to provide techniques 
for acquiring structural system stability information. 
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2.1 Requirements for stability analysis of multivariable systems 
A variety of methods exist for investigating the stability of multivariable control systems, see 
e.g. [2] and [6]. For the iterative design process in the development of high-performance 
mechatronic systems, it is important that the methods can provide as much information as 
possible about the system behavior. The following requirements are in general placed on the 
methods for the system analysis: 

1. Applicability to multivariable control systems 
2. Correct assessment of multivariable system stability and robustness 
3. Detailed structural information about system behavior, e.g. in which transfer path and 

frequency an instability or poor robustness is present 
4. Numerical feasibility and effort (no focus on in this paper)  

 
2.2 Definition of stability for feedback control systems 
In this section, the definition of stability for feedback control systems is established and the 
basis for subsequent stability analysis is created. Throughout this paper, scalar quantities are 
denoted by thin formula symbols, vector quantities by vector arrows, and matrices by capital 
bold formula symbols. 
Consider the standard feedback control loop illustrated in Figure 1. The open-loop Transfer 
Function Matrix (TFM) of the 𝑚 ×  𝑚 MIMO system is defined as 𝑳 =  𝑮𝑪, where 𝑪 
represents the input controller and 𝑮 denotes the plant. Using this definition, the sensitivity 
matrix 𝑺 = (𝑰 + 𝑳)−1, the complementary sensitivity matrix  𝑻 = (𝑰 + 𝑳)−1𝑳  and 𝑰 as the 
identity matrix of appropriate dimension are introduced. To define stability, the general valid 
MIMO definitions are applied to the SISO case (𝑺 →  𝑆 and 𝑻 →  𝑇). Thereby it is important 
to notice, that the poles of 𝑆 and the poles of 𝑇 in ℂ ∪ {∞} are exactly given by the zeros of 
1 +  𝐿 in ℂ ∪ {∞}, assuming no unstable pole-zero cancellation occurs in 𝐿 [7]. With this, 
(1 + 𝐿)−1 is stable if 
• it is proper and 
• has only poles in the open left-half plane (real part < 0). 

Instead of analyzing the poles of (1 + 𝐿)−1, the zeros of 1 +  𝐿 can be evaluated since they 
correspond to each other. Therefore, (1 + 𝐿)−1 is stable if no zeros of 1 +  𝐿 lie in the closed 
Right Half Plane (RHP) (i.e. real part ≥ 0). 
This leads to the conclusion that in order to analyze the stability of the feedback control system, 
it is necessary to find the zeros of the TF and evaluate whether one of them is in the closed 
RHP. 

 
 

Figure 1. Standard feedback control loop 
 
2.3 The Nyquist Criterion and extension to MIMO systems 
In this section, the Nyquist criterion as a classical graphical test for checking the stability of the 
closed-loop system using the open-loop TF is derived [8]. This method has the advantage that 
robustness information can be obtained additionally to the pure stability information. 
As described in Section 2.1, the stability is evaluated by checking whether any zeros of 1 +  𝐿 
lie in the closed RHP. To evaluate all unstable poles of (1 + 𝐿)−1, a contour that encircles all 
of them is needed. This contour is called Nyquist Contour 𝒩, shown in Figure 2. It passes along 
the 𝑗ω axis from −𝑗∞ to 𝑗∞ and closes by a significantly large semicircle 𝑅 → ∞ to encircle 
all poles of 𝐿. To enclose poles on the 𝑗ω axis, small semicircles 𝑟 are inserted in the Left Half 
Plane (LHP) [7]. The plot defined as 𝑠 ∈ ℂ travesers 𝒩 is called Nyquist plot Γ𝒩 . 
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Figure 2. Definition of the Nyquist Contour 𝒩 

 
The mathematical background for the following theorems is given by the Argument Principle 
combined with Cauchy’s Theorem and can be read in [9]. Here use the definition of the Nyquist 
criterion and the Nyquist Contour 𝒩 from [7] is used. 
 
Theorem 1 (Generalized Nyquist Criterion) Let P denote the number of unstable poles in 𝐿. 
The closed-loop system with open-loop TF 𝐿 and negative feedback is stable if and only if the 
Nyquist plot Γ𝒩 of 𝐿(𝑠) does not pass through the critical point (-1,0) ∈ ℂ and makes P counter-
clockwise encirclements of (-1,0) ∈ ℂ as s traverses 𝒩 in clockwise direction, assuming no 
unstable zero pole cancellation takes place. 
 
The proof follows from the derivation of the Nyquist Criterion and can be looked up in [7]. 
Theorem 1 is extended to MIMO-systems (1 + 𝐿 →  𝑰 + 𝑳). Therefore, the closed-loop poles 
are now solutions to the Equation 

det(𝑰 + 𝑳(𝑠)) = 0  ∀𝑠 ∈ ℂ. (1) 
Note that in the SISO case, det(𝑰 + 𝑳(𝑠)) equals 1 + 𝐿(𝑠). As a consequence of (1) the critical 
point shifts to (0,0). This leads to the Generalized MIMO Nyquist Criterion according to [6]. 
 
Theorem 2 (Generalized Nyquist Criterion for MIMO systems) Let P denote the number of 
unstable poles in 𝑳. The closed-loop MIMO system with open-loop TFM 𝑳 and negative 
feedback is stable if and only if the Nyquist plot Γ𝒩 of det(𝑰 + 𝑳(𝑠)) does not pass through the 
critical point (0,0) and makes P counter-clockwise encirclements of (0,0) as s traverses 𝒩 in 
clockwise direction, assuming no unstable zero pole cancellation takes place. 
 
Since in this case only a single function det(𝑰 + 𝑳(𝑠)) is evaluated and analyzed in the Nyquist 
plot, only a binary statement about the stability of the MIMO System can be made. However, 
this limited approach does not provide any additional information about the concrete locations 
of instabilities within the system. It therefore does not provide a suitable method to 
comprehensively analyze or specifically optimize a high-performance mechatronic system. 
For this reason, the following methods are presented below, which aim to decompose the 
determinant into individual products. This allows the stability assessment to be maintained 
while providing additional structural information. 
 
2.4 Characteristic Loci 
The application of Characteristic Loci for stability analysis is an extension of Theorem 2, 
providing an if-and-only-if statement regarding the stability of the 𝑚 ×  𝑚 MIMO system using 
the eigenvalues of the open-loop TFM [10]. The main idea behind this technique is, that the 
determinant of a matrix is equal to the product of all its eigenvalues: det(𝑰 + 𝑳(𝑠))  =
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∏ (1 + λ𝐿𝑖
(𝑠))𝑚

𝑖=1 . Therefore, rather than checking det(𝑰 + 𝑳(𝑠)) with the MIMO Nyquist 
Criterion, it is equally valid to check each of the eigenvalues λ𝐿𝑖

(𝑠) with the SISO Nyquist 
Criterion as defined in Theorem 1. This leads to the following theorem. 
 
Theorem 3 (Nyquist Criterion with Characteristic Loci) Let P denote the number of unstable 
poles in 𝑳. The closed-loop MIMO system with open-loop TFM  𝑳 and negative feedback is 
stable if and only if the Nyquist plots Γ𝒩𝑖

 of the Characteristic Loci λ𝐿𝑖
 do not pass through the 

critical point (-1,0) and drawn together make P counter-clockwise encirclements of (-1,0) as s 
traverses 𝒩 clockwise, assuming no unstable zero pole cancellation takes place. 
 
2.5 Concept of equivalent plants 
The Individual Channel Analysis and Design (ICAD) is an approach to handle multivariable 
control problems with SISO techniques by forming new equivalent SISO channels under 
consideration of the multivariable system behavior, the so called equivalent plants (EPs). 
O'Reilly and Leithead presented the ICAD as a general analysis and design framework for 
multivariable control problems and especially considered 2 x 2 systems in [11]. In this paper, 
the concept of equivalent plants and ICAD is linked to the classical Nyquist stability analysis 
and thus further Nyquist-like stability theorems are defined. 
Consider an open-loop TFM 𝑳 for a 2 × 2 MIMO system with a diagonal control scheme. The 
closed control loop with negative feedback is represented in terms of a block diagram in Fig. 3. 
 

 
 

Figure 3. 2x2 feedback control structure 
  
With the ICAD method, SISO TFs are derived for the two defined inputs In1, In2 and the two 
defined outputs Out1, Out2: 

𝐿11
𝐸𝑃 =

Out1
In1

= 𝐶11 ⋅ EP11
 

2
 = 𝐶11 ⋅ 𝐺11(1 − ξ ⋅ ℎ2) (2) 

𝐿22
𝐸𝑃 =

Out2
In2

= 𝐶22 ⋅ EP22
 

2
  = 𝐶22 ⋅ 𝐺22(1 − ξ ⋅  ℎ1) (3) 

In (2, 3), the EPs for the 2 × 2 system are obtained as 

𝐸𝑃11
 

2
 = 𝐺11 − 𝐺12 ⋅

𝐶22

1 + 𝐺22𝐶22
⋅ 𝐺21 (4) 

𝐸𝑃22
 

2
 = 𝐺22 − 𝐺21 ⋅

𝐶11

1 + 𝐺11𝐶11
⋅ 𝐺12 (5) 

and by rearranging (2, 3), the right-hand side is defined 

ℎ𝑘 =
𝐶𝑘𝑘 ⋅ 𝐺𝑘𝑘

1 + 𝐶𝑘𝑘 ⋅ 𝐺𝑘𝑘
, ξ =  

𝐺12 ⋅ 𝐺21

𝐺11 ⋅ 𝐺22
 (6a, 6b) 

with 𝑘 = {1,2}. The TFs ℎ1 and ℎ2 form the closed-loop TF of channel 1 and 2 respectively. ξ 
is called the Multivariable Structure Function (MSF) and describes the multivariable nature of 
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𝐿11
𝐸𝑃 and 𝐿22

𝐸𝑃 and of the underlying system [11]. The product of ξ and ℎ𝑘 is a weighted product 
with diagonal and off-diagonal elements and therefore describes a measure of cross-coupling. 
If ξ(𝑠) is small in magnitude, loop signal interaction is low and the two loops act almost 
independently for that 𝑠 ∈ ℂ . Vice versa, loop interaction is high if ξ(𝑠) is large in magnitude. 
Consequently, ξ can be used to define a frequency dependent measure of the coupling ratio of 
MIMO systems. Furthermore, max

ω∈[0,∞]
|ξ(𝑗ω)| can be evaluated to assess the maximum cross-

coupling and the underlying frequency. 
 
2.6 Stability analysis based on individual channel analysis and determinant 

decomposition 
The SISO TFs defined in (2, 3) can be used to evaluate the stability of the closed-loop system 
with open-loop TFM. For this investigation it is important to notice, that det(𝑰 + 𝑳) can be 
rearranged in such a way, that the TFs ℎ1 and ℎ2 and the MSF ξ occur: 

det(𝑰 + 𝑳) = (1 + 𝐺11𝐶11)(1 + 𝐺22𝐶22)(1 − ξℎ1ℎ2) (7) 
Therefore, stability of the multivariable system depends on the stability of each SISO loop 
(1 + 𝐶11𝐺11) and (1 + 𝐶22𝐺22)  and of the multivariable coupling described by (1 − ξℎ1ℎ2). 
This can be rewritten to a generally valid case requiring 

det(𝑰 + 𝑳) = ∏ (1 + 𝑙𝑖)
𝑚

𝑖=1
⋅ (1 − ξ∏ ℎ𝑖

𝑚

𝑖=1
) (8) 

not having zeros in the RHP for asymptotic stability of a 𝑚 × 𝑚 feedback control system, 
assuming no unstable pole zero cancellation takes place. In Eq. (8), 𝑙𝑖 = 𝐶𝑖𝑖𝐺𝑖𝑖 are the diagonal 
elements of 𝑳. Consequently, an alternative version of Theorem 2 with the advantage that 
instabilities can be attributed to one of the diagonal or off-diagonal elements can be derived. 
 
Theorem 4 (Nyquist Criterion of determinant decomposition) 
Let P denote the number of unstable poles in 𝑳. The closed-loop 𝑚 × 𝑚 MIMO system with 
loop TFM 𝑳 and negative feedback is stable if and only if the 𝑚 Nyquist plots Γ𝒩(𝑙𝑖(𝑠)), 𝑖 =
{1, . . . , 𝑚} and the Nyquist plot of −ξ(𝑠) ⋅ ∏ ℎ𝑖

𝑚
𝑖=1 (𝑠) do not pass through the critical point       

(-1,0) and the net sum of counter-clockwise encirclements of (-1,0) equals P as s traverses 𝒩 
in clockwise direction, assuming no unstable zero pole cancellation takes place. 
 
The proof is straightforward and can be done by calculating the determinant of a 𝑚 × 𝑚 matrix 
and applying the Nyquist criterion on each of the factors [5]. 
Even though similar functions occur in Eq. (8), no clear connection between the ICAD functions 
(2, 3) can be determined as the individual channels 𝐿𝑖𝑖

𝐸𝑃are not used. It can be shown, that 
det(𝑰 + 𝑳)  ≠ ∏ (1 + 𝐿𝑖𝑖

𝐸𝑃)𝑚
𝑖=1  and therefore no if and only if statement on stability is possible 

by considering all 𝐿𝑖𝑖
𝐸𝑃. However, a sufficient condition for stability of a multivariable system 

is that each of the functions 𝐿𝑖𝑖
𝐸𝑃 are stable. Nevertheless, there is a distinct connection between 

the individual channels and the determinant, which is derived in the following and extends the 
concept of EPs in [11] to 𝑚 × 𝑚 systems. 
Let 𝑳 be the open-loop TFM of a 𝑚 × 𝑚 MIMO system with a diagonal controller 𝑪 ≔

diag(𝐶11, … , 𝐶𝑚𝑚) and a fully populated plant matrix 𝑮:= (𝐺𝑖𝑗)𝑖𝑗
. 

Consider the square submatrix 𝑮(1:𝑛;1:𝑛) defined by deleting each row and column of 𝑮 greater 
than 𝑛 with 𝑛 ∈ {1,2, … ,𝑚}. Let 𝐸𝑃𝑛𝑛𝑛

  be the EP TF of the submatrix 𝑮(1:𝑛;1:𝑛) defined in a 
similar way as in (4) and (5) and suppose that no pole zero cancellations take place within the 
multiplications. With that, the equivalent open-loop TFs 𝐿𝑛 are defined for each EP of the 
submatrices with the corresponding controller according to [12]: 
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det(𝑰 + 𝑳) = ∏ (1 + 𝑙𝑖)
𝑚

𝑖=1
⋅ (1 − ξ∏ ℎ𝑖

𝑚

𝑖=1
) (8) 

𝐿𝑛 = 𝐶𝑛𝑛 ⋅ 𝐸𝑃𝑛𝑛𝑛
      ∀ 𝑛 ∈ {1,2, … ,𝑚}. (9) 

 
Theorem 5 (Stability of MIMO Systems using ICAD) 
With the definition of 𝐿𝑛 in Equation (12), the following holds: 

det(𝐼 + 𝐿) = ∏ (1 + 𝐿𝑛).
𝑚

𝑛=1
 (10) 

Thus, the stability of the MIMO system can be assessed by considering the open-loop TFs  𝐿𝑛 
using SISO Nyquist criterion. An equivalent statement about the number of unstable poles can 
be made as in Theorem 2 by counting the net sum of encirclements of the critical point (-1,0). 
 
Since the proof of Theorem 5 is not as simple as the previous ones, it is presented below. 
Proof: A lower-upper decomposition 𝓛𝓤 of the matrix 𝑨 ≔ 𝑰 + 𝑮𝑪 is done [13]. The result of 
the 𝓛𝓤 decomposition are two matrices, 𝓛 as a lower triangular matrix with only ones on the 
diagonal elements and 𝓤 as an upper triangular matrix. Because det(𝓛) = 1 and 𝓤 is an upper 
triangular matrix, det(𝑨) is equal to the product of all diagonal elements of 𝓤. The diagonal 
elements of 𝓤 are given by 𝓊𝑖𝑖 and therefore 

det(𝑨) = det(𝓛𝓤) = det(𝓤) = ∏ 𝓊𝑖𝑖 .
𝑚

𝑖=1
 (11) 

By applying the 𝓛𝓤 decomposition on 𝑨, 𝓤 is given by 

𝓤 = [

1 + 𝐺11𝐶11 𝐺12𝐶221
 

0 1 + 𝐺22𝐶222
 

⋯
⋯

𝐺1𝑚𝐶𝑚𝑚1
 

𝐺2𝑚𝐶𝑚𝑚2
 

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1 + 𝐺𝑚𝑚𝐶𝑚𝑚𝑚

 

] 

(12) 

𝐺𝑛𝑗𝑛
 = 𝐺𝑛𝑗1

 − ∑
𝐺𝑖𝑗  𝑖
 𝐺𝑛𝑖𝑖

 𝐶𝑖𝑖

1 + 𝐺𝑖𝑖𝑖
 𝐶𝑖𝑖

𝑛−1

𝑖=1
 ∀𝑛, 𝑗 ∈ {1,… ,𝑚} (13) 

Interestingly, for 𝑗 = 𝑛 Equation (13) equals the EP of the submatrix 𝑮(1:𝑛;1:𝑛) and therefore 

𝐿𝑛 = 𝐶𝑛𝑛 ( 𝐺𝑛𝑛1
 − ∑

𝐺𝑖𝑛 𝑖
 𝐺𝑛𝑖𝑖

 𝐶𝑖𝑖

1 + 𝐺𝑖𝑖𝑖
 𝐶𝑖𝑖

𝑛−1

𝑖=1
) (14) 

As the 𝓛𝓤 decomposition is unique, Theorem 5 is proven for the general 𝑚 × 𝑚 case since 

det(𝑰 + 𝑳) = ∏ 𝓊𝑖𝑖  
𝑚

𝑖=1
= ∏ (1 + 𝐿𝑛).

𝑚

𝑛=1
 (15) ∎ 

Note that with Equation (13), a closed expression for the EPs of a 𝑚 × 𝑚 ICAD system can be 
defined.  
 

3. MODELLING OF THE CONTROLLED MECHANICAL SYSTEM 
 
Following the discussion of the different methods of multivariable stability analysis, a 
comparison of these methods will now be presented. To facilitate the comparative analysis, a 
model of a dynamically coupled Multiple-Input Multiple-Output (MIMO) system is required. 
The dynamic behavior of actuated and controlled payloads, incorporating flexible eigenmodes, 
is examined using existing simulations and literature. Based on this information, the dynamic 
behavior is replicated using mechanical elements characterized by concentrated parameters, 
such as masses, dampers, and springs. As this is a very advantageous way of generating a model 
for the comparative analysis of stability methods, the example system is described in more 
detail below. 
The example system, as shown in Figure 2, comprises two fundamental components: 
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1. The payload mechanical element, consisting of four masses (𝑀1 − 𝑀4). Mass 𝑀1 is 
controlled in two DoFs, namely 𝑥 and 𝑦. To emulate the eigendynamics and flexible 
eigenmodes of the payload, a three-mass oscillator with masses 𝑀2 − 𝑀4 is positioned 
on mass 𝑀1. By adjusting the parameters of these masses, interconnecting springs, and 
dampers, the dynamic behavior of a payload with flexible eigenmodes can be replicated 
in two DoFs. The cross coupling between 𝑥 and 𝑦 can be modified depending on the 
angles 𝜓 and 𝜑. 

2. The masses 𝑀𝐴1 and 𝑀𝐴2 represent actuators to which actuation forces 𝑓𝐴1 and 𝑓𝐴2 are 
applied. These actuators are connected to mass 𝑀1 via a spring under angles 𝛼 and 𝛽 to 
actuate mass 𝑀1 in 𝑥 and 𝑦 direction. To mitigate resulting resonances, Tuned Mass 
Dampers (TMDs) are attached to each actuator masses. If resulting resonances are 
desired for the analysis of the stability method, the TMDs can also be omitted. Similar 
to the payload mechanical system, the cross coupling of 𝑥 and 𝑦 depend on 𝛼 and 𝛽 and 
can therefore be adjusted. 

Utilizing this modeling framework, the system is described by a second-order Ordinary 
Differential Equation (ODE) system 

𝑴 ⋅ 𝑞𝑖⃗⃗⃗  ̈(𝑡) + 𝑪 ⋅ 𝑞𝑖⃗⃗⃗  ̇(𝑡) + 𝑲 ⋅ 𝑞𝑖⃗⃗⃗  (𝑡) = 𝑓𝑖⃗⃗ (𝑡) (16) 
with the mass matrix 𝑴, the damping matrix 𝑪, the stiffness matrix 𝑲, the actuation force vector 
𝑓𝑖⃗⃗ (𝑡) as input vector and the displacement vector 𝑞𝑖⃗⃗⃗  (𝑡) as output vector. 
By applying the Laplace transform to (16) and tuning a variant of a classical PID controller 
with a diagonal control scheme as reported in [3], the open loop TFM of the example system is 
defined to  

𝑳 = 𝑮𝑪 = [
𝐺11𝐶11 𝐺12𝐶22

𝐺21𝐶11 𝐺22𝐶22
]. (17) 

As stated earlier, the cross-coupling in the system is determined by the angles 𝛼, 𝛽, 𝜓, 𝜑. 
Consequently, the (MSF) 𝜉, introduced in Section 2.4, of the example system becomes a 
function of these angles 𝜉 = 𝜉(𝛼, 𝛽, 𝜓, 𝜑). By adjusting these angles, the multivariable behavior 
and cross coupling of the system can be influenced and adapted. This flexibility allows for the 
creation of various system configurations by modifying 𝛼, 𝛽, 𝜓 and 𝜑. As a result, the methods 
presented in Chapter 2 can be explored and comparatively evaluated with different system 
characteristics, such as strongly or weakly coupled systems. 
 

 
Figure 2. An actuated payload with flexible eigenmodes 
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4. COMPARISON OF THE METHODS AND RECOMMENDATIONS 
 
In this chapter, the comparative analysis results of the methods examined in Chapter 2 using 
the example system introduced in Chapter 3 is presented. To assess the stability methods, 
various system configurations with distinct behaviors are modeled. By deliberately inducing 
instabilities in specific individual Transfer Functions (TFs) of the system's Transfer Function 
Matrix (TFM), the strengths and weaknesses of the methods become evident, enabling a 
comprehensive evaluation. 
The MIMO Nyquist as introduced in Theorem 2 provides a necessary and sufficient condition 
for stability through evaluating det(𝑰 + 𝑳) with the advantage that only one Nyquist plot needs 
to be evaluated to assess stability. However, this method cannot be used to draw conclusions 
about the individual physical axes and does therefore not deliver structural stability system 
information. Consequently, the use of this method is recommended, if only pure stability 
information of the system needs to be evaluated. 
The 𝑚 Characteristic Loci as described in Theorem 3 deliver valid stability information in all 
cases as the eigenvalues of 𝑰 + 𝑳 are directly connected to the determinant of this matrix. 
Similar to the MIMO Nyquist, the Characteristic Loci do not provide information about the 
individual physical axes and no structural system information is obtained. The robustness 
margins of the Characteristic Locis correspond to SISO margins for a simultaneously change 
in all channels and do therefore deliver additional robustness information [9]. 
The Nyquist of determinant decomposition as introduced in Theorem 4 provides valid stability 
information in all cases as seen in Equation (9). The determinant of 𝑰 + 𝑳 is split into 𝑚 SISO 
loops 1 + 𝑙𝑖 and one additional loop 1 − ξ(𝑠) ⋅ ∏ ℎ𝑖

𝑚
𝑖=1  considering the cross coupling of the 

system with the MSF ξ. This enables to find out whether there are instabilities or critical points 
on one of the SISO loops or in the coupling of these loops. Therefore, the use of this method is 
recommended if stability and structural stability information needs to be obtained. 
Similarly, the SISO Nyquist using ICAD functions as presented in Theorem 5 is an individual 
interpretation of the MIMO Nyquist and exactly matches the determinant of the matrix as shown 
in the proof of Theorem 5. Consequently, the stability information obtained with this method is 
valid in all cases. An advantage of this method is that information about the individual physical 
axes is obtained, e.g. occurrence of instabilities. To gain full information about the individual 
axes, each permutation of the individual channel combination can be evaluated. The use of this 
method is recommended, if not only pure stability information needs to be obtained, but also 
structural information about the system behavior is of interest. 
Additionally, with Equation (13) a closed expression for the EP as introduced in the ICAD is 
defined. The following table summarizes the comparison results for the individual stability 
analysis methods. 
 

Method 
Stability 

statement 
Structural 

information 
Number of functions for 

𝒎 𝐱 𝒎 system 

MIMO Nyquist. yes no 1 
Characteristic Loci yes no 𝑚 
Determinant Decomposition yes yes 𝑚 +  1 
ICAD Nyquist yes yes 𝑚 

 
5. CONCLUSIONS 

 
In this paper Nyquist based methods of multivariable stability analysis are evaluated 
comparatively. For this purpose, stability is defined and the different methods are theoretically 
derived. By combining the concept of EPs and ICAD, individual interpretations of the Nyquist 
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Criterion are derived and stated. Subsequently, an example system is modelled that represents 
an actuated payload system and enables a comparative analysis. 
Afterwards the methods are applied to this system and the results of each method are compared. 
It is observed that all investigated methods enable valid stability assessments. This is also 
proven theoretically. However, they differ in terms of the information they provide. While the 
MIMO Nyquist method provides a pure statement of stability, the characteristic loci method 
offers additional robustness information. To obtain structural stability information for MIMO 
systems, the concept of EPs from [11] is extended and integrated with the Nyquist criterion, 
resulting in two alternative Nyquist-like stability theorems. These theorems provide valuable 
structural stability information for MIMO systems and thus allow a statement to be made about 
which individual transmission paths of the MIMO system are subject to instability. 
With these alternative interpretations of the Nyquist criterion, multivariable stability analysis 
can be significantly improved, and additional structural system information can be obtained. 
For future work, the robustness analysis of multivariable systems can be examined, for which 
a variety of sophisticated methods is available, see e.g. [14]. 
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