
Fast and faithful Effective One Body
models for gravitational waves from

generic compact binaries

DISSERTATION

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der

PHYSIKALISCH-ASTRONOMISCHEN FAKULTÄT

der

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA

von

Rossella Gamba (M.Sc.)

geboren am 12.12.1995 in Borgomanero (Italien)



REVIEWERS:

1. PROF. DR. SEBASTIANO BERNUZZI (FRIEDRICH-SCHILLER-UNIVERSITÄT JENA)
2. PROF. DR. EMANUELE BERTI (JOHNS HOPKINS UNIVERSITY)
3. PROF. DR. MARK HANNAM (CARDIFF UNIVERSITY)

DEFENSE DATE: 25.09.23



i

Declaration of Authorship

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig, ohne
unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel
und Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt über-
nommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend
aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Prof. Sebastiano Bernuzzi

2. Dr. Alessandro Nagar

3. Dr. Sarp Akcay

4. Dr. Matteo Breschi

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder andere Personen) in
Anspruch genommen.

Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir
bekannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt
und nichts verschwiegen habe.

Ort, Datum Unterschrift



ii

Acknowledgements

As is customary, I would like to commence this dissertation by expressing my heartfelt
gratitude to the numerous individuals who have accompanied me on this journey.
First and foremost, I want to thank my mentor, Prof. Sebastiano Bernuzzi, for his
unwavering support and guidance throughout my academic career. His encouragement
and constructive feedback have been instrumental in my growth and development as
a researcher. I am also deeply indebted to Dr. Alessandro Nagar, who introduced me
to the captivating world of Gravitational Waves and patiently guided me at the outset
of my career.
I am immensely grateful to my colleagues, past and present, Matteo Breschi, Francesco
Zappa, Alejandra Gonzalez, Sarp Akcay, Ssohrab Borhanian, Piero Rettegno, Simone
Albanesi, and Gregorio Carullo, for their invaluable friendship and helpful advice.
Additionally, I wish to thank the members of the CoRe Collaboration, the Prometeo-
Virgo group, the Extreme matter and Waveform subgroups of the CBC group of LIGO-
Virgo-Kagra Collaboration (LVK), and the DFG-RTG Physik Combo group for their
insightful discussions and contributions.
I am deeply thankful to my friends and family, who have been a constant source of
encouragement and inspiration. Similarly, I owe boundless gratitude to my boyfriend
Nicolò and my parents Cristina and Mario, for their enduring love and support, which
sustained me through the toughest times of this journey. Thank you for always being
there for me, no matter how far.
I gratefully acknowledge support by the EU H2020 under ERC Starting Grant, no.
BinGraSp-714626 and from the Deutsche Forschungsgemeinschaft (DFG) under Grant
No. 406116891 within the Research Training Group (RTG) 2522/1. The compu-
tational experiments were mainly performed on the ARA cluster at the Friedrich-
Schiller-Universität Jena supported in part by DFG grants INST 275/334-1 FUGG
and INST 275/363-1 FUGG and ERC Starting Grant, no. BinGraSp-714626. This
research has made use of data obtained from the Gravitational Wave Open Science
Center (GWOSC) [1, 2], a service of LVK. LIGO is funded by the U.S. National
Science Foundation. Virgo is funded by the French Centre National de Recherche



iii

Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and
the Dutch Nikhef, with contributions by Polish and Hungarian institutes. KAGRA is
funded by Japanese National Research Foundation, with contributions by Korean and
Taiwanese institutes.



iv

Abstract

Rossella Gamba

Fast and faithful Effective One Body models for
gravitational waves from generic compact binaries

The detection and analysis of Gravitational-waves (GWs) from compact binary sys-
tems relies on accurate modeling of the expected signals emitted by such sources. In
this Thesis we develop computationally efficient yet accurate models for coalescing
binary black holes (BBHs) and binary neutron stars (BNSs), relying on the effective-
one-body (EOB) framework as implemented in the TEOBResumS family of models.
Building on its multipolar aligned-spin avatar, we improve TEOBResumS to include
the description of spins precession via an efficient hybrid post-Newtonian (PN)-EOB
scheme, thus obtaining a new state-of-the-art inspiral-merger-ringdown (IMR) model
for BBHs and the first multipolar precessing model for coalescing BNSs. We validate
our model in terms of numerical relativity (NR) faithfulness, finding that TEOBResumS
agrees to more than 97% with NR results over a considerable portion of the parameter
space. Its efficiency is demonstrated by directly employing the model in the parameter
estimation (PE) of a handful of events detected by the LVK collaboration (GW150914,
GW190412 and GW170817) without the need of surrogates or reduced models. Em-
ploying a flavor of TEOBResumS able to model the evolution of systems coalescing along
non-circular trajectories, we then study the phenomenology of the GWs that are pro-
duced by systems merging along initially unbound orbits. After comparing our wave-
forms with a set of highly eccentric NR simulations, we analyze GW190521 under the
hypothesis that it originated from a dynamical capture of two black holes (BHs). Our
results suggest that GW190521 may be the the first detected GW signal to correspond
to such a system. Finally, we refine the TEOBResumS description of matter effects:
after critically assessing the importance of resonant tidal effects for quasi-circular and
eccentric BNS mergers, we considerably improve the model performance by including
high-order PN information and few NR-informed parameters.
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Zusammenfassung

Rossella Gamba

Schnelle und genaue Effektive Ein-Körper-Modelle für
Gravitationswellen von generischen kompakten binärien

Der Nachweis und die Analyse von Gravitational-waves (GWs) aus kompakten Dop-
pelsternsystemen hängt ab von eine genaue Modellierung der erwarteten Signale,
die von solchen Quellen ausgesendet werden. In dieser Thesis entwickeln wir rech-
nerisch effiziente und dennoch genaue Modelle für die Koaleszenz von binary black
holes (BBHs) und binary neutron stars (BNSs), wobei wir uns auf das effective-one-
body (EOB)-Rahmenwerk stützen, das in der TEOBResumS-Modellfamilie implemen-
tiert ist. Aufbauend auf dem multipolaren Modell für ausgerichtete Spins verbessern
wir TEOBResumS, um die Beschreibung der Präzessionsbewegung der Spins durch ein ef-
fizientes hybrides post-Newtonian (PN)-EOB-Schema, wodurch wir ein neues hochmod-
ernes inspiral-merger-ringdown (IMR)-Modell für BBHs und das erste multipolare
Präzessionsmodell für koaleszierende BNSs erhalten. Wir validieren unser Modell im
Hinblick auf die numerical relativity (NR)-Treue und stellen fest, dass TEOBResumS

in einem beträchtlichen Teil des Parameterraums zu mehr als 97% mit den NR-
Ergebnissen übereinstimmt. Seine Effizienz wird durch die direkte Anwendung des
Modells auf die parameter estimation (PE) einer Handvoll von Ereignissen, die von der
LIGO-Virgo-Kagra Collaboration (LVK)-Kollaboration entdeckt wurden (GW150914,
GW190412 und GW170817), ohne die Notwendigkeit von Surrogaten oder reduzierten
Modellen. Unter Verwendung einer Variante von TEOBResumS, die in der Lage ist, die
Entwicklung von Systemen zu modellieren, die entlang nicht-kreisförmiger Trajekto-
rien koaleszieren, untersuchen wir die Phänomenologie von der GWs, die von Syste-
men erzeugt werden, die entlang ursprünglich ungebundener Bahnen verschmelzen.
Nach dem Vergleich unserer Wellenformen mit einer Reihe von hochexzentrischen NR-
Simulationen analysieren wir GW190521 unter der Hypothese, dass er aus einem dy-
namischen Einfang von zwei black holes (BHs) entstanden ist. Unsere Ergebnisse
legen nahe, dass GW190521 das erste entdeckte GW-Signal sein könnte, das einem
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solchen System entspricht. Schließlich verfeinern wir die TEOBResumS-Beschreibung
von Materieeffekten: Nach einer kritischen Bewertung der Bedeutung von resonan-
ten Gezeiteneffekten für quasi-kreisförmige und exzentrische BNS-Verschmelzungen
kritisch bewertet, verbessern wir die Leistung des Modells erheblich, indem wir PN-
Informationen hoher Ordnung und wenige NR-informierte Parameter.
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3

Introduction

Gravitational-waves (GWs), predicted by Albert Einstein’s theory of general relativ-
ity (GR) in 1916 [3], have been the subject of intense research for more than a century.
The first indirect evidence of their existence came in 1974 with the discovery of the
Hulse-Taylor pulsar [4, 5]. This binary system, consisting of two neutron stars (NSs),
provided strong support for the existence of GWs [6, 7] and validated the predictions
of GR. It was not until 2015 that the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) directly detected the gravitational waves emitted by two merging black
holes (BHs) [8]. This detection ushered in a new era of astronomy, demonstrating that
GWs can provide a unique way of studying some of the most violent events in the
universe, events that could not be observed through traditional telescopes. Since the
first historical detection, GW astronomy has produced a wealth of discoveries, thanks
to the combined contributions of LIGO and the European interferometer Virgo [9]. At
the time of writing this dissertation, the two observatories had confidently detected
about 90 binary black hole (BBH) systems [10, 11], two binary neutron star (BNS)
systems [12–14] and two mixed black hole-neutron star (BHNS) binaries [15]. These
detections have provided new insights into the astrophysical processes that govern the
evolution of compact objects and the formation of BHs and NSs [14, 16, 17], given
valuable information regarding cosmology [18] and the study of cold, dense matter [12,
19–26], as well as enabled tests of GR in a regime previously unexplored [27–29]. In
order to both maximize the chances of detection and extract the source parameters
from a signal, typical GW data analysis pipelines rely on matched filtering techniques
[30–34]. Such methods cross-correlate the noisy output of the detector with an “op-
timal” filter, which provides a representation for the GWs emitted by the source and
hidden within the detector noise. Waveform modeling and parameter estimation (PE)
are therefore irremediably intertwined in GW astronomy.

The general relativistic two-body problem The theoretical modeling of GWs
has a rich history that spans over a century. Its beginnings can be found in a seminal
paper by Albert Einstein, who predicted in 1916 – as a consequence of his theory of
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GR – that dynamical systems lose energy to gravitational radiation. He found that
the energy loss per unit time due to the emitted gravitational radiation is related to
the third time derivative of the system’s mass quadrupole moment, and proportional
to c−5. In the simple case of bound binary systems, then, the emission of energy
via GWs should lead to a progressive decrease of the distance between the objects,
causing them to inspiral and eventually merge. However, at the time, such losses were
considered to be of no consequence for any practical reason. In the 4th edition of the
famous Landau-Lifshitz book [35], the authors state that “it is necessary to note that
the numerical value of this energy loss, even for astronomical objects, is so small that
its effects on the motion, even over cosmic time intervals, is completely negligible".

Ignoring the subdominant effects of GW emission, shortly after the formulation
of GR many authors attempted to generalize the description of the motion of bodies
beyond the Newtonian level, assuming weak gravitational field (G≪ 1) and exploiting
a slow-motion and near-zone expansion (v/c ≪ 1, where v is the typical speed of the
system) [36–39]. The first successful endeavor to apply this “post-Newtonian (PN)”
formalism dates to 1938, when Infeld, Hoffmann and Einstein himself [40] computed
the equations of motions for an N-body system up to order c−2, i.e. 1PN level. This
formalism, as expected, proved to be accurate enough to describe e.g. the dynamics
of bodies in the solar system.

It was not until the 1970s that the first efforts to develop waveform models account-
ing for dissipation due to gravitational radiation (which as stated above is O(c−5), i.e.
2.5PN) began. This push towards more accurate modeling of the motion of bodies
in GR was prompted by the discovery of the Hulse-Taylor pulsar PSR 1913+16, con-
sisting of two compact objects each with a mass about 1.4 times the mass of the
Sun, and more in general of the discovery of strongly self-gravitating bodies (BHs and
NSs) [41, 42]. The measurement of a secular acceleration of the orbital motion of PSR
1913+16 sparked lively discussions within the scientific community [43], and re-ignited
interest in the experimental relevance of gravitational radiation. The 2.5PN accurate
equations of motion (EOM) for a binary system were obtained few years after the
discovery of Hulse and Taylor, and were instrumental in the correct interpretation of
the experimental data [44–46], which were found to agree remarkably well with the
theoretical predictions. Notably, together with the 2.5PN EOM, also came the ad-
dressing of some criticalities of PN theory which had been previously overlooked [43,
45], namely the treatment of the internal structure of the bodies and the regularization
of the relaxed Einstein field equations (EFE) (see e.g. [47, 48]). Given the success
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of PN theory and the renewed interest of the community in the relativistic two body
problem, considerable efforts went into the computation of 3PN-accurate corrections
to the EOM [49–51], which were completed at the beginning of the new millennium.
The computation of 4PN corrections, instead, began about 10 years ago relying on a
variety of techniques [52–64], and more recently 5 and 6PN terms have started being
derived [65–67]. Notably, beyond the approximation of the bodies as point masses, PN
expressions for finite-size effects such as spins (see e.g. [47] for a review) and tides [68–
77] have – too – been successfully computed.

As significant advancements in PN theory were being made, other methods of ap-
proximately solving the EFE for binaries also achieved notable successes. One notable
example is that of post-Minkowskian (PM) expansions [44, 78–86], which represent a
natural generalization of PN series, relaxing the low-velocity assumption. PM tech-
niques have been employed in the 1980s to clarify the computation of retarded in-
teractions within PN theory, and have recently regained popularity via their link to
(gravitational) scattering amplitudes and the scattering angle, which themselves can be
employed to obtain precious information on the description of bound systems. Drawing
inspiration from the motion of test masses on a fixed background, the Gravitational
Self Force (GSF) formalism accounts for the self-field effects that modify the leading
order (LO) geodetic motion of a small mass moving in the background geometry gen-
erated by a much heavier body [87–94]. This approach, pioneered by DeWitt and
Brehme in 1960 [95, 96], is based on an expansion of the metric in terms of the (small)
mass ratio ν of the system, and mainly finds applications in the description of extreme
mass ratio inspirals, such as the motion of stellar mass BHs around supermassive
BHs [97–99] 1. Currently, up to 2GSF corrections have been computed [93, 94].

Beyond purely analytical techniques, in 2005 numerical relativity (NR) – that is,
the endeavor of formulating and solving the EFE numerically on a computer – suc-
ceeded in evolving a BBH systems of comparable masses through inspiral, merger and
ringdown [100–102]. This breakthrough represented the culmination of half a century
of work, begun by Hahn and Lindquist [103] and carried on by a number of different
groups over multiple decades. Simulating BBHs and BNSs on a computer posed a
highly non-trivial challenge, which required alternative formulations of the EFE such
that they admit a well posed initial boundary value problem [100, 104–113]; stud-
ies in numerically stable gauge conditions [114–118]; efforts in specifying constraint-
satisfying initial data [102, 119–121]; attempts in extracting physical results in a gauge

1Note however recent studies have investigated the applicability of GSF for comparable-mass
systems [93, 94].
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invariant manner [121] and more. The overcoming of this challenge allowed the study
of the strong-field dynamics of a binary system in a regime which is inaccessible to PN
theory, and provided invaluable insight in the description of the plunge-to-postmerger
stages of both BBH and BNS systems. Such a wealth of information, however, comes
at an extremely high computationally cost.

Five years before the NR breakthrough, between 1999 and 2001, Buonanno and
Damour laid the foundations to the effective-one-body (EOB) formalism, developed
as an alternative to the PN expansion [122–127]. The aim of this framework was
that of overcoming the intrinsic strong-field limitations of PN theory, and provide an
analytical description of the motion and radiation of a binary system throughout its
entire evolution, from the early inspiral until the postmerger (or ringdown). The EOB
framework maps the general-relativistic two-body problem into the effective problem
of describing the evolution of a test mass moving in a (modified) Kerr metric. By
relying on a Hamiltonian formulation of the dynamics and on systematic resummation
of PN results, EOB models are faithful also in the high-velocity, strong-field regime.

Today, the state of the art in GW modeling involves the use of hybrid wave-
forms that combine the strengths of the PN, EOB, and NR models. The EOB-NR
semi-analytic family of waveforms for BBH and BNS [128–130] is based on the EOB
framework, which is informed by NR in both the conservative and dissipative sectors to
achieve robustness and predictivity also beyond merger [131–149]. Phenomenological
models fit hybrid EOB-NR waveforms to obtain computationally cheap, yet accurate,
waveforms which cover the coalescence from inspiral (for which no NR simulation is
available) up to merger [150–168]. Finally, NR surrogates [169–173] directly interpolate
via machine-learning techniques large sets of NR simulations, and are able to provide
fast and extremely accurate waveforms within their reign of validity. All these hybrid
models are accurate and computationally efficient, making them ideal for use in GW
data analysis. The quality and quantity of simulations themselves, too, has largely
improved in recent years, with a considerable effort spent towards the development
of evolution codes. Some notable examples are Cactus [174, 175] and the Einstein

toolkit [176] – on which the Llama [177, 178], GRHydro [179], WhiskyTHC [180] codes
are based – SpeC [181, 182], SpECTRE [183], BAM [121, 184], bamps [185, 186], GRChombo
[187], the recent GR-Athena++ [188], and more.

Observations of GWs from compact binary systems GW models find their
application in GW searches and PE pipelines. The former rely on large, pre-computed
banks of waveforms, covering a large portion of the parameter space (masses, spins
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etc.) of the binaries. A detection is claimed with a certain significance if the data of
the interferometers, once matched-filtered with the templates in the bank, surpasses a
threshold value of signal-to-noise ratio (SNR) [189–195]2. The latter, instead, aims at
computing the probability distributions for the parameters of a given signal in a data
set via Bayesian methods [32, 199, 200], such as Markov-chain Monte Carlo (MCMC)
and nested sampling (e.g. [201–204]). Thanks to the developments in modeling pre-
viously discussed, the LIGO-Virgo observatories have so far detected almost 100 GW
events. In the following, we summarize some of the properties of the ones we consider
the most relevant for the contents of this Thesis.

GW150914 [10, 205] was the first historic event observed by the LIGO collabo-
ration. The transient is compatible with the gravitational radiation emitted by the
merger of a non-spinning BBH system with total mass of ∼ 60M⊙, located ∼ 400 Mpc
away from the Earth. This detection established the existence of stellar mass BBHs,
proving also that such systems can merge within a Hubble time [206].

Two years after GW150914 the LIGO-Virgo Collaboration (LVC) observed GW170817,
the first GW signal from the coalescence of a BNS system. This detection was fol-
lowed by a short gamma-ray burst, GRB170817a [13, 207, 208], and a kilonova tran-
sient, AT2017gfo [209–217], with electromagnetic (EM) signatures from radio to X-ray
wavelengths. The follow-up of the source lasted for more than a year, and non-thermal
emission from the GRB170817A afterglow was also detected [e.g., 218, 219]. The com-
bined observation of the same event over these complementary channels marked the
birth of multi-messenger astronomy [13]. Combined analyses of the data allowed for
the determination of the first constraints on the equation of state (EOS) of NSs above
nuclear saturation density[e.g. 220–225], and allowed for a measurement of the Hubble
parameter via GWs [226].

GW190412 was the first highly asymmetrical BBH event (with mass ratio ≈ 3−4)
detected, which was also one of the louder events of the third LIGO-Virgo-Kagra
Collaboration (LVK) observing run with an SNR of 19 [227, 228]. Thanks to the
large mass ratio of the system, subdominant harmonics were confidently observed.
Further, the detection of GW190412 provided the opportunity to test GR in a regime
previously unexplored.

Finally, GW190521 is one of the most mysterious events detected so far. It is com-
patible with the quasi-circular merger of two heavy BHs, resulting in an intermediate-
mass BH [229, 230]. The masses of the component BH fall in the pair instability

2Unmodelled searches techniques have also been employed, see e.g. [196–198]
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Figure 1: Fractional deviation between the radius of a 1.4M⊙ NS with a specified EOS,
Rinj

1.4, and the reconstructed posteriors for a set of 18 different simulated GW signals. Each
signal is generated with an EOB model, and analyzed with a phenomenological (blue) and
a PN approximant (green). The under/over estimation in R1.4 can amount up to ±5% and

can be entirely ascribed to waveform systematics.

supernova mass gap, thus challenging standard BHs formation scenarios [17, 230–236],
and suggesting that the system was formed in a dense environment [237]. The pecu-
liar phenomenology of this event, characterized by short duration and almost complete
lack of a premerger signal, offers a number of possible interpretations to be proposed.
GW190521 was shown to be compatible with a quasi-circular merger with precessing
BHs; with a highly eccentric system [238, 239]; a boson-star head-on collision [240];
a high-mass BH-disk system [241] or an intermediate mass ratio inspiral [242] (see
also [243]).

Waveform systematics A major issue in the inference of the source parameters
from GW PE is the systematic error introduced by inaccuracies or lack of physics of
waveform approximants. Although significant waveform systematics (larger than sta-
tistical uncertainties) have yet to be observed, the analyses of GW190521, GW190412
as well as GW170817 highlighted that some noticeable differences among the source
parameters estimated via different models are already present, suggesting that such
error sources might represent a limiting factor in both single event and population
inferences. Focusing on BNS systems, recent studies [244–252] have pointed out that
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tidal parameters – which encode information on the star’s EOS – can be strongly bi-
ased depending on the employed matter and point mass descriptions of the waveform
approximant. As a consequence, while the NS radius could be constrained at ∼5%

level at SNR 80 with current generation detectors, systematics can be at the ∼10%

level, thus dominating the result (see Fig. 1) [251]. The scenario will be further exas-
perated by the increasing sensitivities of Nect Generation (NG) detectors [8, 9, 253–
256], in view of which GW models will require an accuracy increase of two to three
orders of magnitude [257] in order to perform systematics-free PE as well as offer a
robust baseline to perform accurate tests of GR. It is clear, then, that in order to
truly exploit the scientific potential of GW observatories, GW astronomy will have
to rely on physically complete and exceptionally accurate models, able to handle the
description of systems of various nature (BBHs, BNSs, BHNSs), with potentially large
spins and evolving along generic orbits.

Summary of contents This Thesis is centered around the modeling of the GWs
emitted by BBH and BNS within the EOB framework. We focus on the TEOBResumS

model, and include (or improve) the description of physical effects such as the preces-
sion of the orbital plane of the system due to the spins of the astrophysical objects
[258, 259], the amplitude and phase modulations that occur for highly eccentric orbits
[146, 260, 261], and the modifications to the GW phase and amplitude due to matter
effects for binary systems containing at least one NS [262–264]. We often validate the
model against NR waveforms from the Simulating eXtreme Spacetimes (SXS) [182,
265–276] and Computational Relativity (CoRe) [277, 278] collaborations, and ap-
ply the developed models to the analysis of real GW events via the Bayesian Jenaer
Software (bajes) pipeline [34].

The Thesis is organized as follows. Chapter 1 is dedicated to a brief review of the
EOB framework, as implemented within the TEOBResumS model. In Chapter 2, we ex-
tend TEOBResumS to describe waveforms emitted by precessing BBH and BNS systems,
and re-analyze the GW150914, GW190421 and GW170817 events. In Chapter 3, we
discuss the extension of TEOBResumS to model binary systems coalescing along generic
(non quasi-circular) orbits, focusing on dynamical captures of BBHs. We then con-
sider GW190521, and analyze its data under the assumption that it was generated by
the capture of two BHs in a dense stellar environment. In Chapter 4, we improve the
tidal sector of TEOBResumS. After critically evaluating the impact of resonant tidal ef-
fects via comparisons with high resolution NR waveforms, we first include higher order
PN effects as well as NR information in our model, and then develop a closed-form
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tidal approximant following the philosophy of the various NRTidal models. Finally,
in the Conclusions we summarize the main results presented in this work, and detail
future plans and perspectives. We include a brief discussion of waveform systematics
for BNS systems in App. A.
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Chapter 1

GIOTTO: a state of the art EOB
model for quasi-circular binaries

The EOB framework [83, 84, 122–125, 128, 279–283] represents an analytical alterna-
tive to PN expansions to obtain the waveform from and the dynamics of a compact
binary coalescence (CBC). This framework is based on three separate building blocks:
a Hamiltonian, which describes the conservative motion of a test mass in a deformed
Kerr (or Schwarzschild) metric, a radiation reaction force which accounts for dissi-
pative effects during the evolution of the system and a prescription of the waveform
through inspiral, merger and (for BBHs) ringdown. In this chapter, we briefly review
the basics of the EOB framework and introduce the EOB model that we build upon
in the following chapters, TEOBResumS. In particular, we will summarize the features
of the model denoted as TEOBResumS − GIOTTO, developed and discussed in detail in
Refs. [142, 144, 284–286]. A more in-depth discussion on the inclusion of matter effects
and generic orbits is left to future chapters.

In the following, we will assume that the two objects have masses (m1,m2), with
the convention that m1 ≥ m2. The mass ratio is defined as q ≡ m1/m2 ≥ 1. The total
mass is denoted by M = m1 +m2, the reduced mass by µ ≡ m1m2/M , the symmetric
mass ratio by ν ≡ µ/M and the mass fractions Xi ≡ mi/M , with i = 1, 2. The
spin vectors of the binary components are denoted as S1,S2, while the dimensionless
spins are χ1 ≡ S1/m

2
1, χ2 ≡ S2/m2. We will often use phase-space dimensionless

variables (r, pr∗ , φ, pφ), related to the physical ones (R,Pr∗ , φ, Pφ) by r = R/GM

(relative separation), pr∗ = PR∗/µ (radial momentum), pφ = Pφ/(µGM) (angular
momentum), and t = T/(GM) the dimensionless time. The radial momentum pr∗

is defined as pr∗ = (A/B)1/2 pr, where A and B are the EOB metric potentials (see



Chapter 1. TEOBResumS-GIOTTO 12

below). We denote the plus and cross GW polarizations as h+, h×, and define

h = h+ − ih× =
∑︂
ℓ≥2,m

−2Yℓmhℓm , (1.1)

where −2Yℓm are the −2 spin-weighted spherical harmonics and hℓm the multipolar
GW modes.

1.1 Hamiltonian

Orbital Hamiltonian The conservative EOB Hamiltonian is obtained by mapping
the conservative dynamics of the “real” system – described by the PN center of mass
Arnowitt-Deser-Misner (ADM) Hamiltonian ĤADM(q, p) – into the “auxiliary” geodesic
motion of a test particle of mass µ in an effective metric geffµν . The latter is given by

geffµν = −A(r; ν)c2dt2 +B(r; ν)dr2 + r2(dθ2 + sin2 θdφ2) , (1.2)

where A(r; ν) and B(r; ν) are the two EOB metric potentials. Inspired by the Bohr-
Sommerfeld quantization conditions and “thinking quantum-mechanically”, the poten-
tials are determined – at a given PN order – by (i) imposing that they reduce to
the correct (Schwarzschild) test-particle limit for ν → 0 (ii) computing the Delaunay
Hamiltonian in terms of action-angle variables for both problems1, and (iii) imposing
that

Eeff
µc2

= 1 +
Ereal

µc2
(1 + α1

Ereal

µc2
+ α2

(︂Ereal

µc2

)︂2

+ α3

(︂Ereal

µc2

)︂3

+ α4

(︂Ereal

µc2

)︂4

+ . . . ) , (1.3)

where α1, α2, α3, α4 etc. are parameters to be determined. An equivalent procedure
based on the determination of the canonical transformation linking EOB and ADM
coordinates can also be followed to the same end [124].

Further specifying the case to that of equatorial (θ = π/2) orbits, the above proce-
dure at a fixed PN order yields α1 = ν/2 and αi≥2 = 0, leading to the following EOB
Hamiltonian:

Heob =M

√︂
1 + 2ν(Ĥeff − 1) (1.4)

Ĥeff =
1

ν

√︂
A(1 + p2φu

2 +Q) + p2r∗ (1.5)

1Note that beyond 2PN accuracy one also has to account for a non-geodesic term Q in the effective
dynamics
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with u = 1/r.
Currently, A is known up to 5PN, while Q and D = AB are known to 5.5 PN,

respectively [287–290]. Their expressions (omitting non-local terms in Q) can be read
from e.g. Eq. (2) to (5) in [291]. The analytical results obtained are of striking
simplicity. It turns out, for instance, that the entire 2PN dependence of ĤADM – there
encoded in seven ν-dependent coefficients – is condensed in only two simple additional
contributions in A(r; ν) and B(r; ν), and similar “condensations” happen at higher PN
orders. This simplification can at least partially be referred to the reformulation of the
PN mechanics into the effective one, which in this sense represents a “resummation”
of the real dynamics. The fact that all αi with i ≥ 2 are exactly equal to zero further
suggests that the relation between the effective and the real energy is exactly quadratic.
This intuition was proved in Ref. [83], which also showed how the relativistic dynamics
of a two-body system is equivalent, at first PM order, to the relativistic dynamics of an
effective test particle moving in a Schwarzschild metric – thus motivating assumption
(i) above.

In order to further ensure robustness and predictivity also in the strong field regime,
additional resummations are performed on the metric potentials typically either via
Padé approximants or logarithmic functions [131, 142, 292]. The TEOBResumS-GIOTTO

model, for instance, resums A(r) via a Padé (1,5), while the D potential is resummed
with a Padé (0,3) [142]2. Notably, this model also augments the A(r) potential with a
pseudo 5PN NR-informed parameter, a6c , determined via comparisons to simulations
of non-spinning BBH coalescences.

Spinning systems The inclusion of spin-orbit effects in the EOB Hamiltonian
closely follows the procedure mentioned above [125, 126, 280, 281, 291, 293–296].
While the results listed here are specified to systems whose spins are aligned with
the orbital angular momentum, the techniques employed to obtain them are general
and have been extended to generic spins. PN results [297–299], expressed in center
of mass ADM coordinates, are mapped into Ĥeff by means of successive canonical
transformations [291, 295]. The resulting Hamiltonian reads:

Ĥeff =
√︂
A(1 + p2φu

2
c +Q) + p2r∗ + pφ(ĜŜŜ + ĜŜ∗Ŝ∗) . (1.6)

In the expression above, Ŝ = (X2
1χ1+X

2
2χ2), Ŝ∗ = X1X2(χ1+χ2) and ĜŜ, ĜŜ∗ are two

gyro-gravitomagnetic contributions, currently known up to 5.5PN [280, 293, 300–304],
2Different resummation choices have been explored for the generic-orbits model, see Ref. [291].
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which account for spin-orbit effects. These quantities are gauge-dependent, this free-
dom corresponding to the choice of a spin-supplementary condition. In TEOBResumS,
the DJS gauge [124, 280] is employed, which eliminates all explicit dependence of the
gyro-gravitomagnetic factors on the orbital angular momentum pφ

3.
Spin squared terms [305, 306] are instead included within the TEOBResumS EOB

Hamiltonian via the definition of a “centrifugal radius” rc [125, 296], related to the
usual radial variable r (at LO) through:

r2c = r2 + ã20(1 +
2

r
) , (1.7)

with ã0 = X1χ1 + X2χ2. Following intuitions deriving from the structure of the
Kerr Hamiltonian in Boyer-Lindquist coordinates, under the mapping r → rc the A
potential becomes

A(rc) = Aorb(rc; ν)
(1 + 2uc)

1 + 2u
, (1.8)

and, similarly

D =
r2

r2c
Dorb(uc; ν) . (1.9)

Following the same philosophy employed for the orbital potentials, both gravitomag-
netic terms are typically resummed and NR-informed [280, 281, 291, 294, 295, 307].
TEOBResumS employs an inverse-Taylor resummation [296] for both of them, resum-
ming their next-to-next-to-leading order (NNLO) expressions, and informing them
via a single phenomenological parameter, cN3LO, computed via phasing comparisons
against a handful of simulations of spinning BBH binaries [144, 285].

3This choice, while convenient for calculations, implies that the model is singular at the light ring,
see e.g. [292]
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1.2 Dynamics, radiation and inspiral waveform

The EOB Hamiltonian of Eq. 1.4 implies a set of four Ordinary Differential Equations
(ODEs) for the EOB variables r, φ, pr∗, pφ:

dr

dt
=

(︂A
B

)︂1/2∂ĤEOB

∂pr∗
(r, pr∗, pφ) (1.10a)

dφ

dt
= Ω =

∂ĤEOB

∂pφ
(r, pr∗, pφ) (1.10b)

dpr∗
dt

= −
(︂A
B

)︂1/2∂ĤEOB

∂r
(r, pr∗, pφ) (1.10c)

dpφ
dt

= 0 (1.10d)

with the last equation enforcing orbital angular momentum conservation. Given that
we are not interested in the geodesic motion of bodies, but rather want to study effects
due to radiation, the second ingredient that enters the EOB framework is a prescription
for the radiation reaction force, which accounts for dissipation due to GW emission
and modifies the Hamilton’s equations for pr∗ and pφ:

dpr∗
dt

=
(︂A
B

)︂1/2(︂
−∂Ĥ

EOB

∂r
(r, pr∗, pφ) + F̂r

)︂
, (1.11)

dpφ
dt

= F̂φ (r, pr∗, pφ) (1.12)

where F̂φ and F̂r represent the azimuthal and radial components of the radiation
reaction.

Once more, F̂φ and F̂r need to be resummed. Due to difficulties in robustly
resumming F̂r , and given that this quantity vanishes along circular orbits, a typical
choice is setting F̂r = 0. Regarding F̂φ, numerous techniques have been employed over
the years to obtain robust expressions for this quantity [144, 279, 308–311], the most
recent being based on a factorization and (inverse-Taylor or Padé) resummation of the
multipolar modes hℓm [144]. During the quasi-circular inspiral, F̂φ is given by:

F̂φ = − 1

Ω

∑︂
ℓ≥2

m=ℓ∑︂
m=−ℓ

Flm (1.13)

Fℓm =
1

8πG
(mΩ)2|Rhℓm|2 (1.14)
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where Fℓm is the (instantaneous) GW flux. The modes hℓm are then factorized as

hℓm = h
(N,ϵ)
ℓm Ŝ

(ϵ)
eff ĥ

tail
ℓm e

iδℓmρℓℓm . (1.15)

In Eq. 1.15,ϵ denotes the parity of ℓ+m, h(N,ϵ)ℓm is the LO Newtonian term, which can be
computed from the quadrupole formula [279]; S(ϵ)

eff is a source term, which equals Ĥeff

or the angular momentum, depending on the parity of ϵ [279]; ĥtailℓm accounts for tail
effects, and resums an infinite number of leading logarithms [308, 309]; eiδℓm corrects
the phase of the waveform accounting for terms not included in the tail term, such as
subleading logarithms; ρℓm is a “residual relativistic wave amplitude” [144, 279, 310,
311]. Appropriate factorization and resummation of the ρℓm terms is critical, and can
lead to sensible improvements of EOB waveforms [310, 311]. The choices followed by
TEOBResumS are listed, for all modes up to ℓ = m = 4 as well as the ℓ = m = 5 mode,
in Tab. I of Ref. [144]. The same table also lists the PN information included in both
the purely orbital and spinning sectors of the ρℓm. Once the multipolar modes are
computed, F̂φ is obtained by factorizing the LO contribution to Eq. (1.13), given by
the (2, 2) multipole, and accounting for horizon absorption (in case the binary is a
BBH):

F̂φ = −32

5
νr4ωΩ

5f̂ . (1.16)

where f̂ =
∑︁

ℓm Fℓ,m/F
LO
22 + f̂Horizon, and rω is a modified radial variable which satisfies

Kepler’s law during the adiabatic inspiral but differs from it during plunge.

1.3 Merger-ringdown completion

The EOB description of the dynamics of coalescing BHs involves analytical PN calcu-
lations, which rely on the assumption that the two BHs can be approximated as two
point masses separated by a sufficient distance. Although the resummations employed
are meant to mitigate these limitations, this approach might in principle appear lim-
ited to the inspiral to merger portion of the coalescence. This is, however, not the case.
Relying on intuitions coming from BH perturbation theory, in the 2000s Ref. [308] de-
vised a strategy to match the inspiral and plunge (“insplunge”) waveform – valid until
the peak of the EOB orbital frequency – with a ringdown template, characterized
by the superposition of quasi-normal mode (QNM) of the final BH and valid beyond
merger:

hℓm = hinsplungeℓm (t)θ(tmrg − t) + hringdown
ℓm (t)θ(t− tmrg) . (1.17)
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Initial comparisons with NR simulations demonstrated that this simple prescrip-
tion provided qualitatively correct predictions. With the increase in number and ac-
curacy of NR simulations, the EOB model for the last phases of the coalescences
evolved to directly include NR information [131, 139, 141, 269, 312–319]. Currently,
the TEOBResumS waveform is completed via Next-to-quasicircular corrections (NQCs)
corrections, which improve the behavior of the waveform during plunge, and a phe-
nomenological ringdown template.

NQCs Also known as “non-quasi-circular” corrections, they were originally intro-
duced in the study of the test particle limit [308]. In this regime, studies of the
transition from inspiral to plunge highlighted the necessity to account for non-circular
terms in the radiation reaction force F̂φ in order to obtain good agreement between
the “exact” numerical and analytical results [320]. They were subsequently first moved
to the h22 waveform, in place of the radiation reaction [321, 322], and then consistently
accounted for in both F̂φ and h22 [323]. More recent works included these terms also
to the higher-order (ℓ > 2) multipolar waveforms, for both spinning and non-spinning
binaries [284–286], and highlighted the importance of including them also in the higher
multipolar instantaneous fluxes to obtain good agreement with NR waveforms [324].

NQCs terms appear in the definition of the EOB multipolar waveforms (and, sim-
ilarly, in the fluxes Fℓm) as an additional multiplicative factor:

hℓm = h
(N,ϵ)
ℓm Ŝ

(ϵ)
eff ĥ

tail
ℓm e

iδℓmρℓℓmĥ
NQC
ℓm , (1.18)

with
ĥNQC
ℓm = (1 + aℓ,m1 nℓ,m1 + aℓ,m2 nℓ,m2 )× ei(b

ℓ,m
1 nℓ,m

3 +bℓ,m2 nℓ,m
4 ) . (1.19)

Here, (nℓ,m1 , . . . , nℓ,m4 ) are functions depending on first and second time derivative of r.
The aℓ,mi and bℓ,mi parameters, instead, are determined by solving a set of four algebraic
equations, imposing that the waveform amplitude and frequency (and their first time
derivatives) equal NR fits4 at a certain reference time close to the peak of the EOB
pure orbital frequency, i.e. the frequency obtained neglecting spins contributions.

In order to consistently employ these corrections within the radiation reaction
force, Ref. [323] introduced an iterative procedure, which requires the re-generation of
the EOB waveform, using the NQCs parameters determined at the previous iteration

4Such fits are employed only for the (ℓ,m) = (2, 2), (3, 1), (3, 3), (4, 1), (5, 5) modes. For the
(2, 1), (3, 2), (4, 2), (4, 3) and (4, 4) modes, the quantities needed to determine the NQC parameters
are extracted directly from the ringdown template described below.
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already during the dynamics. Given the heavy computational cost of this iterative
procedure, Ref. [286] introduced direct fits for the a(2,2)1 , a

(2,2)
2 , b

(2,2)
1 , b

(2,2)
2 coefficients as

a function of the intrinsic parameters of the source.

Ringdown waveform The ringdown template employed in TEOBResumS is given by
a QNM-factorized waveform, multiplied by a NR-informed correcting factor [139, 142,
144, 285, 317]:

hringdown
ℓm (τ) = e−σ1τ h̄ℓm(τ) , (1.20)

where σ1 is the complex frequency of the fundamental QNM and τ = (t− tpeakℓm ) ≥ 0.
Each h̄ℓm is further factorized as

h̄ℓm(τ) = Āℓm(τ)e
iϕ̄ℓm(τ) . (1.21)

For each multipole, Āℓm and ϕ̄ℓm are parameterized as in Eq. (5.4)-(5.10) of Ref. [285].
These templates depend on a total of five multipole-specific parameters, (Âpeak, ωpeak,
cA3 , cϕ3 , c

ϕ
4), which are fit to NR waveforms from the SXS catalog, and two global

parameters (Mbhf , abhf) which represent the mass and spin of the remnant BH. The
ringdown model is then completed by the determination of tpeakℓm , computed in terms
of the time-shift between the peak of each mode and the ℓ = m = 2 one.

1.4 Acceleration techniques

In order to compute an EOB waveform for a simple aligned-spins, quasi-circular bi-
nary it is then necessary to (i) obtain appropriate quasi-circular initial conditions [309,
325], (ii) solve the Hamilton equations given by Eqs (1.10) with the radiation reaction
of Eq. (1.16), (iii) compute the NQC-augmented modes and (iv) attach the ringdown
model (for a BBH system), (v) interpolate the waveform multipoles to a uniform-
in-time grid and compute the waveform polarizations. While delicate, steps (i), (iii)
and (iv) are computationally cheap. On the other hand, numerically integrating the
system (1.10) with standard techniques can prove to be rather computationally expen-
sive, especially for binaries which evolve for hundreds of thousands of orbital cycles.
Additionally, for such systems, the waveform multipoles interpolation can also require
long times. For these reasons, EOB-based models are generally considered to be very
accurate but poorly suited to be directly employed in GW PE.
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Post-adiabatic dynamics A number of techniques and approximations can be em-
ployed to reduce the computational cost of generating waveforms with EOB models.
Reduced order models (ROMs) and surrogates decrease the waveform evaluation time
by e.g. speeding up likelihood evaluations or interpolating between waveforms, with
non-appreciable loss of faithfulness to the original model [326, 327]. EOB waveforms
can alternatively be speeded up using dedicated analytical methods. Ref. [328] intro-
duced an iterative procedure, the post-adiabatic (PA) approximation, to obtain fully
analytical solutions to the EOB EOM throughout the entire inspiral, with consider-
able gains in speed. This procedure provides a solution to the system (1.10), and is
based on the simple intuition that for quasi-circular binaries at large separations the
radiation reactions force acts as a small correction to the conservative motion.

In the adiabatic limit, F̂φ = 0 and – along exactly circular orbits – pr∗ = 0 and
pφ = j0, the latter obtained imposing ∂rĤEOB = 0 at a given radius r. At first PA order,
radiation reaction is small but non-negligible, and pr∗ ̸= 0. The latter can be computed
by combining the EOB EOM for dr/dt and dpφ/dt into dpφ/dr = F̂φ(dr/dt)

−1. At 2PA
level, one computes the correction to pφ ̸= j0 using the previously obtained value of pr∗ ,
this time solving dpr∗/dr = (dpr∗/dt)(dr/dt)

−1. This process can then be repeated to
Nth order over a radial grid, with the time t and orbital phase φ that can be recovered
by quadratures.

Efficient frequency domain waveforms Waveforms obtained via PA approxima-
tion still need to be translated into the frequency domain (FD) to be directly applicable
to PE, thus requiring interpolation and Fast Fourier transform (FFT), which domi-
nate the waveform generation time. This computational hurdle can be overcome by
drawing inspiration from analytical PN approximants, which are turned into closed-
form FD templates by applying the stationary-phase approximation (SPA) [30, 47,
329–331]. While PN approximants become unfaithful as the binary motion becomes
non-adiabatic (high-velocities regime), the SPA itself was proven to be accurate at
least up to frequencies corresponding to the Last Stable Orbit (LSO), e.g. [329, 331].

Reference [332] applied the SPA to BNS EOB waveforms in order to obtain compu-
tationally inexpensive FD templates. The FD extension of a given time domain (TD)
EOB waveform is computed by applying the SPA to the single multipolar TD modes
hℓm(t) = aℓme

iϕℓm(t) to obtain

h̃SPAℓm = ÃSPA
ℓm eiΨ

SPA
ℓm =

aℓm (tf )√︂
ϕ̈ℓm (tf ) /2π

ei[ψf(tℓmf )−π/4] , (1.22)
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with ψf (t) ≡ 2πft−ϕ(t) and where tf denotes the stationary point of ψf (t). The two
GW polarizations in FD are then computed by combining the multipolar modes with
spin-weighted spherical harmonics.

The resulting FD TEOBResumS model retains the same accuracy as the TD TEOBResumS

up to merger for any low-mass signal, and for waveforms with initial frequency f0 ≲

15 Hz its speed is comparable to that of other commonly used phenomenological or sur-
rogate approximants. The model so obtained was applied to direct PE of GW170817
and GW190425 [14], employed for the construction of the efficient surrogate model
MLGW − BNS [333] and interfaced with a reduced-order-quadrature (ROQ) model to
speed up likelihood evaluations.

1.5 Validating an EOB model

The goodness of a GW model can be evaluated by comparing it to any set of NR sim-
ulations, which have not been employed to inform the model itself. Such comparisons
can be performed in a number of complementary ways in order to correctly assess and
understand the analytic systematics that affect a model. When working with EOB
models, in particular, it is important to recall that the waveform is the byproduct
of the description of the effective dynamics, which – too – can and should be tested
appropriately. Given that a large part of this dissertation will be dedicated to the
validation of various flavors of EOB models, we introduce here a few quantities which
will often be employed in future chapters.

Phasing The first kind of comparison that can be performed to benchmark a model
against NR is what is usually referred to as “TD phasing”, and simply consists in
superposing two waveforms – typically the h22 multipoles directly – in the TD. In
order to obtain meaningful comparisons, it is necessary to “align” the two waveforms,
i.e. to find a global time and phase shift (∆ϕ,∆t) such that

χ2 =

∫︂ tf

ti

[ϕh(t+∆t)− ϕk(t)−∆ϕ]2dt , (1.23)

is minimized. In Eq. (1.23), ϕh, ϕk are the (2, 2) GW phases of the two waveforms
(h, k) to be aligned, and (ti, tf ) specify the time window over which the minimization
is performed. Once the ∆ϕ and ∆t are known from the (2,2) mode, the other modes can
be aligned by employing the same ∆t and appropriately rescaling ∆ϕ. One example
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Figure 1.1: Example TD phasing. In the top panel we plot the real part of h22, and
compare TEOBResumS (red-dashed) with a BBH NR waveform from the SXS catalog (black)
with q = 8 and dimensionless spins χ1 = −0.9, χ2 = 0. The bottom panel, instead, shows
the relative amplitude difference ∆AEOBNR/ANR (orange) and the phase difference ∆ϕEOBNR

throughout the evolution of the binary. Dotted gray lines mark the alignment window, while
the dashed blue line indicates merger.

phasing is shown in Fig. 1.1, which compares TEOBResumS-GIOTTO to one q = 8 spin-
aligned SXS simulation, with χ1 = −0.9, χ2 = 0. The agreement between the two
waveforms can be quantified in terms of accumulated phase difference at merger, and
is – in this specific case – equal to ∼ −0.1 rad.

Although conceptually very simple, correctly aligning waveforms in the TD is an
art, more than a science. Slightly different choices of alignment window can lead to
rather different results. Usually, it is desirable to choose the alignment window so that
(i) it covers the early inspiral, where the waveforms are expected to agree well, (ii)
∆ϕ remains flat during the inspiral and (iii) |∆ϕ| increases monotonically throughout
plunge, merger and ringdown. Unfortunately, however, it is not always possible to
obtain satisfactory results following these simple guidelines.

Unfaithfulness To further quantify the agreement of a model with NR, it is stan-
dard to evaluate the EOB/NR unfaithfulness (or mismatch) F̄ , which describes the
global agreement between a model and the NR data, given the noise curve (or power
spectral density (PSD)) of a detector.

When waveforms are constructed exclusively via ℓ = |m| = 2 modes, the EOB/NR
unfaithfulness is defined as

F̄ = 1−max
ϕ0,t0

(hEOB, hNR)√︁
(hNR, hNR)(hEOB, hEOB)

, (1.24)
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Figure 1.2: Mismatches between TEOBResumS and the NR surrogate NRHybSur3dq8 for
1000 configurations of mass ratio and spins, computed as discussed in the text. The left
panel shows the distributions of the largest unfaithfulness – maximized over the total mass
M – for each configuration, while the right panel shows the unfaithfulness as a function of
M for spinning configurations, corresponding to the orange distribution shown on the left.

where (·, ·) denotes the Wiener inner product in waveform space between the EOB and
NR waveform and ϕ0, t0 are a reference time and phase, which carry no astrophysical
significance and are therefore maximized over. The action of the inner product on two
generic waveforms h, k is given by

(h, k) = 4ℜ
∫︂ fmax

fmin

h̃(f)k̃∗(f)

Sn(f)
df , (1.25)

where Sn(f) is the PSD of the detector. For the comparisons carried out in this Thesis,
we typically employ either the Einstein Telescope PSD [334], or the advanced LIGO
PSD of [335]. Unless otherwise specified, fmin and fmax are instead taken as the initial
frequency of the NR simulation and the merger frequency (for BNS systems) or an
arbitrarily high frequency threshold covering also the ringdown (e.g., 2048 Hz) for
BBHs.

For instance, the unfaithfulness of TEOBResumS against the entirety of the simula-
tions of aligned-spins BBHs of the SXS catalog can be inspected from Fig. 6 of [144].
When considering waveforms built with the ℓ = |m| = 2 mode only, the largest values of
F̄ are obtained for systems with large spins, see e.g. Fig. 4 of [144]. Figure 1.2, instead,
displays the unfaithfulness of TEOBResumS against the NR surrogates NRHybSur3dq8,
valid for systems with q < 8 and spins |χi| < 0.8. We consider 1000 different configu-
rations of mass ratio and spins, and for each compute the unfaithfulness over a range
of masses M ∈ [40, 300], from 20 to 2048 Hz with the aLIGO PSD.
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Gauge-invariant Energetics Differently from Phenomenological models or surro-
gates, the EOB framework is based on the description of an effective dynamics, that
of a test particle on a deformed Kerr metric, with a known mapping between the real
and effective dynamics (see Eq. (1.6)). Therefore, although the EOB variables r, φ, pr∗
are coordinate-dependent, EOB models naturally compute the evolution throughout
the coalescence of two gauge-invariant quantities: the system’s (binding) energy Eb

and its angular momentum ĵ:

Eb ≡
E −M

µ
=
νĤEOB − 1

ν
, (1.26)

ĵ ≡ pφ . (1.27)

These values can be compared to the same quantities obtained from NR:

Eb ≡
M0

ADM −∆Erad −M

µ
(1.28)

ĵ ≡ J 0
ADM −∆Jrad

Mµ
(1.29)

where (M0
ADM,J 0

ADM) denote the total initial ADM mass-energy and angular momen-
tum and (∆Erad,∆Jrad) are the radiated energy and momentum, which can be evalu-
ated via direct integration of the waveform multipoles (see e.g. Eq. 3-4 in [336]). These
comparisons can be used to directly test the goodness of the EOB dynamics, i.e. of
the effective Hamiltonian and radiation reaction [285, 292, 336–338]. For instance,
different mass ratio regimes give complementary information on the conservative and
dissipative dynamics (recall that F̂φ ∼ ν). Further, they can be used to test the im-
pact of the NR information on the waveform and its consistency with the underlying
dynamics.
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Chapter 2

Hybrid PN-EOB model for generic
spins binaries

The accurate modelling of the GWs emitted by coalescing BBH and BNS systems
represents a significant challenge in current GW astronomy, due to the complexity
of the physical effects to be described. Among them, in the past decade the GW
community has dedicated significant attention to the phenomenon of spins precession,
which arises when the binary’s angular momentum and spin vectors are not aligned,
leading to modulations in the amplitude and phase of the GW signal. According to
stellar evolution theory, BBHs may be affected by spins precession depending on their
formation channels: while BBH systems formed in galactic fields should possess spins
mostly aligned with the orbital angular momentum [339–344], dynamically-formed
BBHs are expected to have randomly oriented spin tilts [345–348].

These considerations highlight the need of waveform models that properly capture
precession effects. In this context, a vast array of methods has been developed over the
last decade, including analytical approximations, numerical simulations, and hybrid
methods. Between them, some of the most notable waveform models for precessing bi-
naries are those belonging to the Phenom family [160–166], those based on surrogates
of NR [172] and those based on the EOB framework [138, 258, 349]. In this chapter we
focus on the description of precessing compact binaries within the latter, and improve
on the TEOBResumS model first presented in Ref. [258]. In particular, we extend the
precessing waveform model to (i) incorporate higher modes in the waveform for both
BBH and BNS; (ii) incorporate the ringdown description for BBH, so to obtain a com-
plete inspiral-merger-ringdown (IMR) approximant, (iii) provide an alternative, fast,
frequency-domain approximant for BNS inspiral-merger and long BBH inspiral events
based on the nonprecessing approach of Ref. [251]. TEOBResumS IMR precessing model
for BBH is validated by directly computing (mis)matches against a significant number
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of NR SXS waveforms and against the waveform model NRSur7dq4. We also indirectly
test its performance against the state-of -the-art IMRPhenomXPHM model, by comparing
EOB/NR and Phenom/NR mismatches. Finally, we perform full PE to further com-
pare the model to other existing approximants, and estimate the source parameters of
the BBH merger events GW150914 [205], GW190412 [228], and GW170817 [12], the
first BNS inspiral-merger event.

On top of the standard quantities introduced in Chapter 1, we recall here two
definitions that pertain to the mass-weighted projections of the spins parallel and
perpendicular to the Newtonian orbital angular momentum of the system LN. For
q ≥ 1, the parallel scalar is given by [125, 350, 351]

χeff ≡(X1χ1 +X2χ2) · L̂N

=(Ŝ+ Ŝ∗) · L̂N

= ã0

(2.1)

where L̂N ≡ LN/|LN|. This is a conserved quantity of the orbit-averaged precession
equations over the precession timescale [351]. The perpendicular scalar, first intro-
duced in Ref. [164], is defined as

χp ≡ m−2
1 max

{︃
|S1,⊥|, q

4 + 3q

3 + 4q
|S2,⊥|

}︃
, (2.2)

where Si,⊥ ≡ Si − (L̂N · Si)L̂N are the components of Si perpendicular to L̂N for
i = 1, 2.

2.1 Twist and Reference frames

In binaries containing spinning objects, the spin-orbit and the spin-spin interactions
contribute significantly to the phase evolution and can modulate distinguishably the
amplitude of the emitted GWs. When the spins of the binary components S1,S2 are
not aligned with the orbital angular momentum L of the system, all three vectors
precess around the total angular momentum vector J = L + S1 + S2 [352]. Accord-
ingly, the orbital plane of the binary is not fixed throughout its evolution, but rather
precesses, inducing non-trivial modulations in the gravitational waves detected by an
inertial observer. In this scenario, the dominant emission of gravitational radiation
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happens along the direction perpendicular to the orbital plane, i.e., along the Newto-
nian orbital angular momentum LN [353–356]. It is then possible to identify a special
“co-precessing” non-inertial frame, which follows the evolution of LN. In this frame, the
modulations of amplitude and phase due to precession effectively disappear [357] and
the waveform can be well approximated by that emitted from an aligned spin system.
Then, given the evolution of the co-precessing frame (i.e., of the vectors S1,S2 and LN)
and a co-precessing waveform, it is possible to rotate the latter into the inertial source
frame and obtain the associated precessing waveform [353, 354, 358]. This technique
is usually referred to as the “twist”, due to the time-dependent rotation which relates
the two frames. To perform the twist, one can in principle use either the frame set by
the Newtonian orbital angular momentum LN or L. Since, by definition, LN remains
orthogonal to the orbital plane, we employ this frame for the twist. Reference [359]
has shown that the differences in the L-frame vs. LN-frame twisted waveforms as com-
pared with precessing NR waveforms are marginal. Accordingly, we define our inertial
source frame such that its z axis is aligned with the initial (t = 0) Newtonian orbital
angular momentum LN(0), and the x axis is identified by the vector r(0) connecting
the bodies. Then, following usual conventions, we choose the line of sight vector N̂ to
have spherical angles (ι, π/2−ϕref) and define the initial spin components, S1(0),S2(0),
in this so-called L0 frame. We then track the evolution of LN with respect to this frame
via its spherical angles α and β, defined using the Cartesian components of the unit
vector L̂N

α =arctan(L̂Ny/L̂Nx), (2.3)

β =arccos(L̂Nz). (2.4)

A third angle γ, which identifies the co-precessing frame univocally with respect to
the L0 frame [355], is given by

γ̇ = α̇ cos β, (2.5)

where the overdot denotes differentiation with respect to time. With α, β, and γ, the
twisted (precessing) multipolar waveform hTℓm is obtained via an Euler rotation

hTℓm =
m∑︂

m′=−m
hAℓm′D

∗(ℓ)
m′,m(−γ,−β,−α), (2.6)
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where hAℓm are the spin-aligned waveforms in the co-precessing frame andD∗(ℓ)
m′,m(−γ,−β,−α)

are the Wigner D matrices, defined as

D
(ℓ)
m′,m(α, β, γ) = e−im

′αe−imγdℓm′,m(β) (2.7)

with

dℓm′,m(β) =

kf∑︂
ki

(−1)k−m+m′

×
√︁

(ℓ+m)!(ℓ−m)!(ℓ+m′)!(ℓ−m′)!

k!(ℓ+m− k)!(ℓ− k −m′)!(k −m+m′)!

×
[︂
cos

β

2

]︂2ℓ−2k+m−m′[︂
sin

β

2

]︂2k−m+m′

.

Finally, the plus and cross GW polarizations h+ and h× are obtained from the twisted
modes as

h+ − ih× =
∑︂
ℓ,m

hTℓm −2Y
ℓm(ι, π/2− ϕref) , (2.8)

where −2Y
ℓm(ι, ϕ) are the standard spin weight s = −2 spherical harmonics. Our

baseline model for the spin-aligned co-precessing waveforms is TEOBResumS v2 [144,
285], a multipolar EOB model for quasi-circular BBH and BNS coalescences.

2.2 Spin dynamics

2.2.1 Time evolution of the orbital frequency

To obtain the time and frequency evolution of the Euler angles α, β and γ we follow
Ref. [258] and solve the PN spin-evolution equations for S1,S2, and L̂N at the next-
to-next-to-next-to-next-to-leading order (N3LO). To avoid clutter, we present the
evolution equations up to the next-to-leading order (NLO), which can be cast into
classical precession equations

Ṡi = Ωi × Si, (2.9a)
̇̂LN = ΩNLO × L̂N, (2.9b)
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for i = 1, 2. The precession frequencies are given by

Ω1 =v
5
[︂
ν

(︃
2 +

3

2

X2

X1

)︃
L̂N +

v

2

{︂
S2 − 3

[︂(︂X2

X1

S1 + S2

)︂
· L̂N

]︂
L̂N

}︂]︂
, (2.10a)

ΩNLO =− v

ν
(Ω1 +Ω2) , (2.10b)

where v is the relative speed of the binary components and Ω2 is obtained from Ω1

with 1 ↔ 2. The N3LO expression for this system of nine coupled ODEs is explicitly
given in equations (4a)-(4b) and (7) of Ref. [258], together with an expression for the
evolution of the orbital frequency under radiation reaction for which we employed a
TaylorT4-resummed PN expression in our previous work: ω̇PN [331, 357]. Specifically,
we employed the expressions from Ref. [360] up to 3.5PN, which are integrated together
with the spin ODEs in order to evolve the system under radiation reaction.

2.2.2 Coupling of the PN spin evolution to the EOB dynamics

When analyzing long signals, neglecting the evolution of the spins in the aligned-spin
dynamics can lead to non-negligible errors. In principle, one should evolve the full
EOB equations, coming from a general Hamiltonian where the orbital plane is not
fixed. Similarly, the waveform and radiation reaction of the model, too, would need
to be extended to incorporate the effect of the planar components of the spins. This
general approach would increase the already significant computational cost related
to the solution of the Hamilton equations. Luckily, it was found [361] that good
agreement with NR waveforms can be achieved by simply replacing in the waveform
and radiation reaction the fixed values of χi with the time-dependent projections of
the spin vectors onto the orbital angular momentum, i.e., L̂N(t) · χi(t).

In our model, we (optionally) employ the spin dynamics to compute the projections
of the spins onto L̂N. We proceed as follows: (i) the PN spin-dynamics is independently
evolved with the N3LO description of the precession equations with ω̇PN detailed
above; (ii) we interpolate the spin and angular momentum components as functions
of the “spin” orbital frequency ω coming from our PN evolution; (iii) at each step of
the EOB evolution, we compute the EOB orbital frequency and evaluate χi,z(ω =

ωEOB) ≡ L̂N(ω = ωEOB) · χi(ω = ωEOB) via the splines calculated above; (iv) finally,
these quantities are inserted into the appropriate places in the EOB dynamics. This
generic procedure is applied both when numerically evolving the ODE system and
when applying the PA approximation of Ref. [284].
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To gauge the impact of the spins’ projection on the waveform, we compute the
mismatches (see Sec. 2.3.1) obtained between TEOBResumS waveforms with an inclina-
tion of ι = π/3, evolved either with or without spin projection, for a set of waveforms
with q ∈ [1, 6], M ∈ [50, 225]M⊙, χp ∈ [0., 0.8] and χeff ∈ [−0.45, 0.65]. We find that,
although a large portion of the mismatches lie below the 10−3 threshold, the effect of
the spin projection can be relevant for binaries with large in-plane spin components,
for which the parallel components of the spins to the orbital angular momentum varies
more, and can lead to mismatches larger than 1%.

2.2.3 BBH Merger-Ringdown

To model the final state of the BBH one can employ the fits of Ref. [319] with mi-
nor modifications to account for the non-null planar components of the BHs’ spins.
Following Ref. [156], we define the remnant spin as:

χf =
√︂
(χf ||)2 + (S⊥/Mf )2, (2.11)

where χf || andMf are estimated from the fits of Ref. [319] using the parallel component
of the spins to the orbital angular momentum at merger, and S⊥ is given by

S⊥ = S1(ωmrg)− S1||(ωmrg) + (1 ↔ 2) . (2.12)

Figure 2.1 displays the accuracy of the fits when compared to a handful of SXS
NR simulations. We also compare the output of the fit above to the values obtained
with the “simple” aligned-spin fit, and with the fits provided by the surrogate model
of Refs. [172, 362]. Notably, while the mass of the remnant is approximated (by all
approaches) at the level of 10−3, the difference |χNR

f −χsurr
f | is up to ten times smaller

with respect to the other approaches. This result is not surprising, and is in line with
the discussion presented in Ref. [172]. Therefore, although all the results presented
in this paper will employ Eq. (2.11), we also implemented the option to take χf and
Mf as input parameters. This way, by externally computing the remnant properties
with the surrogate model (using the surfinBH package), we can easily obtain a precise
description of the final BH.

For a complete model of the ringdown phase, it is necessary to also extend the Euler
angles α, β, γ beyond the merger. The precession of the orbital momentum effectively
stops at the merger, and the direction of the spin of the final BH can be thought of as
constant, and well-enough approximated by the direction of the angular momentum at
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Figure 2.1: Relative differences in the dimensionless spin χf of the final BH (left) and its
mass Mf (right) between NR simulations and fits of Ref. [172] (blue stars) and the various
Jimenez-Forteza (JF) fits of Ref. [319]. The latter are evaluated with the initial z component
spins (red crosses) or corrected to account for the precession by employing the spins at a
reference time before merger like in Eq. (2.11). While the remnant mass is always estimated
at the order of 10−3 and the two methods give comparable results, the surrogate fit for the
remnant spin is up to an order of magnitude more precise. In the left panel, light (dark) gray

bands highlight the 5% (1%) relative error interval; in the right panel the 1‰ one.

merger. Therefore, one option is to simply prolong the angles by fixing them to their
value at merger. Alternatively, it was observed that the evolution of the α angle can be
approximately described through the difference of the ℓ = 2 fundamental QNMs [138,
363]

α(t) =

⎧⎨⎩α(tmrg) + (ω220 − ω210)(t− tmrg), χf · L̂Nf > 0,

α(tmrg) + (ω2−10 − ω2−20)(t− tmrg), χf · L̂Nf < 0,
(2.13)

where χf = χ1(ωmrg) + χ2(ωmrg) and ωℓm0 are the fundamental QNMs for ℓ = 2 and
m = 2, 1,−1,−2 [312]. One can then fix β to its value at the merger. γ is subsequently
computed by integrating its evolution equation (2.5). Both options for the post-merger
evolution of α are currently available in TEOBResumS public code, and users can choose
between one or the other. The default behavior is given by the QNMs extension,
which gives marginally better results when computing mismatches between EOB and
NR waveforms (see Sec. 2.3).

2.2.4 BNS Frequency-domain waveforms

As discussed in Chapter 1.4, spin-aligned EOB models can be straightforwardly ex-
tended to the FD by applying a SPA to the multipolar modes hℓm(t). The FD,
spin-aligned modes h̃ℓm(f) can then be twisted and combined into plus and cross
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Figure 2.2: Comparison between TD and FD models. Left: phase differences between the
FD cross polarizations h× obtained either by twisting SPA-transformed modes or directly
via FFT. The three fiducial BNS systems considered have varying mass ratios q = {1, 1.5, 2}
and fixed spins, total masses and tidal parameters. Vertical colored lines denote the merger
frequency. At merger, the largest phase difference amounts to ≈ −0.2 radians. Right: TD

plus polarizations corresponding to the q = 2 system displayed in the left panel.

polarization as [166]:

h̃+ =
1

2

∑︂
ℓ≥2

∑︂
m′>0

eim
′γh̃ℓm′ ×

ℓ∑︂
m=−ℓ

[︂
e−imαdℓmm′−2Y

ℓm + (−1)ℓeimαdℓm−m′−2Y
ℓm∗

]︂
,

(2.14a)

h̃× =
1

2

∑︂
ℓ≥2

∑︂
m′>0

eim
′γh̃ℓm′ ×

ℓ∑︂
m=−ℓ

[︂
e−imαdℓmm′−2Y

ℓm − (−1)ℓeimαdℓm−m′−2Y
ℓm∗

]︂
.

(2.14b)

The sign differences in our expressions with respect to those presented in Ref. [166]
come from the EOB convention that the phase of the TD multipoles hℓm with m > 0

is positive. Hence, h̃ℓm(f) = 0 for m > 0 and f < 0. The Euler angles α, β, γ are all
evaluated at the SPA frequencies 2πf/m.

Figure 2.2 displays the phase difference in the frequency domain of the cross po-
larization h× computed between the FFT of precessing TEOBResumS TD signals and
the SPA-based model described above. We consider three nominal BNS systems with
fixed spins χ1 = (−0.6, 0.1, 0.2), χ2 = (−0.1,−0.5,−0.3) inspiralling from an initial
frequency f0 = 20 Hz, tidal polarizability parameters Λ1 = Λ2 = 400, total mass
M = 3M⊙ and mass ratios of 1, 1.5, and 2. For all three cases considered, we find
that the phase difference at the merger (represented by the vertical lines) lies below
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0.2 rad. The visual agreement in the TD between the inverse-FFT’d SPA waveform
and the TD template can instead be inspected from the right panel of Fig. 2.2. The
conclusions of Ref. [332] regarding the validity of the SPA up to merger can be ap-
plied also to precessing BNS systems. At the same time, the SPA-based model is less
computationally expensive than its TD counterpart thanks to the non-uniform time
grid which is employed for the inspiral. Moreover, and more importantly, it opens
to the possibility of generating waveforms directly over a non-uniform frequency grid,
optimized for PE, allowing the application of techniques such as relative binning [364]
or multibanding [365].

2.3 Validation

In this section we compare our EOB model to (i) the set of 99 precessing SXS simula-
tions also employed in Ref. [156], supplemented with the longer precessing simulations
SXS : BBH : 1389 to SXS : BBH : 1409, and (ii) 5000 NRSur7dq4 (henceforth NRsur) wave-
forms, spanning q ∈ [1, 4] and |χi| ∈ [0.1, 0.8] yielding a range of −0.8 ≤ χeff ≤ 0.8 and
0.0 ≤ χp ≤ 0.8. We compute the sky-averaged faithfulness (see Sec. IV of Ref. [366])
for all considered templates. Then, for a selected number of systems, we align the time-
domain polarizations and compute the cumulative phase difference of the waveform
h = h+− ih×. Overall, we find that the maximum mismatch between TEOBResumS and
SXS is obtained for very asymmetric, highly spinning binaries. The same statement
holds for NRsur− TEOBResumS mismatches.

2.3.1 Faithfulness

As discussed in Sec. 1.5, the agreement between a target model s and a generic template
h is usually quantified through the faithfulness (or match) F , defined as the normalized
inner product between s and h, maximized over the reference time and phase t0, φ0,
see Eq. (1.24). However, when the template waveform incorporates higher modes or if
the system is precessing, this definition is not completely independent of the extrinsic
parameters of the binary. In general, the target and template waveforms are obtained
from the plus and cross polarizations as:

ki = F+(θ
i, ϕi, ψi)k+(ι

i, φi0, t
i
0,Θ

i) + F×(θ
i, ϕi, ψi)k×(ι

i, φi0, t
i
0,Θ

i), (2.15)
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where i = s, h and θ, ϕ, ψ, ι,Θ are, respectively, the right ascension, declination, po-
larization, inclination, and intrinsic parameters (masses, spins, tidal parameters etc.)
of the binary system. Equation (2.15) can be rearranged into

ki = A(θi, ϕi)[ cosκ(θi, ϕi, ψi)k+(ι
i, φi0, t

i
0,Θ

i) + sinκ(θi, ϕi, ψi)ki×(ι
i, φi0, t

i
0,Θ

i)] ,

(2.16)

where κ denotes the effective polarizability and

eiκ(θ,ϕ,ψ) = [F+(θ, ϕ, ψ) + iF×(θ, ϕ, ψ)] /A(θ, ϕ) , (2.17)

A(θ, ϕ) =
√︂
F 2
+(θ, ϕ, ψ) + F 2

×(θ, ϕ, ψ) . (2.18)

When only (2,±2) modes are considered, it can be shown that Eq. (1.24) depends on
extrinsic parameters only through overall amplitude and phase factors. On the other
hand, when higher modes are considered, the dependence on the extrinsic quantities
is nontrivial.

We define the (template) sky-maximized (SM) faithfulness between the target
strain and the waveform template as

FSM = max
th0 ,φ

h
0 ,κ

h

(s, h)√︁
(s, s)(h, h)

, (2.19)

where we dropped the explicit dependence on intrinsic and extrinsic parameters in the
right-hand side. Accordingly, the unfaithfulness is given by F̄SM = 1 − FSM . This
quantity is computed following the procedure outlined in Sec. IV of Ref. [366]. The
maximization over κ is performed analytically, while t0 is maximized via the inverse
FFT. The maximization over the reference phase φ0 is performed numerically through
a dual annealing algorithm, similar to what is done in Ref. [166]. Finally, we mention
that for precessing systems one additional degree of freedom remains: the freedom to
perform a rigid rotation of the in-plane spin components about the initial ẑ axis, which
is equivalent to choosing different initial conditions for the α (and γ) Euler angles. We
further maximise FSM over such a rotation by once more relying on a dual annealing
algorithm. We note that this procedure differs from the one employed in Ref. [138],
where instead the initial (reference) frequency is varied, and the initial in-plane spin
components are kept fixed to their nominal target value.

Once FSM (or, equivalently, F̄SM) is computed as described, we normalize it over
the SNR of the signal and further average over the sky angles of the target waveform,
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Figure 2.3: NR/EOB mismatch, F̄SM, for the 99 SXS short precessing simulations computed
with strain mode content ℓ ≤ 4+(5,±5), plotted as a function of the total mass of the system
and computed with a fixed inclination of the binary of ι = {0, π/3, π/2} (top, middle and
bottom panels, respectively). A total of ten configurations have F̄SM which reaches up to

3%. The dashed horizontal lines in each panel mark the 3% and 1% thresholds.

in order to completely marginalize over any dependence of the mismatch on the sky
position and obtain values which depend exclusively on the intrinsic parameters of
the source. We consider Nφ values of φs0 ∈ [0, 2π) and Nκ values of κs ∈ [0, 2π), and
present the average value over Nφ ×Nκ values.

2.3.2 BBH IMR EOB/NR comparison

To validate the performance of our model, we compare our waveforms with a set
of selected SXS NR simulations. In particular, we focus on two different sets: 99
“short” waveforms, with χp ≲ 0.84, χeff ∈ [−0.45, 0.65] and q ≲ 6, and 21 “long”
simulations with χp ≲ 0.49, χeff ∈ [−0.2, 0.3] and q ≲ 4, spanning from ∼ 60

to ∼ 146 orbits. To translate the NR data from the NR frame into the source
frame described in Sec. 2.1, we make use of the public catalog tools available at
[367] and described in, e.g., Ref. [368]. For all unfaithfulness computations, we con-
sider total detector-frame masses M ∈ [50, 225]M⊙, employ the zero-detuned high-
power PSD of Ref. [335] and average F̄SM over a grid κNR = {0, π/2, π, 3/2π} and
φNR
0 = {0, 2π/5, 4π/5, 6π/5, 8π/5}. We perform our computations over the frequency

range [fmin, 2048] Hz, where fmin is the initial GW frequency of the NR waveform,
expressed in physical units.

“Short” SXS simulations Figure 2.3 shows the sky-averaged F̄SM as a function
of the total binary mass for three different choices of the binary inclination, ι =

{0, π/3, π/2}. We find that when ι = 0 (π/3, π/2), for all but six (four) notable simu-
lations the EOB/NR unfaithfulness lies below the 3% threshold for all values of masses
considered, and that 80% (76%, 68%) of the averaged F̄SM computed are smaller than
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Figure 2.4: Visual comparison between the h+ NR waveforms (black, solid curves) com-
puted from SXS:BBH:0057 (left panel) and SXS:BBH:0632 (right panel) and the TEOBResumS
waveforms obtained with the same intrinsic parameters (red, dashed), inclination ι = π/3
and all modes with ℓ ≤ 4. The phase difference ∆ϕEOBNR = ϕNR − ϕEOB is shown in cyan,
and the relative amplitude error ∆AEOBNR/ANR in orange. Merger is indicated by a black
dotted line. The waveforms are aligned by minimizing the phase difference in the time win-
dow highlighted in gray, see Eq. (30) of Ref. [168]. Both systems are characterized by very
large in-plane spins at their initial reference frequency, with SXS : BBH : 0057 also having
q > 5. While the phase difference oscillates during the inspiral and generally remains below
1 rad, the dephasing and the amplitude relative differences increase at merger, indicating

that an improved description of the final moments of the coalescence will be required.

1%. The configurations for which the EOB/NR faithfulness lies above the 3% thresh-
old are highly asymmetrical (q > 5) or strongly precessing (χp > 0.7) systems, with
SXS : BBH : 0165 being the most challenging one, as it is a (q, χeff , χp) = (6,−0.45, 0.77)

coalescence. In Fig. 2.4 we consider two more of these systems (SXS : BBH : 0057 and
SXS : BBH : 0632), and align the time-domain NR and EOB waveforms by minimiz-
ing their phase difference ∆ϕEOBNR = ϕNR − ϕEOB over a chosen time-window (see
e.g. [168]). We find that the EOB waveform correctly captures the behavior of the NR
waveform up to few orbits before merger, where differences in phase and amplitude
start to grow.

For comparison, we also compute F̄SM between the set of NR simulations here
considered and the waveform approximant IMRPhenomXPHM [166], with fixed inclina-
tion ι = π/3. Figure 2.5 shows the results of this calculation. We find that F̄EOB

SM

varies between ∼ 0.002 and 0.06, with the distribution median peaking at 0.007; while
F̄XPHM
SM spans the interval ∼ 0.002 to 0.1, with a median of 0.005. Overall, the two ap-

proximants give consistent results, with TEOBResumS generally performing marginally
worse at high masses, and marginally better for M < 75M⊙.
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Figure 2.5: Left panel: the distribution of NR/TEOBResumS and NR/IMRPhenomXPHM mis-
matches for the 99 SXS short precessing simulations of Fig. 2.3, at a fixed binary inclination
of ι = π/3. The black dashed and the dotted black vertical lines mark the 1% and 3%
thresholds, and dashed colored lines the 95th percentiles. We find that the performance of
IMRPhenomXPHM is comparable to that of our EOB approximant, with F̄EOB

SM falling in the
range 0.002− 0.06 with median at 0.007, and F̄XPHM

SM falling within the interval 0.002− 0.1
and having a median of 0.005. Right panel: the same plot as above, with total masses re-
stricted to below 75M⊙. Overall, TEOBResumS performs slightly better than IMRPhenomXPHM

for lower masses, and slightly worse for higher ones.

“Long” SXS simulations Figure 2.6 once more shows the sky-averaged F̄SM as a
function of the total binary mass for three different choices of the binary inclination,
ι = 0, π/3, π/2. The mismatches behave similarly to what we described above in
the sense that they generally degrade for increasing magnitude of in-plane spins and
growing inclinations. This well-known fact can be appreciated also from Fig. 2.7, where
we align the NR waveform SXS : BBH : 1397 and the corresponding EOB waveform.
We compute the phase difference ∆ϕEOBNR between the two, and find that for ι = 0

it is constantly smaller than 0.1 rad during the inspiral, growing to ∼ 0.6 rad after
merger. For ι = π/3 the phase difference displays larger oscillations, which are however
always smaller than 0.5 rad. The relative difference in the amplitude ∆AEOBNR/ANR =

(ANR−AEOB)/ANR, instead, degrades after merger for the ι = π/3 case. Nonetheless,
for the case considered the behavior of both the EOB phase and amplitude remain
correct during the merger.

Overall we find that all the mismatches computed lie below 3% for the inclinations
considered, and 93% (98%, 87%) below 1% for ι = 0 (ι = π/3, π/2).
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Figure 2.6: NR/EOB mismatch for the SXS long precessing simulations 1389 to 1409,
plotted as a function of the total mass of the system and computed with a fixed inclination
of the binary of ι = 0, π/3, π/2 (red, blue and orange lines, respectively). The dashed black
horizontal line marks the 1% threshold. No simulations have F̄SM > 3% for any of the

considered inclinations.

Figure 2.7: Visual comparison between the h+ waveform computed from SXS:BBH:1397
(black, solid curves) with ℓ ≤ 4 and the TEOBResumS waveform obtained with the same
intrinsic parameters (red, dashed) for two different inclinations, ι = 0 (left panel) and ι = π/3
(right panel). The phase difference ∆ϕEOBNR = ϕNR−ϕEOB is shown in cyan, and the relative
amplitude error ∆AEOBNR/ANR in orange. Merger is indicated by a black dotted line. The
waveforms are aligned by minimizing the phase difference in the time window highlighted in
gray. As the inclination increases, so do the importance of higher modes and the amplitude

modulations due to precession.
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Figure 2.8: Top panel: NRSur7dq4/TEOBResumS sky maximized ℓ ≤ 4 mismatch for 5000
systems with q ∈ [1, 4], spin magnitudes χi ∈ [0.1, 0.8] and random spin directions, computed
from an initial frequency range of 20 to 37.5 Hz with the aLIGO design PSD noise curve up
to 1024 Hz. The dotted, dot-dashed, and dashed vertical black lines mark unfaithfulness of
1‰, 1%, and 3%, respectively. The colored, dashed vertical lines mark the 95th percentiles
for the four distributions. Middle and bottom panels: the behavior of the mismatch over
the {q, χp} parameter space for inclinations of 0 and π/3. The higher unfaithfulness values
are obtained for highly asymmetrical systems, with large in-plane spins (high χp) and mass

ratios of q > 2.

Figure 2.9: Left panel: BBH evaluation time for a q = 1,M = 60M⊙ precessing system con-
taining the (ℓ,m) = (2, 1), (2, 2), (3, 2), (3, 3), (4, 4) modes. Three different state of the art ap-
proximants are considered: TEOBResumS, IMRPhenomXPHM and SEOBNRv4PHM. TEOBResumS is
approximately three times slower than IMRPhenomXPHM, and up to an order of magnitude
faster than SEOBNRv4PHM. Right panel: BNS evaluation time for a q = 1,M = 3.5M⊙ pre-
cessing system, whose waveform is constructed with the (2, 2) mode. TD denotes the standard

TD TEOBResumS model with SPA denoting the FD version of Sec. 2.2.4
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Figure 2.10: Posteriors for chirp mass, mass ratio and spins obtained by analyzing the
GW150914 data with TEOBResumS, as discussed in Sec. 2.4.1. For comparison, we also plot the
prior distributions for χeff and χp. As expected, the posterior distribution of χp is consistent
with its prior. The masses obtained in our analysis are consistent with the ones previously
reported in Ref. [34], but the uncertainties on q and M are larger. This is due to the addition

of four degrees of freedom, namely the in-plane spin components.

Figure 2.11: Posteriors for chirp mass, mass ratio and spins obtained by analyzing
the GW190412 data with TEOBResumS, as discussed in Sec. 2.4.2. We compare our re-
sults to the public LVC posteriors obtained with the precessing models SEOBNRv4PHM and
IMRPhenomPv3HM. The results of our analysis are broadly consistent with the ones obtained
by LVC, although some model systematics are clearly present between the three approxi-

mants.
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Figure 2.12: Marginalized, two dimensional posteriors for detector frame masses (left) and
tidal parameters (right) for GW170817, obtained with the precessing TEOBResumS model or
the phenomenological IMRPhenomPv2NRTidal model, from the analysis of Ref. [10]. The 90%
intervals are compatible between the two models. We note that the IMRPhenomPv2NRTidal

posteriors for Λ̃ display some bimodalities, which are due to the higher frequency cutoff
employed for the analysis.

2.3.3 Comparison with NRSur7dq4

To extend the comparison to a larger number of binaries, we additionally computed
F̄SM between our model and the NR surrogate model NRSur7dq4 using all modes with
ℓ ≤ 4. We considered 5000 systems with q ∈ [1, 4], which is the calibration region of the
surrogate, and spin magnitudes χ1,2 ∈ [0.1, 0.8] with uniformly distributed spin vector
polar angles θ1,2 ∈ [0, π) and azimuthal angles ϕ1,2 ∈ [0, 2π). We set the initial GW
frequency to 20Hz for M ≥ 100M⊙ and to a linearly decreasing function of M from
37.5 to 20 Hz as M increases from 40 to 100M⊙. Figure 2.8 shows the distributions
of the unfaithfulness obtained for inclinations of ι = 0, π/6,π/3 and π/2. We find
that, for ι = 0, 98.8% of the systems considered have unfaithfulness below 3% and
87.8% below 1%, with a global distribution spanning the range F̄SM ∈ [0.0027, 0.04]

with median 0.0046. As previously observed, the situation worsens as the inclination
increases, with F̄SM ∈ [0.003, 0.05] for ι = π/6, F̄SM ∈ [0.003, 0.1] for ι = π/3 and
F̄SM ∈ [0.006, 0.14] for ι = π/2. For ι = π/3, only 80% (21%) of the total mismatches
are below the 3% (1%) threshold. The degradation of the unfaithfulness is observed
especially for asymmetric binaries with large χp as can be discerned by comparing the
middle and bottom panels of Fig. 2.8.
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2.3.4 Waveform’s timing evaluation

We now test the computational efficiency of our EOB model, and compare it to other
state of the art precessing approximants for BBH and BNS coalescences, SEOBNRv4PHM,
IMRPhenomXPHM and IMRPhenomPv2NRTidalv2. We choose one reference equal mass
BBH binary, with M = 60M⊙ and χ1 = (−0.6, 0.1, 0.2), χ2 = (0.1,−0.5,−0.3), and
a list of initial frequencies f0 = {10, 12.5, 15, 17.5, 20., 22.5, 25, 27.5, 30} Hz. For each
initial frequency f i0 we calculate the average time (over 20 repetitions) needed to evolve
the binary and produce the h+ and h× polarization. This process is then repeated for
a BNS configuration with q = 1,M = 2.8M⊙ and same spins as the previous BBH
system, and a choice of initial frequencies f0 = {15, 20, 25, 30, 35} Hz. We performed
this test on a Huawei MateBook 14 with AMD Ryzen 5 2500U processors and 8 GB
RAM.

The results are displayed in Fig. 2.9. We find that, for BBH systems, TEOBResumS
is approximately three to four times slower than IMRPhenomXPHM and about one order
of magnitude faster than SEOBNRv4PHM. For BNS systems, instead, the FD model
is about two times faster than its TD counterpart, and two times slower than the
phenomenological IMRPhenomPv2NRTidalv2. We highlight that the main evaluation
cost for both the TD and FD TEOBResumS models comes from the twisting procedure
itself, rather than from the solution of the two (PN and EOB) dynamics ODE systems.

2.4 Parameter estimation

We demonstrate possible applications of our model by performing PE on real GW data.
We re-analyze the data of GW150914 and GW190412, and show that the posteriors
obtained are consistent with those presented in, e.g., Refs. [10, 227]. Finally, we
analyze GW170817 [12, 19, 369]. All of our PE studies are performed with the bajes

pipeline [34] and the dynesty [204] sampler.

2.4.1 GW150914

For our study, we consider 8 seconds of data centered around the GPS time of the
event. We employ 4096 live points, and analyze the frequencies between 20 and 1024

Hz. We fix the sampling rate to 4096 Hz, and sample the component masses enforcing
that the chirp mass lies in M ∈ [12.3, 45]M⊙, the mass ratio q ∈ [1, 8], and the spin
magnitudes |χi| ∈ [0, 0.89] with i = 1, 2 with an isotropic prior for the tilt angles. We
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consider all modes up to ℓ = 4, and marginalize over the timeshift. Finally, we employ
10 calibration nodes, and the PSD given in Ref. [10]. Fig. 2.10 displays the posteriors
we recovered from our analysis. We find that M = 31.7+2.0

−1.5M⊙, q = 1.17+0.36
−0.16, χeff =

0.04+0.09
−0.08 and χp = 0.38+0.37

−0.29. Our results are consistent with the analyses presented in
Refs. [10, 205, 370], performed with other approximants, and with the PE conducted
in Ref. [34], which employed the non-precessing version of TEOBResumS. The posteriors
of χp are consistent with the prior as GW150914 displays no evidence of precession.
Notably, the introduction of additional spin components widens the credible intervals
on the component masses with respect to the analysis of Ref. [34], obtained with the
same approximant and similar settings.

2.4.2 GW190412

The original LVK analysis has yielded well constrained imprints of spin precession with
0.15 ≲ χp ≲ 0.5 and θ1 = 0.80+0.52

−0.36 [227], support for χeff > 0 with 95% credibility
[227], and clear evidence of the subdominant modes carrying a significant portion of
the signal SNR. A number of following studies have further improved on the original
analysis by investigating in more detail the effects of the higher modes [371] and of the
chosen priors [372] on the PE. The same works also carried out studies to understand
the differences observed when different waveform models are employed to analyze the
signal. Although such detailed investigations lie beyond the scope of this Thesis, it
is clear that the exceptional nature of GW190412 makes it very desirable to analyze
with TEOBResumS.

We employ 4096 live points and analyze the frequencies between 20 and 1024 Hz
with a fixed sampling rate of 4096 Hz. We sample in the component masses, requiring
that the chirp mass falls in M ∈ [8, 20]M⊙ and the mass ratio q ∈ [1, 10]. We sample
in spin magnitudes |χi| ∈ [0, 0.89] with i = 1, 2, enforcing an isotropic prior for the
tilt angles. Once again, we consider all modes up to ℓ = 4, and marginalize over the
timeshift.

Posteriors for the masses and spins are plotted in Fig. 2.11. We compare the results
obtained in our PE with the publicly available LVC posterior samples, obtained with
the two independent models SEOBNRv4PHM [138] and IMRPhenomPv3HM [162]. We find
that TEOBResumS gives estimates of GW190412 parameters that are overall consistent
with those computed from the other two approximants. We obtain a slightly larger
chirp mass, and overall wider χp and tighter χeff posteriors.
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2.4.3 GW170817

Though observations from millisecond pulsars yield at most dimensionless spins of
χ ≈ 0.5 [373] and the fastest observed NS spin in electromagnetically observed binary
pulsars is χ ≲ 0.05 [374, 375], the spins of the components of GW170817 are not well
constrained [10, 12]. For our re-analysis we employ 6000 live points and consider 128
seconds around the GPS time of the event, analyzing the frequencies between 20 and
1024 Hz to minimize waveform systematics [332]. We sample the component masses
imposing that M ∈ [1.1, 1.3]M⊙ and q ∈ [1, 3]. The dimensionless spin magnitudes are
sampled in the interval [0, 0.89], with an isotropic prior for the tilt angles. We sample
the dimensionless tidal deformabilities Λ1, Λ2 over a uniform prior [5, 5000]. Figure
2.12 displays the marginalized, two-dimensional posteriors for the detector masses m1,
m2 of the NSs and the tidal parameters Λ̃ and δΛ, which parameterize the LO and
NLO tidal corrections to the PN GW phase [376]. The masses are slightly bimodal.
This effect is not unexpected, and has already been previously observed [10, 369].
Evidently, it is related to the modelling of spin precession: on the one hand, allowing
spin magnitudes to vary in the large interval [0, 0.89] increases the correlations between
spins and mass ratio; on the other hand, precession effects can more easily fit features
of the data which might be due to the noise. This event too, much like GW150914,
does not display evidence for precession or spinning components. Indeed, we find that
χp is consistent with its prior, and χeff = 0.01+0.04

−0.02. Finally, we measure Λ̃ = 406+238
−150.

This value is marginally larger than the one obtained with the IMRPhenomPv2NRTidal

model, consistently with Ref. [251], but slightly smaller than the one obtained with
the aligned spin model.
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Chapter 3

TEOBResumS-DALÍ: an EOB model
for non-circularized systems

In dense stellar regions, e.g. galactic nuclei or globular clusters, individual BHs can
become gravitationally bound as energy is lost to gravitational radiation during a
close passage [377, 378]. Such dynamically captured pairs may be sources of GWs,
with a phenomenology that is radically different from quasi-circular inspirals [379,
380] and can be detected from larger distances and greater BH masses than quasi-
circular mergers [381]. Although to date there is no definitive observational evidence
of these systems, the capture of a stellar-mass object by a massive BH is also expected
to be an efficient emitter of gravitational radiation for future detectors [382] as the
Einstein Telescope [383] and LISA [384]. Due to the special waveform morphology,
these systems might be either missed or incorrectly analyzed using standard quasi-
circular templates, as already emphasized long ago [385] (see Ref. [386] for a recent
review).

Physically faithful waveform models to systematically study the phenomenology of
dynamical captures did not exist before the work presented in Ref. [146], and sum-
marized in this Chapter. To the best of our knowledge, the only attempt at building
a waveform model for this kind of events dates back to Ref. [385] that provided a
qualitative study of the phenomenon. The model of [385] is based on geodesic mo-
tion on a Kerr BH spacetime augmented by LO Newtonian-like radiation reaction,
then complemented by an effective model for a (quasi-circular) ringdown informed by
NR simulations. Similarly, NR studies of BBH mergers from dynamical capture con-
ducted thus far are few [387–389] and limited to non-spinning binaries. A few years
ago, Ref. [390] showed that the EOB approach to the general relativistic two-body
dynamics [122–125, 127, 280, 291] is suitable also for hyperbolic scattering events. In
particular, Ref. [390] compared NR and EOB predictions for the scattering angles for



Chapter 3. TEOBResumS-DALÍ: an EOB model for non-circularized systems 45

hyperbolic encounters, although it provided neither a description for the dynamical
capture, nor a waveform model. Here we expand on the results of Ref. [390] and
illustrate that the EOB formalism can provide a complete model, for both dynam-
ics and radiation, for dynamical capture BH binaries. The key analytical advance
is the radiation reaction and waveform along generic orbits proposed in Ref. [145].
The latter is based on the use of generic (non-circular) Newtonian prefactors in the
multipolar waveform and radiation reaction. The merger and ringdown parts of the
waveform are then modeled using analytical representations informed by quasi-circular
(spin-aligned) numerical simulations [141, 144, 285]. We then validate our model in
the capture regime by computing mismatches against six completely new simulations
performed with the GR-Athena++ code [188] and 46 highly eccentric simulations from
the RIT catalog [391]. Finally, we apply the model to the analysis of one of the most
mysterious signals detected by LVK: GW190521.

3.1 An EOB model for dynamical captures

Reference [145] introduced an EOB model valid along generic orbits, i.e. valid for
any configuration beyond the quasi-circular one. Although the studies presented in
Ref. [145] were limited to configurations with mild eccentricities (e ≤ 0.3) there are no
conceptual constraints that prevent from using the model in more extreme configura-
tions, e.g. scattering or dynamical captures. The eccentric EOB model we describe
here stems from the quasi-circular TEOBResumS-GIOTTO [142, 144, 285], discussed at
length in Chapter 1.

To generalize TEOBResumS to generic orbits, Ref. [145] proposed to simply replace
the quasi-circular LO terms, both in radiation reaction and waveform, with their exact
analytical expressions valid on general orbits. In particular, the azimuthal part of the
radiation reaction force reads:

F̂EOB
φ = −32

5
νr4ωΩ

5f̂nc
φ f̂(Ω) . (3.1)

Comparing this expression with Eq. 1.16, it is apparent that the only difference lies
in the multiplicative factor f̂nc

φ . This quantity encodes the non-circular corrections in
the angular momentum flux. It depends on time derivatives of the EOB dynamical
variables r,Ω, and its explicit expression can be computed from the usual quadrupole
formula (see Eq. 7 in Ref. [145]). Additionally, the radial radiation reaction force,
usually set to zero for quasi-circular binaries, is non-negligible for binaries coalescing
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on generic orbits. This quantity is modeled by resumming the 2PN expression derived
in [392]. The Newtonian prefactor in the LO multipolar EOB waveform h22 is similarly
substituted with

hN,022 = −8

√︃
π

5
ν(rωΩ)

2(1 + ĥnc22)e
−2iφ (3.2)

where ĥnc22 is, again, computed by evaluating two time derivatives of the symmetric-
tracefree mass multipole, h22 ∝ I

(2)
22 e

2iφ, and can be read from e.g. Eq. 10 of [148].
The model can generate all modes up to ℓ = m = 5 included, although, in the
presence of spin, the extension through merger and ringdown is not present for the
(ℓ,m) = (3, 1), (4, 2) and (4, 1) multipoles (see discussion in Ref. [144, 145]). Note that,
for simplicity, we do not include NQC corrections in the plunge to merger description
of the waveform. These choices are motivated by the fact that, although some NR
simulations are available [385, 387, 390, 393–396], a systematic coverage of the BBH
parameter space for highly eccentric or hyperbolic orbits is currently missing.

Before moving on with our presentation, we note that at the time of writing this
dissertation this simple model has undergone numerous changes and improvements.
Although the analyses presented in this chapter do not include them, we still wish
to mention and list them to correctly represent the state of the art. In particu-
lar, Ref. [148] improved the prescription for the multipolar waveforms, computing the
Newtonian prefactors also for the subdominant modes and introducing a sigmoid func-
tion to turn on/off NQC parameters and the Newtonian prefactors close to merger. It
also modified the prescription for Fr, suggesting a new resummation technique which
improves the quasi-circular limit of this model. Focusing then on the conservative
dynamics, Ref. [149] investigated the effect of high order analytical information in the
EOB metric potentials, augmenting the D and Q functions with up to 5PN terms
and experimenting with different Padé resummations. Going back to the radiative
sector, Ref. [397] presented an improved factorization and resummation of the mul-
tipolar waveforms, modified to include up to 2PN non-circular information. Such a
prescription was then validated in the extreme mass ratio limit via comparisons with
numerical results for eccentric systems and dynamical captures. Finally, Ref. [398],
applied the idea of using the full, resummed EOB equations of motions (which was
already present in [145]), to the 2PN results of [397]. This generalization considerably
improves the waveform accuracy, and the method is accurate also for highly eccentric
systems.
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Figure 3.1: The EOB effective potential Ŵeff determines, in the conservative case, the
shape of the orbit. Here, we show the TEOBResumS-DALÍ potential (blue line) for an equal
mass, non-spinning system, and compare it to the Schwarzschild potential (dashed gray line).

3.1.1 Phenomenology of hyperbolic mergers

Much like precession of the orbital plane of the binary causes amplitude and phase
modulations in the GW emitted by the system, eccentricity-related effects – too –
visibly modify the GWs phenomenology. In order to qualitatively understand them,
it is useful to first discuss the setup of the initial data. To start, recall the form of the
EOB Hamiltonian:

Ĥ ≡ H/µ ≡ ν−1

√︂
1 + 2ν(Ĥeff − 1) , (3.3)

with ν ≡ µ/M and Ĥeff is the effective Hamiltonian[144–146]. For non-spinning bina-
ries, the configuration space can be characterized by the mass ratio q = m1/m2 ≥ 1,
the initial energy E0/M and the initial reduced orbital angular momentum p0φ [146].
Similarly to the motion of a test particle moving around a Schwarzschild BH, the EOB
behavior of a hyperbolic encounter is characterized by the EOB potential energy

EEOB ≡M

√︂
1 + 2ν(Ŵeff − 1) , (3.4)
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Figure 3.2: Analysis of the parameter space of hyperbolic encounters of non-spinning BBHs
parameterized in terms of initial data (q, E0/M, p0φ). The number of multiple encounters
(N ≥ 2) increases with q, while the corresponding area on the parameter space gets smaller
and smaller. Note the separation, given by the colored area, between configurations that

scatter and configurations that eventually merge.

where
Ŵeff =

√︂
A(r)(1 + p2φ/r

2) (3.5)

is the effective potential energy. The solution ∂rŴeff = ∂2rŴeff = 0 defines the LSO
parameters (rLSO, pLSOφ ). When pφ > pLSOφ , Ŵeff has both a maximum and a minimum
and, depending on E0/M , bound as well as unbound configurations are present. In
the absence of radiation reaction, unbound configurations are defined by the condition
E0/M > 1. We define Emin/M ≡ νĤ(r0, q, pφ, pr = 0) the energy corresponding to
the initial separation and Emax/M = maxr

[︂
νĤ(r, q, pφ, pr = 0)

]︂
.

In the absence of GW losses, for a given pφ, the value Emax corresponds to un-
stable circular orbits, analogously to Schwarzschild geodesics. When E0 > Emax the
objects fall directly onto each other without forming metastable configurations (e.g.,
for head-on collisions, corresponding to pφ = 0). When 1 < E0/M ≤ Emax/M , the
phenomenology changes from direct plunge, to on up to many close passages before
merger, to zoom-whirl behavior or even scattering [390, 393, 395]. When E0/M < 1,
the system is bound and the orbit is either elliptic or circular. The different cases
are shown in Fig. 3.1. In the presence of radiation reaction, the qualitative picture
remains unchanged (as also observed in NR simulations [387]), although the threshold
between the two qualitative behaviors is not simply set by Emax, but it is also affected
by GW losses.

It is apparent that the dynamics of each configuration can be characterized by
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counting the number of encounters, i.e. the number of peaks of the orbital frequency
Ω(t) ≡ φ̇, each peak corresponding to a periastron passage [146]. We then consider
different mass ratios, q = {1, 2, 4, 8, 16, 32, 64, 128} to provide a comprehensive explo-
ration of the parameter space. For each value of the angular momentum, we lower
the energy and count the number of peaks of Ω. The result of this analysis is re-
ported in Fig. 3.2. The colors characterize how many periastron passages the system
has undergone before merging. Focusing first on the q = 1 case (top-left panel of
the figure), one sees that when the energy is decreased from Êmax there are different
islands of initial parameters that correspond to progressively more complicated phys-
ical behaviors. The plot is split in two by an area that corresponds to the frequency
developing two peaks before merger (magenta online). The N = 1 part of the param-
eter space above the magenta region corresponds to direct plunge. By contrast, the
N = 1 part on the right of and below the magenta region corresponds to scattering
events instead of capture. For a given value of E0, configurations in the first N = 1

region have smaller angular momentum and larger radial momentum, so that the cap-
ture is favored. On the contrary, in the second N = 1 region the angular momentum
dominates, and thus, after a close encounter, the two objects separate again instead
of merging. When the initial energy is lowered further, getting close to the stability
region, the system attempts to stabilize again and the number of periastron passages
before merger increases progressively also for large values of p0φ. The phenomenology
remains qualitatively the same also when the mass ratio is increased, but the region
with N = 2 becomes narrower and narrower as q increases, notably for q ≥ 32, when
the divide between N = 1 configuration is barely visible on the plots (we shall quantify
this behavior better below). By contrast, for energies just slightly larger than the (adi-
abatic) stability limit, the number of possible encounters can grow considerably, up to
several tens, although limited to a region of p0φ much smaller than in the equal-mass
case. We qualitatively interpret this behavior as mirroring the effect that radiation
reaction, that is proportional to ν, becomes less and less efficient as ν is decreased
and so the system can persist in a metastable state much longer. Figure 3.3 exhibits
the number of encounters versus ν. Configurations with two encounters are always
the most frequent ones, although their fraction quickly decreases below 10% for q > 4

(ν < 0.16).
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Figure 3.3: Fraction of BBHconfigurations (including also scattering events) that end up
with N encounters (where the N -th encounter corresponds to merger) for non-spinning bina-
ries. Configurations with N = 2 are the most frequent ones, although their frequency quickly

decreases below 10% as q > 4 (ν < 0.16).

3.1.2 Validation of the model

The model discussed in this Sec. 3.1 has been extensively validated against mildly
eccentric NR simulations, scattering angle computations and test particle results [145,
147]. Although these regimes are different from the one we are interested in study-
ing here – i.e., captures of comparable-mass bodies – some important insight can
nonetheless be extrapolated from this information. In detail, Ref. [145] performed
time-domain and mismatch comparisons against 28 equal-mass mildly eccentric NR
simulations [145] from the SXS collaboration [182, 265–276], proving that the radi-
ation reaction employed is highly accurate in this regime. Reference [146], instead,
compared the scattering angle obtained with TEOBResumS with 10 equal-mass scatter-
ing simulations from Ref. [390], but for which waveforms were not available. This is
a strong test of the dynamics (of both the conservative and dissipative sector), that
probes the model in a very challenging physical scenario [146]. Finally, Ref. [147] em-
ployed 111 waveforms generated by a non-spinning test particle along planar geodesics
in Kerr spacetime with eccentricities up to 0.9 and dimensionless Kerr spin magnitude
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Figure 3.4: EOB/NR unfaithfulness for highly eccentric and capture configurations. Com-
parison between the NR simulations of Table 3.1, produced for this work, and the eccentric
TEOBResumS. We consider frequencies between 11 and 512 Hz, use the Hanford PSD of

GW190521 and compute F̄ for systems with masses M ∈ [100, 300]M⊙.

up to ã0 = 0.9. This analysis was also extended to non-geodesic motion (see Fig. 13
and Fig. 14 therein). Tests against test-mass waveforms from dynamical encounters
show a good performance of the quasi-circular ringdown approximation for the config-
urations that circularize during the last encounter, see in particular Fig. 14 of [147].
The region where the circular ringdown performs less well is the direct-capture and
head-on scenario (as expected on physical grounds).

To further corroborate these observations in the regime of direct interest for cap-
tures, we produced six equal-mass, non-spinning simulations of highly eccentric sys-
tems or dynamical captures using the NR code GR-Athena++ [188], see Table 3.1.
Three simulations reproduce configurations of Gold and Bruegmann [387] (gb42_N256,
gb48_N256 and gb50_N256); the three remaining ones are instead completely new
configurations (Hq1_a5, Hq1_b5 and Hq1_c5). In order to compare NR and EOB
waveforms, one needs to consistently specify initial energy, angular momentum and
separation. While the first two quantities are in principle gauge-invariant, to get the
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Figure 3.5: Time-domain EOB/NR phasing comparison. Comparing the NR waveforms of
Table 3.1 to the analytical ones obtained using the eccentric TEOBResumS. For each configu-
ration, the top panel displays the amplitude and the real part of the dominant multipole h22,
while the bottom panel shows the phase difference ∆ϕEOBNR = ϕEOB−ϕNR and the relative
amplitude difference ∆AEOBNR/ANR = (AEOB − ANR)/ANR. Despite the lack of NQC cor-
rections or of a hyperbolic-NR-informed ringdown, TEOBResumS quantitatively captures the

NR waveform for all configurations.

latter we need to convert from ADM coordinates to EOB coordinates using a 2PN-
accurate transformation [122, 392]. However, the existence of NR junk radiation,
resolution effects, Schott energy (currently not accounted for in our model) can cause
small differences between the NR and EOB initial data. While small variations in
the energy and angular momentum can significantly change the phenomenology of the
waveform, as shown in Fig. 2 of [146], small inaccuracies in the initial separation are
not relevant as long as the bodies are initially far enough. In this scenario, the effect of
the radiation reaction is negligible at the beginning of the evolution, and small shifts
in initial separation correspond to global constant time shifts. As such, we estimate
the “optimal” values of (E0, p

0
φ) by first minimizing the mismatch on the initial energy

and angular momentum over a small interval around the values extracted from the
NR metadata, allowing a relative error up to 1% in energy and up to 6% in angular
momentum. This procedure was performed only for a single reference value of total
mass, using the expression:

F̄ = 1− max
t0,ϕ0,E0,p0φ

(hNR, hEOB)√︁
(hNR, hNR)(hEOB, hEOB)

, (3.6)
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Ê
0

Figure 3.6: EOB/NR unfaithfulness for the highly eccentric NR waveforms from the RIT
catalog. We compare 46 non-spinning highly eccentric datasets from RIT [391] with the
eccentric TEOBResumS model. We consider frequencies between 11 and 512 Hz, use the Hanford

PSD of GW190521 and compute F̄ with fixed total mass M = 250M⊙.

In view of the next section, we use as reference total mass M = 250M⊙, i.e. the de-
tector frame mass of GW190521, and employ GW190521 Hanford’s PSD. The initial
conditions found with this procedure are then employed to compute F̄ for all values of
the total mass M considered using the standard definition of mismatch, Eq. 1.24. We
considered frequencies between 11 and 512 Hz and total masses M ∈ [100, 300]M⊙. We
found mismatches between 0.2% and 3%, see Fig. 3.4. The corresponding time-domain
EOB/NR phase comparisons of the ℓ = m = 2 waveform are shown in Fig. 3.5. For
each configuration in Fig. 3.5 we compare the real part of the EOB and NR waveform
and explicitly show the phase difference ∆ϕEOBNR ≡ ϕEOB − ϕNR and the relative am-
plitude difference ∆AEOBNR/ANR ≡ |AEOB − ANR|/ANR. Note that the NR-informed
quasi-circular ringdown [144] delivers a rather faithful representation of the NR phas-
ing, while the amplitude might be underestimated. This is consistent with the findings
in the test-particle limit [147]. On top of the comparisons against the six new simula-
tions presented, we also considered a subset of the waveforms presented in Ref. [391]
and apply the same procedure detailed above. Figure 3.6 shows the unfaithfulness of
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ID r0 E0/M p0φ E0,opt/M p0φopt ∆E/E[%] ∆pφ/pφ[%]

Hq1_a5 100.000 1.003 3.970 1.005 3.987 −0.132 −0.440
Hq1_b5 100.000 1.008 3.970 1.010 4.049 −0.192 −2.000
Hq1_c5 100.000 1.007 3.970 1.015 4.181 −0.799 −5.323

gb42_N256 20.842 0.994 3.305 0.994 3.238 0.018 2.033
gb48_N256 20.869 0.994 3.671 0.997 3.762 −0.267 −2.476
gb50_N526 20.878 0.994 3.784 0.993 3.771 0.131 0.342

Table 3.1: EOB initial data to match NR simulations. The values correspond to the equal-
mass, non-spinning NR data of Figs. 3.4 and 3.5. The first column of the table reports the
configuration label. The quantities r0,E0 and p0φ are the initial EOB radial separation, initial
energy and initial angular momentum obtained by mapping the initial position and momenta
of the punctures into EOB coordinates via the 2PN coordinate transformation between ADM
and EOB coordinates [392]. The quantities E0,opt and p0φopt, instead, are the corresponding
values which minimize the EOB/NR mismatch at M = 250M⊙. The last two columns report

the corresponding relative differences.

our model computed against all such simulations with initial eccentricity larger than
0.5, zero spins, q ≤ 8 and initial angular momentum pφ ≥ 3.4 at initial separation
r ∼ 20. Notably, the 46 simulations selected display typical EOB/NR mismatches
below 3%, with about half of them more than 99% faithful to NR.

3.2 GW190521

The GW transient GW190521 is compatible with the quasi-circular merger of two
heavy (m1 ≃ 85M⊙, m2 ≃ 66M⊙) BHs resulting in a ≃150M⊙ intermediate-mass BH
(IMBH) [229, 230]. The estimated BH component masses fall in a mass gap ≃65 −
120M⊙ for BHs formed directly from stellar collapse, and challenge standard scenarios
of BHs formation [17, 230–236], suggesting the possibility of a progenitors formation
through repeated mergers [237]. The short duration (∼ 0.1 s) of GW190521 and
the absence of a premerger signal, identified also by unmodeled (or weakly modeled)
analyses [8], are critical aspects for the choice of waveform templates in matched
filtering analyses and thus for the interpretation of the source. For example, under
the hypothesis of a quasi-circular merger, matching the signal morphology requires
fairly large in-plane components of the individual BH spins and results in a (weak)
statistical evidence for orbital-plane precession. High orbital eccentricities are also
compatible with the burst-like morphology of GW190521, but best-matching eccentric
merger waveforms still require spin precession[238, 239]. Spin precessing BBH mergers
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Figure 3.7: Parameter space for non-spinning hyperbolic encounters predicted using the
TEOBResumS EOB model and fixing q ≡ m1/m2 = 1.27. Here (p0φ, E0) are the EOB initial
angular momentum and energy, while E0

max is the value corresponding to unstable circular
orbit. For E0 < Emax

0 , each color labels the number of peaks (i.e. of periastron passages)
N of the EOB orbital frequency Ω. The orange star labels the maximum likelihood values

(p̄0φ, Ē0) corresponding to the constrained analysis, see Table 3.2.

are known to be degenerate with head-on collisions [240]. However, a head-on BBH
is disfavored with respect to a boson-star head on collision with a log Bayes’ factor of
−6.1[399]. Other proposed interpretations involve a high-mass BH-disk system [241]
or an intermediate mass ratio inspiral [242] (see also [243]), and indicate that the origin
of GW190521 is still unsettled.

In this section we analyze GW190521 within the scenario of a BBH dynamical
capture and compare this hypothesis to that of a quasi-circular merger. As discussed,
dynamical captures have a phenomenology radically different from quasi-circular merg-
ers [385–387]. The close passage and capture of the two objects in hyperbolic or-
bits naturally accounts for the short-duration, burst-like waveform morphology of
GW190521 even in the absence of spins. Moreover, possible explanations of the high
component masses rely on second-generation BHs, stellar mergers in young star clus-
ters and BH mergers in active galactic nuclei disks [17, 231–236, 377, 378], for which
dynamical captures are possible. While no observational evidence for GWs from dy-
namical captures existed prior to our work, such events are not incompatible with the
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Figure 3.8: Marginalized two-dimensional posterior distributions of the initial energy E0

and initial angular momentum p0φ for the constrained (CE0) and unconstrained (UE0) energy
prior choices. The colors highlight the different waveform phenomenologies, with N = 1 (blue
and green) or N = 2 (magenta and orange) peaks in the orbital frequency. The maximum
likelihood values (p̄0φ, Ē0) are highlighted with red (UE0 prior) and dark-orange (CE0 prior)

stars.

current detection rates [382, 400], although these rates would require corrections to
take into account the large masses of GW190521 [401].

The publicly released GW190521 data are analyzed around time tGPS = 1242442968,
with a 8 s time-window and in the range of frequencies [11, 512]Hz using the bajes

pipeline [34]. We employ the PSD estimate and calibration envelopes publicly avail-
able from the GW Open Science Center [404]. The Bayesian analysis uses the dynesty
sampler [204] with 2048 live points. We use a uniform prior in the mass compo-
nents (m1,m2) exploring the ranges of chirp mass Mc ∈ [30, 200]M⊙ and mass ratio
q ∈ [1, 8]. The luminosity distance is sampled assuming a volumetric prior in the range
[1, 10]Gpc. We analytically marginalize over the coalescence phase, and sample the
coalescence time in ts ∈ [−2, 2] s with respect to the central GPS time.

The key quantities to sample the configuration space of hyperbolic mergers are
(E0/M, p0φ). The initial angular momentum is uniformly sampled within p0φ ∈ [3.5, 5],
and further imposing p0φ ≥ pLSOφ for any q. The initial energy is uniformly sampled in
the interval E0/M ∈ [1.0002, 1.025] but with two different additional constraints that
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Reference This paper LVK[229] Gayathri et al.[238] Romero-Shaw et al.[239]
Waveform TEOBResumS[145, 146] TEOBResumS[145, 146] TEOBResumSP[259]1 NRSur7dq4[172] NRSur7dq4[172] NRSur7dq4[172] NR[391] SEOBNRE[402]
E0 prior Unconstrained (UE0) Constrained (CE0) – – – – –
Multipoles (ℓ, |m|) = (2, 2) (ℓ, |m|) = (2, 2) (ℓ, |m|) = (2, 2) (ℓ, |m|) = (2, 2) ℓ ≤ 4 ℓ ≤ 4 – –
m1 [M⊙] 85+88

−22 81+62
−25 90+19

−14 102+35
−23 84+17

−12 85+21
−14 102+7

−11 92+26
−16

m2 [M⊙] 59+18
−37 52+32

−32 66+10
−8 64+19

−25 71+16
−18 66+17

−18 102+7
−11 69+18

−19

Msource [M⊙] 151+73
−51 130+75

−43 156+25
−15 164+40

−23 153+29
−19 150+29

−17 – –
m2/m1 ≤ 1 0.69+0.27

−0.52 0.63+0.31
−0.43 0.73+0.21

−0.15 0.62+0.32
−0.30 0.86+0.12

−0.30 0.79+0.19
−0.29 – –

χeff – – −0.05+0.09
−0.12 0.01+0.24

−0.26 −0.03+0.25
−0.26 0.08+0.27

−0.36 0 0.0+0.2
−0.2

χp – – 0.72+0.16
−0.22 0.71+0.22

−0.36 0.79+0.16
−0.40 0.68+0.25

−0.37 0.7 –
e – – – – – – 0.67 0.112

E0/M 1.014+0.009
−0.012 1.014+0.010

−0.012 – – – – – –
p0φ 4.18+0.50

−0.62 4.24+0.57
−0.37 – – – – – –

DL [Gpc] 4.7+4.8
−2.7 6.1+3.3

−3.7 4.5+1.2
−1.2 3.9+2.3

−1.9 4.8+2.3
−2.2 5.3+2.4

−2.6 1.84+1.07
−0.054 4.1+1.8

−1.8

SNRmax 15.2 15.4 14.7 14.7 14.6 15.4 – –
log(L)max 123.2 123.0 106.0 107.0 105.6 – – –
logBsignal

noise 84.00± 0.18 83.30± 0.18 72.95± 0.08 74.76± 0.11 74.86± 0.11 – – –

Table 3.2: Source parameters of GW190521. We indicate the mass of the heavier (lighter)
object with m1 (m2), Msource is the total mass in the frame of the source, χeff is the effective
spin along the orbital angular momentum, while χp is the effective precessing spin [229].
The second and third columns report our new results, obtained with the hyperbolic capture
model [146] with the two different prior choices on the energy. The fourth, fifth and sixth
columns report the results obtained in this work with the quasi-circular models TEOBResumSP
and NRSur7dq4. For reference, the remaining columns report results of other analyses[229,
238, 239]. We employ the standard cosmology of Planck [403] to compute source frame
masses. Median values and 90% credible intervals are quoted and natural logarithms are

reported. The SNR values correspond to the matched-filter estimates.
1: spin results obtained at a reference frequency of 5 Hz.

2: lower limit at 10 Hz.

result in two different prior choices: (UE0) Unconstrained prior, E0 ≥ Emin; (CE0)
Constrained prior, Emin ≤ E0 ≤ Emax. The UE0 prior spans a larger portion of the
parameter space, notably including direct capture, although the dynamics remains far
from the head-on collision case. The CE0 prior is contained in the first, and restricts
the parameter space to systems closer to stable configurations, for which the orbital
dynamics substantially contributes to the waveform and the ringdown description is
expected to be more accurate.

The results of the analysis corresponding to the UE0 and CE0 priors are sum-
marized in the second and third columns of Table 3.2 respectively. The consis-
tency of the two measurements confirms the robustness of our modeling choices.
Focusing on global fitting quantities we find, respectively for the UE0 (CE0) pri-
ors, maximum likelihood values log(L)max = 123.2 (123.0), and Bayesian evidences
logBsignal

noise = 84.0±0.18 (83.3±0.18), while the recovered matched-filter signal-to-noise
ratio (SNR) is equal to 15.2 (15.4). Employing the standard cosmology [403], we find
component masses in the source frame (m1,m2) = (85+88

−22, 59
+18
−37)M⊙ for the UE0 case

and (m1,m2) = (81+62
−25, 52

+32
−32)M⊙ in the CE0 case. Figure 3.8 illustrates the (E0, p

0
φ)

parameter space selected by the analysis, with colors highlighting configurations with
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different number of encounters N . The figure shows that, despite GW190521 con-
sisting of a single GW burst around the analyzed time, many of the configurations
selected, and in particular the most probable ones, correspond to two encounters.

The phenomenology corresponding to the set of maximum likelihood parameters
selected by the analysis are shown in Fig. 3.9. The EOB relative trajectory (top
panel) is complemented by the corresponding waveform templates projected onto the
three detectors and compared to the whitened LIGO-Virgo data around the time of
GW190521. Thicker lines highlight the last part of the dynamics, which exactly covers
the portion of the signal displayed in the bottom panel. The magnitude of the first
GW burst predicted by the EOB analysis (not shown in the plot) is comparable to the
detector noise and would occur outside the analysis window. However, we find that
such first burst is not a robust feature across samples, occurring at different times and
smaller amplitudes for different points and not occuring at all for others (see Fig. 3.8).
Given this consideration and the small amplitude of such first burst, we do not expect
an extension of the analysis segment to impact our main conclusions.

In order to compare the hyperbolic capture with the quasi-circular merger hypoth-
esis, we perform a new quasi-circular analysis with the precessing surrogate model
NRSur7dq4 [172] and with the quasi-circular precessing flavor of TEOBResumS, here
dubbed TEOBResumSP [258, 259]. To minimize systematic effects, we consistently use
the bajes pipeline [34] with the same settings discussed above for all the runs. The
prior distributions for the mass parameters and the extrinsic parameters are also iden-
tical to the ones used in the hyperbolic capture analysis with TEOBResumS, while the
prior on the spin components is chosen to be uniform in the spin magnitudes and
isotropic in the angles [229]. When including higher modes we disable phase marginal-
ization.

In Table 3.2 we quote maximum likelihood and matched-filter SNR values ob-
tained from the full unmarginalised posterior. The quasi-circular precessing analyses
with bajes and NRSur7dq4 are in agreement with those obtained by LVK [229], con-
firming the reliability of the infrastructure adopted for the inference. The maximum
SNR recovered via our pipeline is lower by 0.7 than the one extracted from the public
LVK samples. We attribute this discrepancy to differences in data-processing be-
tween pipelines, small differences in the prior boundaries and the sampling itself. The
use of consistent settings in our new runs with the model used by the LVK excludes
that such discrepancies affect the comparison against the non-circular analysis. The
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Figure 3.9: Maximum likelihood configurations with the two different energy priors, UE0

(orange) and CE0 (blue). Top: the (r, φ) EOB relative orbit. Bottom: the waveform tem-
plates projected onto the three detectors compared to the whitened LIGO-Virgo data around
the time of GW190521. The most probable LSO are highlighted with gold (UE0 prior) and
cyan (CE0 prior) dashed lines and are located, respectively, at r̄LSO = 4.54 and r̄LSO = 4.52.
Corresponding mass ratios are q̄ = 1.04 and q̄ = 1.27. The inset highlights the first close
encounter, that is then followed by a highly eccentric orbit that eventually ends up with a
plunge and merger phase. The part of the trajectory from ∼ (tGPS − 0.8 s) to merger, which
contributes to the second GW burst, is highlighted with thicker lines in the plot. Note that
the GW bursts corresponding to the first encounter occur ∼4 s before the GW190521 time,
their magnitude is comparable to the detector noise and are outside the segment of data

analyzed.

TEOBResumSP analyses display consistency with the NR surrogate. When PE is per-
formed with the dominant (2, 2) mode, it yields logLmax = 106.0, SNRmax = 14.7 and
logBsignal

noise = 72.95 ± 0.08. This indicates that the observed increases in these statis-
tics when employing the dynamical capture model are not driven by subtle differences
between waveform families (EOB and NR surrogate).

Despite the different hypotheses on the coalescence process, our results on the
component masses are in good agreement with the ones obtained from a quasi-circular
model. This confirms that an IMBH is formed at the end of the coalescence also in
the hyperbolic merger scenario. The consistency on the total mass is not surprising,
given that the dominant contribution to this parameter comes from the determination
of the ringdown frequency [229]. However, the dynamical capture model is able to fit
GW data better than the quasi-circular scenario despite having four less degrees of
freedom, with a 16 e-fold increase in the maximum likelihood value. For comparison,
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the distribution of logL of the quasi-circular analysis spans a ∼ 26 e-folds range and
has median ∼ 9 e-folds smaller than its maximum value. If we assume this difference
to be representative of the statistical uncertainty σ on the likelihood, we find that
our result lies about 3σ from the median of the quasi-circular analysis and 2σ from its
maximum value. Under the dynamical capture assumption, we obtain a matched-filter
SNR ρ = 15.4, larger by almost a unity with respect to the same value obtained using
quasi-circular waveforms. Similarly to the logL, the maximum SNR of the hyperbolic
analysis lies about 1σ from the corresponding value of the quasi-circular analysis and
2σ from its median.

The fit improvement registered by these two indicators is confirmed by the Bayesian
evidences, keeping into account the full correlation structure of the parameter space,
which imply odds ≳4315:1 in favor of the dynamical encounter scenario against the
quasi-circular scenario. This number is expected to be an optimistic estimate of the
posterior odds, due to the prior odds disfavoring a dynamical capture scenario com-
pared to a quasi-circular binary. However, estimates of prior odds are currently not
reliable due to orders of magnitudes uncertainties on dynamical capture rates in this
mass range [401] and, as such, we do not attempt to quantify them directly. Given
our (conservative) Bayes factor, we estimate that the capture interpretation is favored
with respect to a quasi-circular stellar-collapse scenario [17] so long as the rates of such
events is larger than 5× 10−3Gpc−3yr−1. This number is computed by imposing that
the posterior odds are lager than one, i.e. that 4315× Rdc/Rqc > 1, where Rdc is the
rate of dynamical capture events and Rqc = 23.9 Gpc−3 yr−1 as estimated by LVK[17].
Notably, the Bayes’ factors receive a penalty disfavoring the quasi-circular hypothesis
due to the larger dimensionality of this model which is not phase marginalized and
includes precessing spins degrees of freedom, although the latter are only weakly mea-
surable. Additionally, some railing against the prior can be observed for the E0/M

and the UE0 p
0
φ posterior samples, which might affect the estimation of the dynamical

capture evidence. However, the choice of prior bounds in this analysis was dictated
either by physical boundaries, and hence cannot be relaxed, or by considerations on
computational cost and model validity in a region – that of head-on mergers – which
was shown to have little support for the phenomenology observed[399]. In light of the
above caveats, the Bayesian evidences alone represent useful, but not decisive proof in
favor of the capture scenario.

Nonetheless, these two results combined constitute data-driven indicators that the
interpretation of GW190521 within the dynamical capture scenario seems preferred
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over a quasi-circular spin-precessing merger [8, 243]. No other analysis shows such
large improvements in evidence and log-likelihood with respect to the equal-mass,
quasi-circular scenario [238, 239, 399]. At the same time, the absolute values of ev-
idence and maximum likelihood estimated in some studies [243] are almost as large
as those obtained in this work. These values were however obtained with a model
which is less NR-faithful in the quasi-circular case than the NRSur7dq4 model consid-
ered in this work. Although a direct comparison is not possible given the different PE
infrastructure, sampler, models and priors explored, this fact highlights the necessity
of exploring multiple hypothesis and model selection to understand such short GW
transients.
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Chapter 4

Matter effects in GWs: resonant tides
and NR information

GWs from coalescing BNS carry information on the stars’ internal structure and com-
position, i.e. their EOS [69, 405]. Such information is mainly, but not exclusively,
encoded in the tidal parameters of the stars themselves, which describe the tidal re-
sponse of a body due to the external gravitational field of its companion [406, 407].
Precise measurements of the tidal parameters of NSs are a key science goal for current
and next generation detectors [223, 408–411]. As such, it is fundamental that waveform
models give faithful representations of the entire coalescence up to merger. Compar-
isons between current state-of-the-art models and NR simulations, however, highlight
that approximants do not correctly reproduce NR waveforms in the last stages of the
inspiral, when matter contributions are best measured and their impact is the largest
[251, 264, 412]. Numerous studies have shown that the imperfect modeling of matter
effects will have large impact on PE with NG detectors, with waveform systematics
that could potentially already be relevant for signals detected in the next LVK observ-
ing run, O4 (see also App. A). In this section we describe in some detail two topics
which concern the modeling of tidal effects and GWs from BNSs: (i) the measurabil-
ity and impact of tidal resonances, and (ii) the inclusion of high order numerical and
analytical relativity information within TEOBResumS.

Matter effects Although BNS and BBH systems exhibit similar dynamics when the
objects are far apart, finite-size effects become increasingly important as the orbits
shrink due to the emission of GWs. The system’s quadrupole moment, which is the
primary factor affecting the waveforms, is influenced by adiabatic tidal effects [69–
72, 74–77, 129, 405–407], quadrupole-monopole terms [68, 73, 328, 413], and possible
resonant excitations of the stars’ modes [134, 414–419] or nonlinear fluid instabilities
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at low frequencies [420–422]. All of these effects can be accurately described using PN
theory, with adiabatic tidal effects representing the most important contribution due
to matter.

Consider a spherically symmetric star immersed in an external field. The presence
of the field induces perturbations on the star, which can be decomposed in even “grav-
itoelectric” and odd “gravitomagnetic” moments, denoted as GL and HL, where L is
a multi-index a1a2 . . . aℓ. In the stationary (adiabatic) treatment of tidal effects, the
mass and current multipoles induced by the external fields, ML and SL respectively,
are linearly related to the tidal moments via the tidal polarazibility coefficients µℓ, σℓ:

ML = µℓGL , (4.1)

SL = σℓHL . (4.2)

These coefficients are related to the relativistic Love numbers via:

µℓ =
2kℓ

(2ℓ− 1)!!
R2ℓ+1 , (4.3)

σℓ =
(ℓ− 1)jℓ

4(ℓ+ 2)(2ℓ− 1)!!
R2ℓ+1 , (4.4)

where kAℓ is the ℓ-th electric Love number of the body, jℓ its magnetic-type Love
number and R its radius. The dimensionless tidal parameters are then defined as:

Λℓ =
µℓ

M2ℓ+1
=

2

(2ℓ+ 1)!!
kℓC−(2ℓ+1) , (4.5)

Σℓ =
σℓ

M2ℓ+1
=

(ℓ− 1)jℓ
4(ℓ+ 2)(2ℓ− 1)!!

C−(2ℓ+1) , (4.6)

where we define the compactness of a star as C = M/R. Tidal Love numbers can be
explicitly computed by solving the coupled system of perturbed EFE together with the
perturbed hydrodynamical equations [406, 407], and are a function of the compactness
of the star. In a BNS system, the tidal moments are each sourced by the companion
body. The energy of the system, following PN arguments, is given (at LO in tidal
interactions) by

E =
µv2

2
− µM

r

(︂
1 +

µ̂

r5

)︂
. (4.7)

where µ̂ = (3m1/2m2)µ
(1)
2 + (3m2/2m1)µ

(2)
2 . The variation in energy affects GW

emission, and tidal effects enter the PN GW phase expansion at 5PN via the reduced
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tidal parameter Λ̃, defined as:

Λ̃ ≡ 16

13

[︂(m1 + 12m2)m
4
1Λ1

M5
+ (1 ↔ 2)

]︂
. (4.8)

Tidal effects can also be included in EOB models (see Sec. 4.2.1). The EOB electric
tidal coefficients, are usually denoted as κiℓ,+, where i = A,B labels the body. They
are related to the tidal Love numbers through

κAℓ,+ = 2kAℓ
XB

XA

(︂RA

MA

)︂2ℓ+1

= 2kAℓ
XB

XA

C−(2ℓ+1)
A . (4.9)

In terms of these variables, the LO EOB tidal contribution is given by κT2 = κA2,++κ
B
2,+.

Similarly, the EOB magnetic tidal coefficients are typically denoted as κiℓ,−, and given
by:

κAℓ,− =
1

2
jAℓ
XB

XA

(︂RA

MA

)︂2ℓ+1

=
1

2
jAℓ
XB

XA

C−(2ℓ+1)
A . (4.10)

4.1 Resonant tides

Tidal resonances in coalescing compact binaries have been studied for a long time in
connection to GW observations [414, 416, 417, 423] (See also [424–427] for earlier work
on tidally generated radiation.) During the coalescence process, the proper oscillation
modes of a NS can be resonantly excited by the orbital frequency. For a quasi-circular
orbit, the energy transfer between the orbit and the mode can change the rate of
inspiral and alter the phase of the chirping GWs [417]. In general, the impact of
the tidal resonance on the GWs depends on the duration of the resonance, and it is
stronger the slower the orbital decay is. Initial studies focused on the excitation g-
modes at frequencies ≲100Hz, but the resonance effect was found negligible due to the
weak coupling between the mode and the tidal potential [414]. In contrast, f -modes
have stronger tidal coupling but also higher frequencies ∼(GMA/R

3
A)

1/2, thus falling
in the kilo-Hertz regime for typical NS masses MA and radii RA of the star A. These
frequencies are too large for the resonance to occur during the inspiral [417]; their
value actually approaching (or being larger than) the merger frequency [428].

NR simulations of quasi-circular NS mergers conducted so far do not show decisive
evidence for the presence of f -mode resonances. On the one hand, some GW models
including f -mode resonances have been shown to reproduce the NR waveform phasing
near merger [134, 418, 419]. On the other hand, the same data can be reproduced at
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the same accuracy without assuming the presence of a f -mode resonance nor additional
parameters [142, 143, 418, 429]. Moreover, it is well known that the two NSs come in
contact well before the resonance condition is met [130, 184] (see also discussion below
in Sec. 4.1.1). Interestingly, f -mode excitations are instead observed in NR simulations
of highly eccentric compact binaries composed of BH–NS [430] and two NSs [431, 432].
In these mergers, each close passage triggers the NS’s oscillation on proper modes; the
GW between two successive bursts (corresponding to the passages) clearly shows f -
mode oscillations (see Fig. 4.5 below). Note however that the excitation does not meet
the resonant condition [431]: the close periastron passage exerts a tidal perturbation
which excites the axisymmetric (m = 0) ℓ = 2 mode [427].

Recent studies after GW170817 [12, 19, 369] re-considered waveform models with
f -mode resonances and demonstrated the possibility of GW asteroseismology with
BNS inspiral signals [433–435]. In particular, the prospect study in Ref. [435] demon-
strates that neglecting dynamical tidal effects associated with the fundamental mode
could lead to systematic biases in the inference of the tidal polarazability parameters
and thus the NS equation of state. Since GW analyses are performed with matched
filtering, these studies postulate the validity of resonant models to merger or contact
and a sufficient accuracy of the GW template. While it is, in principle, possible to
observationally verify the necessity of a f -mode resonance model in a particular obser-
vation (e.g. via hypothesis ranking), the quality of current GW data and templates at
high-frequencies is still insufficient [251]. The potential relevance of resonant tides for
GW astronomy and the above considerations motivates further detailed comparisons
between the current analytical results and NR simulations.

Here, we consider state-of-art models for the compact binary dynamics with tidal
resonances in the EOB framework and critically assess their validity against NR data.
In Sec. 4.1.1 we briefly summarize the effective Love number model proposed in
Refs. [134, 135] that can be efficiently coupled to any EOB implementation to generate
precise inspiral-merger waveforms. This model prescribes a dynamical Love number
(or tidal coupling constant) as function of the quasi-circular orbital frequency that,
while approaching merger, enhances the effect of tidal interaction. Qualitatively, this
effect is known also from studies of tidally interacting compact binaries with affine
models [436–440]. On physical ground, tidal interactions stronger than those expected
by adiabatic and PN models are expected towards merger [129]. For example, early
EOB/NR comparisons for quasi-circular mergers found that the description of tidal
effects after contact and towards merger requires to enhance the attractive character
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Figure 4.1: Mass-rescaled orbital merger frequency, contact frequency and resonant condi-
tions for ℓ = 2, 3, 4 modes for equal-mass binaries with different tidal coupling constant κT2 .
The merger frequency is computed from the NR quasi-universal fits of Ref. [428]. The contact

frequency is estimated as in [128] using the quasi-universal relations CA(Λ
(A)
2 ) of [262].

of the EOB tidal potential in PN form [130, 429, 441]. In these studies, it was also
pointed out that a key diagnostic to robustly assess tidal effects in NR data is the use
of gauge-invariant energetics [336], see also Sec. 1.5.

Here, we compare different EOB tidal models to selected, high-resolution NR sim-
ulations considering both energetics and GW phasing. In particular, we consider
quasi-circular mergers and show that the f -mode resonance does not give a consis-
tently accurate description of both energetics and the waveform. Similarly, we also
consider a highly eccentric merger and show that a f -mode resonance model does not
qualitatively capture the “free-oscillation” feature observed in the frequency-evolution
of the NR waveform. Notably however – modulo this effect – the EOB waveform and
(orbital) frequency closely follow the NR quantities up to ∼ one orbit before merger,
attesting to the goodness of the dynamics description provided by the model even for
these extreme systems.

In Sec. 4.1.3 we then perform Bayesian analyses and model selection on GW170817
data using the various EOB models introduced in Sec. 4.1.1. We find that f -mode aug-
mented models are not favored with respect to models which only implement adiabatic
tidal effects. The f -mode resonant frequencies cannot be measured in GW170817, as
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also observed in [433]. This is expected, since f -mode inference is mostly informa-
tive at frequencies larger than ∼1kHz (for comparable and canonical NS masses), and
GW170817 may not contain enough high-frequency information to allow for such a
measurement.

4.1.1 Effective Love number model

The model of Refs. [134, 135] describes the resonant excitation of the NS f -mode by
a circular orbit based on an effective quadrupolar Love number. The latter is defined
by an approximate, Newtonian solution of

keff2 =
EijQ

ij

E2
, (4.11)

where Eij = ∂i∂jϕ is the external quadrupolar field derived from the Newtonian po-
tential ϕ and Qij is the NS’s quadrupole. The resonance of a NS’s modes is triggered
by the condition

mΩ̂XA = ω̄
(ℓ)
f A , (4.12)

and its net effect is an enhancement of the Love number k(A)
ℓ . This results in a simple

prescription to obtain “dynamical tides” based on the formal substitution of the Love
numbers (or equivalently the tidal coupling constants) with their effective values:

k
(A)
ℓ ↦→ k

eff (A)
ℓ := αℓm(ν, Ω̂, ω̄

(ℓ)
f A, XA)k

(A)
ℓ (4.13)

where the dressing factor αℓm in Eq. (4.13) is a multipolar correction valid for ℓ = m.
In this work, the model with ℓ = 2, 3, 4 resonances is incorporated in TEOBResumS-GIOTTO [142,

144, 258, 285, 286, 296, 332, 337]. Tidal interactions are described by additive contri-
bution AT to the EOB metric potential [128]. Different choices for AT are considered:
(i) a PN baseline expression including NNLO gravitoelectric corrections [130] (as also
employed in Refs. [134, 135]) and LO gravitomagnetic terms [143], (ii) a resummed
expression of high-order gravitoelectric ℓ = 2 PN terms obtained from gravitational
self-force computations [429, 442], hereafter referred to as GSF2(+)PN(−) (See Tab.I
of [143]); (iii) a resummed expression of high-order gravitoelectric ℓ = 2, 3 PN terms
obtained from gravitational self-force computations, GSF23(+)PN(−) (see Sec. 4.2 be-
low).

For typical binaries the resonant condition in Eq. (4.12) is met before the moment
of merger (defined as the peak of the ℓ = m = 2 mode of the strain). This is shown
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in Fig. 4.1 for equal-mass mergers, where the merger frequency (solid black line) is
computed in terms of the tidal coupling constant κT2 using the quasi-universal relations
of Ref. [428]. The contact frequency (gray solid line) is estimated as in Eq. (78)
of [128]; this simple expression is known to overestimate the values extracted from
the simulations1 – e.g. Ω̂ ∼ 0.04 for equal mass NSs with κT2 ∼ 180, effectively
corresponding to the last 2-3 GW cycles to the moment of merger [130] – but provides
a sufficient estimate for this work.

Colored (dashed) lines indicate that the resonant excitation for the ℓ = 2, 3, 4 f -
mode happens progressively earlier in the merger process. While the ℓ = 2 f -mode is
excited shortly before merger (approximately corresponding to the last GW cycles) and
after contact, the octupolar and hexapolar ℓ = 3, 4 mode resonances are reached before
the NSs’ contact. This has two important implications. First, the predicted resonance
phenomenon can be directly tested with NR simulations and should, if significant, be
visible in the gauge-invariant energetics of the dynamics from the simulations. Second,
the dominant ℓ = 2 resonance happens in a regime in which the model itself is not
valid since the NSs are not isolated nor “orbiting” anymore; the matter dynamics being
governed by hydrodynamical processes.

The typical behavior of the dressing factors αℓm during the quasi-circular merger
process is shown in Fig. 4.2 for a fiducial binary (that reproduces Fig. 1 of [135] with
our implementation). After the resonance, the dressing factors decrease and become
smaller than one or even negative for typical BNS parameters. Since the post-resonance
behavior is not directly modeled in the effective Love number model it is unclear to
what extent this effect is physical. However, given that the resonances happen before
merger, this trend affects the accuracy of the EOB waveforms that adopt this f -mode
model.

Indeed, the behavior of the dressing factors after the resonance can introduce un-
physical features in the EOB dynamics by affecting the EOB light ring, rLR. When
using the PN expanded tidal model with dressed tides, the peak of the orbital frequency
typically happens after the resonance, i.e. at Ω̂peak > Ω̂

(2)
f . Since Ω̂peak (the EOB light

ring) is the natural point to stop the EOB dynamics, the earlier resonance generates an
unphysical steep increase of the waveform’s amplitude approaching merger. In order
to minimize this behavior, the EOB model of [134, 135] terminates the EOB dynamics
at the NR merger using the quasi-universal fits of [140, 428] for which Ω̂NR

mrg < Ω̂peak.
We follow here the same procedure, but emphasize that this solution is not satisfactory

1A better representation would be obtained accounting also for the shape love number of the stars,
h [128, 130]



Chapter 4. Matter effects in GWs: resonant tides and NR information 69

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Ω̂

−1

0

1

2
α
`

` = 2
` = 3
` = 4
` = 2 (diss)
f -mode res.

f -mode res.
f -mode res.
Merger
Contact

Figure 4.2: Dressing factors prescribed by the effective Love number model as a function
of the orbital frequency and for a fiducial binary. Vertical lines mark the resonances and
the merger frequency. The dashed red line is the waveform’s amplitude correction due to
dynamical tides. The dotted gray line, which happens to be superimposed to the green ℓ = 3

resonance, corresponds to the contact frequency of the stars.

since a well-designed EOB model should not break before its light ring (this is true
for TEOBResumS even in the BBH case). Further, we manually impose that αℓm ≥ 1

post-resonance.

4.1.2 Comparison with numerical-relativity data

We contrast different EOB tidal models to selected NR simulations considering both
gauge-invariant energy-angular momentum energetics [336] and the ℓ = m = 2 wave-
form mode phasing. We consider the NNLO [130], GSF2(+)PN(−) [429, 442], and
GSF23(+)PN(−) [143] prescriptions for the EOB tidal potential with and without the
f -mode resonance model described above. We consider NR data from quasi-circular
and highly eccentric mergers computed respectively in Ref. [167, 443] and Ref. [432]
using Jena’s BAM code [121, 184]. The binding energy Eb and the specific angular
momentum j are computed as described in [130, 336]. The tidal contribution ET

b to
the energy curves is isolated by subtracting the relative BBH contribution as described
in [130, 429, 441]. For the NR data we use the equal mass, non-spinning BBH SXS
simulation SXS:BBH:0002. For TD waveforms comparison, the arbitrary time and
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Figure 4.3: ÊTb and ∆ÊTb as functions of the angular momentum ĵ of the system
for the equal mass BAM simulations considered in this paper (black) and the respective
TEOBResumS simulations. The latter are computed using different baseline tidal models
(NNLO, GSF2(+)PN(−), GSF23(+)PN(−)) and f-mode contributions. The EOB and NR

mergers are denoted via dots, while shaded gray bands indicate the NR error.

phase relative shifts are determined by minimizing the phase difference ∆ϕEOBNR over
a fixed time interval ∆t, e.g. [168, 444].

Quasi-circular mergers We consider the simulations of the CoRe collaboration
named BAM:0037 [167], BAM:0064 [167], BAM:0095 [167] and BAM:0107 [443] corre-
sponding to non-spinning mergers with κT2 = 187, 287, 73, 136 and q = 1, 1, 1, 1.224047

respectively. These data are computed at multiple resolutions and show convergent
properties that allowed a clear assessment of the errorbars [143]. Hence, these are
some of the most challenging NR waveforms to reproduce with analytical models.

Figure 4.3 shows the tidal contribution to the binding energy for the NR data and
for all the considered models (top panels) and the differences ∆ET

b = ETEOB
b −ETNR

b
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Figure 4.4: Waveforms (top panels), frequency evolution ω̂22 (middle panels) and EOB/NR
phase difference ∆ϕEOB/NR (bottom panels) for all the non spinning BNS simulations con-
sidered in Fig. 4.3. The GSF+f -mode tidal model is the closest to NR for the BAM:0064 and
BAM:0107 simulations, while for BAM:0037 and BAM:0095 the NNLO+f -mode and the GSF

models without dynamical tides deliver the best waveforms.
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Figure 4.5: Left: EOB/NR comparison between the multipolar Weyl scalars ψ2,2 (top
panel) and their respective frequency evolutions ω̂22 (middle panel). The f -mode excitations
that are typically observed in NR simulations between two close encounters are not captured
by the f -mode resonance model which prescribes kℓ ↦→ αℓkℓ. Right: EOB/NR comparison
between the evolution of the binding energy Êb of the system as a function of its orbital
angular momentum ĵ for the same binary shown in the left panel. The colorbar additionally
indicates the EOB frequency evolution along the dynamics. The energy difference that we
obtain is O(10−4), compatible with the estimates of the energy carried by f -mode oscillations

via Eq. 17 of [432].

(bottom panels). The EOB model based on the NNLO PN expansion of the AT po-
tential significantly underestimates the actual tidal interaction, as it is well known
from previous results [130, 429]. Augmenting the NNLO model with f -mode reso-
nance terms improves the agreement with NR, but the energetics are compatible only
for BAM:0095 while for the other three binaries the disagreement remains significant.
Further, without forcibly stopping the evolution at the NR merger (see Sec. 4.1.1)
the amplitude of the waveform, too, would be largely overestimated near merger.
Note the NNLO+f -mode is the model employed in SEOBNRv4 [134, 135, 419]. The
GSF2(+)PN(−) and GSF23(+)PN(−) models behave very similarly to the NNLO+f -
mode model, improving the NNLO behavior but also departing from the NR data
for BAM:0064 and BAM:0107. The GSF23(+)PN(−) is currently the default choice in
TEOBResumS [143, 429]. If these GSF-model are augmented with the f -mode the dy-
namics becomes too attractive and departs from the NR data in all the considered
binaries but BAM:0107 and BAM:0064.

Figure 4.4 shows the GW phasing analysis for all the simulations considered; the
top, middle and bottom panel show the evolution of the waveform’s amplitude, the
waveform’s frequency and the phase differences ∆ϕ = ϕEOB − ϕNR respectively. For
BAM:0107, the frequency evolution of the NNLO model significantly differs out of the
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alignment interval and is not sufficiently rapid to follow the NR data. This is in agree-
ment with the relative energetics discussed above. The NNLO+f -mode and the GSF
(without f -mode) models improve over the NNLO phasing but, again, the frequency
evolution remains too slow to capture the NR tides. On the contrary, the GSF2+f -
mode models describe very closely the frequency evolution of the NR data, and give
the best approximation of the waveform for this binary. This behavior is consistent
with what observed in the energetics above, although the merger – approximated by
the EOB light ring – is reached too early in the coalescence.

The BAM:0037 and BAM:0064 phasing analyses are qualitatively analogous to one
another, and no model is able to reproduce the NR frequency evolution, although the
phase of the corresponding waveform might fall within the NR error. Tidal effects are
too attractive for f -mode augmented GSF models, and not attractive enough for the
remaining models.

Differently from the others, for the BAM:0095 simulation the NNLO+f -mode and
the GSF (no f -mode) models are the closest to the NR data and within the error bars.
In this case, the GW phasing analysis is compatible with the results of the energetics.

The results discussed above highlight that establishing the presence of f -mode
resonances in quasi-circular merger computed in NR is not straightforward. On the
one hand, the inclusion of this interaction in EOB models can help to obtain analytical
waveforms more faithful to NR, at least for some binaries. This is evident in the
analysis of the equal-mass, non-spinning merger BAM:0095, where the inclusion of the
f -mode resonance in the NNLO EOB model shows an excellent agreement to NR data
in both energetics and phasing as opposed to the NNLO EOB baseline. On the other
hand, the f -mode resonance does not capture well the waveforms of other binaries and
the EOB/NR waveform agreement does not always correspond to an improvement of
the energetics (i.e. the Hamiltonian). For example, the NNLO+f -mode model does
not perform uniformly well with the other equal-mass, non-spinning binaries. The
GSF+f -mode models, instead, give a very attractive interaction close to merger and
significantly depart from NR for case studies BAM:0037 and BAM:0095.

Highly eccentric encounters We consider the BAM:0113 simulation of Ref. [432],
where constraint satisfying initial data are prepared and evolved for a highly eccentric
(eNR ∼ 0.45) merger. The binary undergoes eleven periastron passages before merging;
each passage is characterized by a burst of GW radiation, as shown in Fig. 4.5. Between
each burst, the GW shows oscillations compatible with the axisymmetric f -mode of
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the (nonrotating) NS component. The oscillation frequency can be identified also in
the fluid density, and it is triggered by the close passage to the companion [431].

TEOBResumS can model these types of mergers [145, 146, 148]. Although previous
works focused on BBH systems, the extension of TEOBResumS to eccentric and hyper-
bolic binaries including NSs is straightforward, and we have it implemented in this
work. The EOB/NR comparison with these types of NR data requires to fine-tune
the EOB initial conditions because no analytical map is known between EOB and the
initial data employed in the simulation [445]. In order to reproduce the NR wave-
form, we fix the NS masses and quadrupolar tidal parameters to those employed in
the NR simulation and vary independently the nominal EOB eccentricity and initial
frequency until an acceptable EOB/NR phase agreement is found. This procedure is
equivalent to fixing the initial frequency of the waveform and varying independently
the mean anomaly and the eccentricity of the system. For this work we do not imple-
ment a minimization procedure, we instead find that manually tuning the parameters
to ω̂0 = 0.0058 and e0EOB = 0.58 is enough to obtain a good visual EOB/NR agreement
that is sufficient for our purposes.

The waveform comparison is performed in terms of the multipole ψ22 = ḧ22 of
the Weyl pseudo-scalar Ψ4 since this quantity best highlights the f -mode oscillations
between the bursts. As shown in the top and middle panels of Fig. 4.5, the EOB
ψEOB
22 closely matches the NR data in both amplitude and phase showing an excellent

agreement during the ten periastron passages and up to merger. However, the middle
panel also shows that the EOB f -mode model does not capture the high frequency
oscillations in the GW frequency ω̂22. This might not be surprising: as shown in the
bottom panel of Fig. 4.5, the f -mode model prescribes significant variations of the
dressing factors only around the peaks of the (orbital) frequency while it is close to
one in-between the peaks. By contrast, in the NR data the high-frequency oscillations
are observed mainly at times between two close passages2. Further, by comparing
the orbital frequency evolution to the resonant frequency condition, we observe that
throughout the inspiral the resonance is never fully crossed. To model this behavior, it
seems necessary to consider more complex models which consider the post-resonance
dynamics – not included in our effective model – and for which the tidal response is

2We note that in order to correctly compute the f -mode induced amplitude oscillations, Ref. [432]
corrected the multipoles for displacement-induced mode mixing [446]. Although we mainly focus on
the frequency of the waveform, rather than the amplitude, Ref. [432] suggests that this quantity too
might be influenced by such an effect, which we do not account for here.
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evolved together with the orbital dynamics of the system [427, 447, 448] and incorpo-
rate those models in the EOB.

We complement the GW phasing analysis with a discussion on the energetics.
Figure 4.5 shows the binding energy of the highly eccentric system as a function
of the orbital angular momentum. The decrease of Êb(ĵ) presents clear oscillations
that can be reconducted to the close encounters. During each passage both Êb and ĵ

decrease but the times at which the two NSs are apart are characterized by approximate
“plateaus” (moments of approximately constant energy and angular momentum, see
the inset). From this interpretation, it appears that the EOB and NR curves, although
close, are not perfectly compatible: the encounters do not always align in the Êb(ĵ)
curves.

Finally, we stress that, modulo the small f -mode feature, our EOB waveforms quan-
titatively reproduce highly eccentric NR simulations up to few orbits before merger.
Ours is the first EOB model capable of describing highly eccentric comparable-mass
system including NSs, and this is to our knowledge the first EOB/NR comparison of
this kind. The striking agreement between EOB and NR in Fig. 4.5 attests to the
goodness of the radiation reaction model employed within TEOBResumS.

4.1.3 Model selection on GW170817

We now apply our models to GW170817, using the bajes pipeline [34] and the dynesty
[204] sampler. We consider 128 seconds of data around GW170817 GPS time, and
analyze frequencies between 23 Hz and 2048 Hz. The employed prior is uniform in
component masses and tidal parameters, isotropic in spin components and volumetric
in luminosity distance. It spans the ranges of chirp mass Mc ∈ [1.1, 1.3], mass ratio
q ∈ [1, 3], spin magnitudes χi ∈ [0, 0.05], tidal parameters Λi ∈ [0, 5000] and distance
DL ∈ [20, 100] Mpc. We consider three models for our analysis: the GSF23(+)PN(−)

model, the GSF23(+)PN(−) model augmented with dynamical tides and the NNLO
model, also augmented with dynamical tides3. When using the f -mode resonance
model, we either fix the values of ω̄(2)

fA, ω̄(2)
fB via the quasi-universal relation of [449] or

we infer them independently of Λ, imposing uniform priors on ω̄
(2)
fi ∈ [0.04, 0.14] with

i = A,B.
3For computational convenience we do not employ dressed spin-quadrupole parameters
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Table 4.1: Logarithmic evidences logZ of the five models employed in our GW170817
reanalysis and their Bayes’ factors computed against the GSF model. The GSF model is
slightly favored over the GSF + f -mode model both when we do and do not attempt to infer
ω̄
(2)
f from the GW data. NNLO + f -mode models, instead, appear mildly disfavored with

respect to those employing the adiabatic GSF tidal baseline.

Model (X) logZ logBX
GSF

GSF 480.23± 0.18 0
GSF + f -mode 479.61± 0.18 −0.62

GSF + f -mode + sampling 479.57± 0.18 −0.66
PN + f -mode + sampling 479.22± 0.18 −1.01

PN + f -mode 479.15± 0.18 −1.08

The evidences recovered with the five models are reported in Tab. 4.1. The data
mildly favors the GSF tidal model and the GSF model augmented by f -mode reso-
nances with respect to the NNLO dynamical tides model. When sampling the reso-
nance frequencies (see Fig 4.6), we find that it is not possible to precisely determine
ω̄
(2)
f from GW170817 data. For both tidal baselines, the recovered ω̄(2)

B distribution is
consistent with the flat prior imposed. The distribution of ω̄(2)

A , instead, allows only
to impose an upper or lower bound on the f -mode frequency, depending on whether
the GSF or NNLO tidal model is employed. This is consistent with what previously
observed in Ref. [435]: it is not possible to accurately determine ω̄(2)

f from GW170817
data.

A simple Fisher Matrix study (right panel of Fig. 4.6) immediately clarifies the
reason for the fact illustrated above. Following Ref. [129], we compute the diagonal
Fisher Matrix (normalized) integrands γ(f)fvp:

γ(f) =
f−7/3/Sn(f)∫︁ fmax

fmin
f−7/3/Sn(f)

, (4.14)

where v = (Mπf)1/3 and p depends on the parameter considered. Employing the PN
FD model of Ref. [450] and considering only the LO for each of the studied parameters,
one finds that pM = −10, pν = −6, pΛ̃ = 10 and pω̄f

= 22. This indicates that f -mode
parameters are determined close to the resonance frequency, where the effect of the
model is strongest (αℓ > 1). For GW170817, such frequencies are dominated by the
detectors’ noise.

It is worth noting that in the region where dynamical effects become more promi-
nent (above the frequency of contact between the two stars), the model itself is not
physically grounded. PE studies such as the ones presented in [433, 435, 451] circle
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this issue by generating waveforms exclusively up to the contact frequency, measuring
the secular accumulated phase difference due to the effect of dynamical tides away
from the resonance over a very large number of GW cycles. Directly testing the phys-
ical validity of this approach is challenging, as it would require extremely long NR
simulations which are currently unavailable. Within our EOB model, we find an ac-
cumulated phase difference due to dynamical tides of ∼ 0.5 − 1 rad at contact for
a 1.35M⊙ + 1.35M⊙ reference binary from 20 Hz. Most of the phase is accumulated
above 300 Hz. This phase difference might become measurable with third genera-
tion detectors [173], although biases due to an imperfect knowledge of the point mass
and (adiabatic) tidal sectors of the models could affect future measurements. Over-
all, while the f -mode model can be effective in improving the agreement between NR
and EOB after contact and to merger, it is not clear whether this corresponds to the
actual resonant effect or if it is rather an effective description for the hydrodynamics-
dominated regime of the merger. Hence, caution should be applied whenever trying
to extract actual physical information (i.e., the f -mode resonant frequencies) from a
matched filtered analysis using templates that include f -mode resonances. More ad-
vanced, general-relativistic models of f -mode resonances coupled to EOB waveform
appear necessary for applications in GW astronomy with next generation detectors
and observations.

4.2 A new tidal model for TEOBResumS

In this section we focus on improving the tidal sector of TEOBResumS [143, 144, 259,
328], and provide a phenomenological representation of it for spinning BNS systems.
The improvements concern (i) the computation and inclusion of additional higher
order analytical information in the metric and waveform multipoles, and (ii) the inclu-
sion of NR information via next to quasi-circular (NQC) parameters and through an
additional NR-calibrated parameter, which enters the tidal part of the radial metric
potential. For equal mass binaries, this parameter is clearly correlated with the effec-
tive tidal parameter of the system, and given a large enough number of high-quality
simulations can be fit directly to NR.

4.2.1 EOB Tidal model

Below, we discuss the model used for BNS systems, highlighting improvements and
differences with respect to the previous model of [143].
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Figure 4.6: Left: posterior samples for ω̄(2)
fA and ω̄(2)

fB extracted from GW170817 via direct
sampling (blue, red) or by applying quasi-universal relations to the mass and tidal parameters
recovered (cyan, magenta). The sampled values span the entire interval investigated, indicat-
ing that we are not able to precisely extract the ℓ = 2 resonance frequency from GW170817
data. Right: Fisher matrix integrands, computed as in [129], evaluated considering the LO
phase contribution for chirp mass, symmetric mass ratio, effective tidal parameter and f -mode
frequency. Straight curves are computed using advanced LIGO PSD [335], while dashed lines
are estimated with Einstein Telescope PSD [334]. Notably, the f -mode resonance frequency

is informed mainly by very high frequencies, larger than merger or contact.

Hamiltonian In order to account for tidal and self-spin effects, the effective EOB
Hamiltonian of Eq. 1.5 needs to be modified. Following the notation of [143], electric
(+) and magnetic (−) tidal interactions are generally included within the A(r) and
B(r) potential as

A = A0 + A+
T + A−

T , (4.15)

B = B0 +B+
T +B−

T . (4.16)

where A0, B0 are the point mass BBH baselines of the metric potentials. The tidal
part of A(r) is then typically further factorized as

A±
T (u) =

∑︂
ℓ≥2

A
(ℓ±)LO
A (u)Âℓ±A (u) + (A↔ B) (4.17)



Chapter 4. Matter effects in GWs: resonant tides and NR information 79

where u = 1/r is the inverse of the EOB radial coordinate and A,B label the bodies.
The LO coefficients are straightforwardly given by

A
(ℓ+)LO
A (u) = −κ(ℓ+)

A u2ℓ+2 , (4.18)

and
A

(ℓ−)LO
A (u) = −κ(ℓ−)

A u2ℓ+3 . (4.19)

Within TEOBResumS, we consider LO electric contributions up to ℓ = 8 [452], extending
the previous model of [143] that only included them up to ℓ = 4, and magnetic
contributions up to ℓ = 3.

The higher order corrections to Eq. 4.17 are known up to 2PN (NNLO) [70]. No-
tably however, rather than relying on the simple PN-expanded expressions above for
Â

(2+)
A and Â(3+)

A , the TEOBResumS model implements a GSF-informed resummation of
the potential:

Â
(ℓ±)
A (u) = Â

(ℓ±)0GSF
A +XAÂ

(ℓ±)1GSF
A +X2

AÂ
(ℓ±)2GSF
A . (4.20)

The expressions for the GSF coefficients can be read in Eq. (23)-(28) of Ref. [143].
Notably, all terms explicitly depend on the light ring radius rLR, which determines
the position of the pole in A(u), and a “GSF exponent” p, which appears in the
2GSF terms. The former used to be set by computing the adiabatic light ring of the
A(u) potential with 2PN tidal terms; the latter was fixed to p = 4 independently
of the binary parameters. Here, we make full use of the flexibility provided by the
GSF resummation, fix p = 9/2 and determine rLR via comparisons to NR data (see
Sec. 4.2.3 below).

The B(u) potential includes tidal effects to LO in the electric and magnetic tidal
parameters [71, 143]:

B+
T (u) = 3(3− 5ν)(κA2,+ + κB2,+)u

6 , (4.21)

B−
T (u) = 5(κA2,− + κB2,−)u

6 . (4.22)

The magnetic term is – to the best of our knowledge – presented here for the first time.
Its computation used the results of Ref. [75], and follows standard techniques. We
compute the Legendre transformation of the harmonic center of mass 1PN Lagrangian
of Ref. [75] proceeding order-by-order, recovering the ADM Hamiltonian in the point
mass sector. To obtain information about the EOB coefficients entering Ĥeff we need
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to express both the Hamiltonian ĤADM−like just obtained and Ĥeff in the same set of
coordinates. We do so by employing a canonical transformation, following closely the
procedure outlined in [124]. We parameterize the 1PN generating function G1PN(q,p

′),
where (q,p) are the original (ADM-like) coordinates and (q′,p′) are the desired EOB
coordinates. We then compute:

q′ = q+
∂G

∂p′ , (4.23)

p = p′ +
∂G

∂q
, (4.24)

and compare

Ĥ2
eff(q

′, p′) =
[︂
1 + ĤADM−like(q, p) + α1ĤADM−like(q, p)

2
]︂2
. (4.25)

Here, the A and B potentials are expanded to 1PN, and the LO magnetic and electric
terms in B are parameterized via two unknown coefficients χ2 and β2, respectively.
We then find

β2 = 3(3− 5ν) , (4.26)

χ2 = 5 . (4.27)

thus confirming the result of Vines et. al. [71] and of Bini et. al. [70], and computing
χ2 for the first time. Notably, B(u) is typically computed as the ratio of the EOB D(u)

BBH potential and the A(u) potential discussed above. Since A(u) already contains
tidal corrections, in order to obtain the correct B(u) PN LO one needs to correct the
ratio D(u)/A(u) with an additional term B′

T (u), so that in practice

BT (u) =
D(u)

A(u)
+B′

T (u)

B′
T (u) = (κA2,+ + κB2,+)(8− 15ν)u6 +B−

T (u) .

Regarding spinning BNSs, self-spin effects are included within the definition of the
centrifugal radius rc [296], which for BNS systems is modified to

r2c = r2 + ã2Q

(︂
1 +

2

r

)︂
+
δâ2NLO

r
+
δâ2NNLO

r2
, (4.28)
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where ãQ is an effective spin parameter that accounts for the EOS-dependent spin-
monopole interaction [328] and reduces to the effective Kerr spin ã0 for BBH systems.
Beyond LO, spin-squared contribution are included in δâ2NLO and δâ2NNLO, which can be
read e.g. in [142, 328]. Finally, we mention that we include and inverse-resum ĜŜ and
ĜŜ∗

up to 5.5PN order [304], improving on the previous model which only accounted
for PN terms up to NNLO. Differently from BBH models, we do not employ any
NR-informed coefficient in the gyro-gravitomagnetic terms.

Waveform and radiation reaction We remind the reader that the BBH EOB
waveform is given by

h0ℓm = cℓ+ϵ(ν)h
′(N,ϵ)
ℓm S(ϵ)htailℓm fℓm = h′(N,ϵ)ℓm ĥ0ℓm. (4.29)

where h′(N,ϵ)ℓm is a Newtonian prefactor, S(ϵ) is the source term, htailℓm includes tail con-
tributions and fℓm resums the residual terms [279, 296, 310, 311, 453, 454]. Tidal
contributions are included in the EOB multipoles hℓm via a simple additive correction
to the BBH baseline, hℓm = h0ℓm + htidalℓm . The tidal part of the waveform multipoles
does not follow the standard EOB factorization, and is instead simply given by:

htidalℓm = h′(N,ϵ)ℓm ĥtidalℓm , (4.30)

ĥtidalℓm = cLOℓmκA(1 + β1
ℓmx+ β2

ℓmx
2) + (A↔ B) . (4.31)

where cLOℓm and βnℓm parameterize the LO and n-th PN corrections to the waveform
amplitude. These terms were previously known up to NLO [71, 128, 129]; here we
exploit the results of Ref. [77] to compute and include also the LO correction to h44
and h42 and the subleading terms β2

22 and β1
21.

To obtain the desired terms, we first evaluate the multipolar fluxes Fℓm, parame-
terized by the unknown coefficients, via

Fℓm = F
(N,ϵ)
ℓm |ĥℓm|2 = F

(N,ϵ)
ℓm |ĥ0ℓm + ĥtidalℓm |2 . (4.32)

The Newtonian flux prefactors F (N,ϵ)
ℓm can be found in e.g. App. A of [311]. Note

however that, with respect to the definition given in Ref. [311], the term cℓ+ϵ(ν) is
here factored out and included directly in the definition of ĥ0ℓm. We then compare our
results to the multipolar fluxes computed in Ref. [77], and thus extract the desired
parameters. We find:
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Figure 4.7: Impact of the new analytical information included in the model. Left: phase
differences ∆ϕ = ϕold − ϕnew between the model without (“old”) and with (“new”) the newly
added information. Right: time evolution of the (2, 2) amplitude for two non-spinning BNSs

with Λ̃ = 2500 and q = 1 (top) and q = 2 (bottom).

β2
22 =

−1096X5
A+2567X4

A+8198X3
A−17052X2

A+1439XA+1735

504(2XA−3)
, (4.33)

β1
21 =

−220X3
A−130X2

A+203XA+15

126−168XA
, (4.34)

cLO44 = 2(5− 9XA + 6X2
A) , (4.35)

cLO42 = 3584(5− 9XA + 6X2
A) . (4.36)

When specifying β2
22 to the equal mass case (XA = XB = 1/2) we find β2

22 =

167/256 ∼ 0.653. This value is extremely close, but not exactly equal, to the β2
22

estimated in Ref. [77] when comparing their results with Ref. [129]. We attribute
this discrepancy to possible computation errors in Ref. [129], which was also found to
be incorrect in the 7.5PN tail term. Crucially, with respect to previous versions of
the model, we do not propagate the tail contribution htailℓm to the tidal amplitudes, in
order to correctly recover the LO 6.5PN tail terms. Given the new tidal terms con-
tributing to the waveform amplitudes ĥℓm, the radiation reaction force F̂φ is extended
straightforwardly.

4.2.2 Effect of the analytical information

The left panel of Fig. 4.7 shows the impact of the additional analytical information
included in the Hamiltonian and the waveform for 104 systems with varying mass
ratios, tidal parameters and spins. Such a difference is here quantified in terms of
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the phase difference at merger ∆ϕ = ϕold − ϕnew, where “new” and “old” indicate the
models with and without the extra terms discussed in the previous subsections. Note
that, in both cases, ℓ > 2 multipolar tidal parameters are estimated via the fits from
Ref. [262, 452]. From this comparison it appears that: (i) the (absolute) values of
the phase differences are smallest for binaries with small tidal parameters or larger
mass ratios, and maximal for equal mass binaries with large tidal parameters; (ii)
the phase difference is positive over a considerable portion of the parameter space,
implying that the new tidal model prescribes weaker matter effects than the previous.
The facts observed above are, at first impact, rather puzzling: while it is expected for
the models to differ the most for large values of Λ̃, it is not immediately clear why
they should agree for high mass ratios, or – conversely – why they should differ the
most for equal mass BNSs.

To further understand this picture, then, we consider two representative cases: an
equal mass, non-spinning binary with Λ̃ = 2500, and a q = 2 binary with the same
tidal parameters and spins. For each, we also compute the waveform and frequency
evolution combining the “new” and “old” model with different fits for the multipolar
tidal parameters Λℓ. The right panel of Fig. 4.7 shows the (2, 2) amplitude evolution
for the system considered. By comparing curves we note that the largest effect for
this binary is given by choice of the fit for Λ3,4. The inclusion of Λℓ terms with ℓ ≥ 5,
too, has a considerable effect on the waveform. Contrasting models based on the same
fits and with identical Λℓ content, it appears that the tidal contributions to the B
potential, the new tidal contributions to h22 itself and the lack of propagation of Tℓm
to the multipolar waveforms have an overall repulsive effect on the dynamics. When
the mass ratio is increased the importance of higher modes also grows, and differences
between models are attenuated.

Qualitatively, moving from the old model (which used the fits of Ref. [455]), to
a model which includes more analytical information and is based on the fits from
Ref. [262, 452] represents a step towards the right direction: previous EOB-NR com-
parisons highlighted how the models fail to capture the last few cycles before merger,
with tidal effects not being attractive enough. Quantitatively, however, the new con-
tributions are relatively small: the dephasing at merger varies between −0.05 and 0.3

rad. The inclusion of the analytical information discussed in the previous section to
the conservative and radiative sectors of the model therefore does not, unfortunately,
provide corrections to the final waveform that are large enough to fill the gap with NR
simulations, as observed in e.g. [143, 264].
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Figure 4.8: Comparison between the TEOBResumS model and the four equal mass NR
simulations employed to tune the tidal parameter αT

X aX1 aX2 aX3 aX4 bX1 bX2 bX3 bX4
M -1.7988 – – – – – – –
S 0.3555 – – – -7.1674 – – –
T 0.0314 0 0.1714 0.0006 -6.8144 1.0 5.1651 -1.0333

Table 4.2: The coefficients for ̇̂ω
NR
mrg from Eq. 4.48. The fitted value of a0 is a0 = 0.0074.

4.2.3 Numerically informing the model

The need of employing some NR information to improve our model in the last few cycles
before merger appears inevitable. We proceed on two different fronts. First, we include
some NQCs corrections in our waveform, in order to ensure that the expected NR-
prescribed values of amplitude and frequency at merger are reached by our waveforms.
Then, we employ the flexibility of the tidal model described in Sec. 4.2.1 provided
by the light ring radius rLR or the GSF-inspired exponent pGSF. These parameters
effectively determine the strength of tidal interactions by shifting the position of the
pole in the tidal potential (rLR) or the degree of the singularity (pGSF).
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NQC model for BNS systems NQCs have proven to be fundamental in the cre-
ation of faithful IMR BBH waveform models [141, 142, 286, 324]. Here, we apply
NQC corrections to BNS systems for the dominant ℓ = m = 2 mode, making use of
the merger fits provided by [456].

We remind the reader than NQC corrections enter the factorized EOB waveform
as a multiplicative term ĥNQC

ℓm , which in the general case explicitly reads:

ĥNQC
ℓm = (1 + a1n1 + a2n2)e

i(b1n3+b2n4) . (4.37)

n1, n2, n3, n4 are the NQC basis functions, given by:

n1 =
p2r∗
r2ω2 , (4.38)

n2 = r̈
rω2 , (4.39)

n3 = pr∗
rω
, (4.40)

n4 = n3r
2ω2. (4.41)

The NQC coefficients ai, bi are determined by imposing that the EOB amplitude Â22,
its time derivative ̇̂

A22, the frequency ω̂22 and the frequency time derivative ̇̂ω22 ex-
tracted 3M before the peak of the EOB orbital frequency are equal to the same NR
quantities extracted at the NR NQC time tNR

NQC, which is here identified with the
merger, tNR

NQC = tNR
mrg.

ÂEOB
22 (tΩpeak − 3) = ÂNR

22 (tmrg) , (4.42)
̇̂
A

EOB

22 (tΩpeak − 3) =
̇̂
A

NR

22 (tmrg) = 0 , (4.43)

ω̂EOB
22 (tΩpeak − 3) = ω̂NR

22 (tmrg) , (4.44)
̇̂ω
EOB

22 (tΩpeak − 3) = ̇̂ω
NR

22 (tmrg) , (4.45)

(4.46)

This choice of the extraction point is slightly different with respect to the BBH case,
where tNR

NQC = tNR
mrg +2M , and is motivated by the desire of employing already existing

fits to the desired NR quantities when they are specified at merger. In detail, we
supplement the fits presented in Ref. [456] for ÂNR

22 (tmrg) and ω̂NR
22 (tmrg) with new ones

for ̇̂ω
NR

22 (tmrg). Following Ref. [456], we assume a functional form of the type:

̇̂ω
NR

mrg = a0Q
M(X)QS(Ŝ, X)QT (κT2 , X) , (4.47)
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with

QM = 1 + aM1 X (4.48)

QS = 1 + aS1 (1 + bS1X)Ŝ (4.49)

QT =
1 + aT1 (1 + bT1X)TκT2 + aT2 (1 + bT2X)κT2

2

1 + aT3 (1 + bT3X)κT2 + aT4 (1 + bT4X)κT2
2 , (4.50)

and X ≡ (1− 4ν). The coefficients of the fit are collected in Tab. 4.2.

Light ring singularity The GSF-informed resummation introduced in [143] nat-
urally introduced a pole in the denominator of the ÂXGSF terms, with X = 0, 1, 2.
The precise location of this pole is however quite uncertain: the analytical GSF ex-
pressions placed the pole at r = 3M , where the BBH light ring is situated. However,
clearly, given that we are not describing coalescing BHs, this value can be modified at
will. One possibility is to employ the light ring radius rLR implied by the A potential
augmented by NNLO tidal effects. The value of rLR so estimated is generally larger
than the BBH light ring, effectively enhancing the tidal terms close to the end of the
evolution, in the last few orbital cycles before rhe peak of the EOB orbial frequency4.
Such an enhancement was shown to improve the agreement between NR and EOB,
although it was still not sufficient to reproduce NR within its error bars in most of the
cases studied.

Here, we build on this approach by multiplying the light ring radius estimated
from the NNLO A potential by a parameter α, to be determined case-by-case by
comparing our model to high resolution NR simulations after alignment. We start
from the equal mass, non-spinning case, and consider the public CoRe simulations
BAM:0037, BAM:0064, BAM:0095, and BAM:0097. All simulations show clear conver-
gence properties, with the latter displaying evident 4th order convergence thanks to
the Enthropy-Flux-Limited (EFL) method developed in [457, 458] and improved in
[459]. Given the multiple available resolutions and extraction radii associated to each
simulation, we estimate the total error budget on the waveform phase as the sum in
quadrature of the resolution and finite extraction error. The former is computed by
evaluating the phase difference between the highest and second-highest resolutions;
the latter by estimating the phase difference between the waveform extrapolated to
infinity and extracted at the largest finite radius.

4The EOB dynamics never crosses rLR in the physically meaningful region, see Fig. 1 of [143]
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Comparisons between our α-calibrated and uncalibrated EOB model with the NR
waveforms above are shown in Fig. 4.8. The calibrated model can reproduce all the
simulations shown within their NR error, except for BAM:0097. Notably, even when the
phase error at merger is within the NR errorbars, the NQCs-enhanced and NR-tuned
EOB model still does not seem to be able to fully capture the frequency evolution
over the last two cycles. Nonetheless, the introduction of the α parameter noticeably
improves the EOB/NR agreement for binaries with large effective tidal parameters,
such as BAM:0037 and BAM:0064. A trend in α is also easily identifiable: it is clear that
to match the simulations with larger tidal parameters, larger values of α are necessary.
Conversely, given that we set p = 9/2, values of α < 1 need to be chosen in order to
obtain agreement with those simulations with κT2 ≤ 100. Using the four simulations
shown in Fig. 4.8 we fit

α =
a1κ

T
2

1 + a2κT2
, (4.51)

finding a1 = 0.06306 and a2 = 0.05732.
Beyond our calibration set, we determine α for ∼ 10 additional lower-resolution

non-spinning simulations and compare the extracted values with the α computed via
Eq. 4.51. This investigation indicates that the trend we identified is maintained
when considering other equal-mass configurations, with the largest ∆α/α amount-
ing to about 13%. Concerning unequal mass and spinning simulations, instead, we
do not attempt to fit these contributions to α due to the large uncertainties affecting
the simulations. However, we mention that even in this scenario by modifying α it is
usually possible to reproduce the NR waveforms within their estimated error bands.

4.2.4 EOB/NR comparisons

New simulations s
We present 14 new simulations of unequal mass, spinning binaries. The initial

data for these simulations has been computed using the SGRID library [445, 460, 461],
and eccentricity reduction has been performed in order to minimize residual spurious
artifacts in the waveform [462, 463]. The constraint-satisfying data is then evolved
with the BAM code [121, 184, 464]. All simulations are run at multiple resolutions, with
{96, 104, 128, 144} points per directions in the finest (moving) mesh refinement level
covering the individual NSs and using a high-order hydrodynamics scheme [465].
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ID EOS Mω0 M q ΛA2 ΛB2 χA χB F̄old F̄new

ER01 H4 0.0373 2.77 1.02 888 1007 0.03 0.07 0.0119 0.0039
ER02 H4 0.0339 2.6 1.26 719 2789 0.04 0.13 0.0225 0.0045
ER03 H4 0.0339 2.6 1.26 718 2794 0.11 0.05 0.0219 0.009
ER04 H4 0.0373 2.77 1.02 887 1008 0.06 0.03 0.0132 0.0032
ER05 H4 0.0382 2.82 1.06 718 1008 0.11 0.05 0.008 0.0024
ER06 MS1b 0.0369 2.77 1.02 1268 1420 0.1 0.03 0.0059 0.0169
ER10 MS1b 0.0347 2.65 1.21 1048 2854 0.03 0.14 0.0339 0.0072
ER11 MS1b 0.0379 2.82 1.06 1048 1418 0.03 0.1 0.0045 0.0267
ER12 MS1b 0.0379 2.82 1.06 1048 1417 0.03 0.13 0.0203 0.0014
ER13 MS1b 0.0378 2.82 1.06 1047 1420 0.09 0.03 0.018 0.0044
ER14 MS1b 0.0379 2.82 1.06 1046 1420 0.12 0.03 0.0164 0.0026
ER15 H4 0.0382 2.82 1.05 719 1006 0.04 0.11 0.0075 0.0019
ER17 H4 0.0373 2.77 1.02 888 1006 0.05 0.11 0.0109 0.0068
ER18 H4 0.0373 2.77 1.02 886 1008 0.11 0.05 0.0128 0.0054

Table 4.3: New spinning, unequal mass NR simulations used to test TEOBResumS. The new
model has lower unfaithfulness that the previous one in all but two cases.

Time-domain phasing To validate our new model in a regime far from the one con-
sidered in our calibration set, we align in the TD the GSF3 and the GSF3NR models
with the NR simulations described in the previous section. When using the GSF3NR
model, we iterate on the NQCss 5 times, employing them also in the flux, before per-
forming the alignment. The results of our alignment procedure can be inspected from
Fig. 4.9 and Fig. 4.10 for the H4 and MS1b simulations, respectively. Notably, we do
not present results for the ER06 and ER11 simulations, as we were not able to correctly
align them to the EOB model. Overall, we observe that although no unequal mass or
spin-dependent corrections have been introduced to the GSF23NR(+)PN(−) model, it
improves over the previous one in all the comparisons presented. The EOB/NR phase
difference at merger is smaller than the estimated NR error in eight out of twelve
cases displayed, with an average ∆ϕEOBNR ∼ 0.5 rad at merger. Unsurprisingly, the
two cases for which significant disagreement – larger than the NR error – is found are
both high q , large spins ones with the H4 EOS. Notably, as was also the case for the
simulations of Fig. 4.8, we observe again a faster increase of the NR frequency over
the last two cycles with respect to the one predicted by the EOB model. This is espe-
cially evident in the ER05, ER13, ER14, ER15 and ER18 simulations, where ∆ϕEOB/NR is
smaller than the NR error in the inspiral and at merger, but larger than this quantity
approaching the end of the coalescence. This indicates that our model is not fully
capturing the physics of the system beyond the contact of the two bodies.
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Table 4.4: The coefficients of ΨΛ and ΨMQ as defined in equations 4.56.

ΨΛ ΨMQ

d1 d2 n5/2 n3 d1 d2 d3 n4

ν = 1/4 99.80 1560.60 −2191.56 5307.07 −9.61 23.12 3.90 −27.50
ν ̸= 1/4 4.08 39.67 −86.62 158.92 −2.84 28.93 63.34 −58.83

Unfaithfulness Applying Eq. (1.24), we find that our model is either comparable
with or improves the previous one in all but four cases, with typical mismatches below
1%. Note that this number provides a conservative limit on the NR-faithfulness of our
model, as little to no early inspiral is included in our simulations. If hybrid waveforms
were to be considered, the mismatch of TEOBResumS would decrease as well. This
result confirms and complements the TD phasing analysis discussed in the previous
paragraph (see Tab. 4.3).

4.3 Closed form representation of tidal sector

Following the ideas proposed in Ref. [167] (see also [168, 466, 467]), we develop a FD
closed-form representation of the tidal sector of TEOBResumS that can be employed
to augment any point-particle model of choice to include the effects of tides. This
representation is faithful (F̄ ∼ O(10−3) or lower) for Λ ∈ [10, 3000], mass ratios
q ∈ [1, 2.5] and spins |χi| ≲ 0.35.

Phenomenological representations of tidal approximants are usually built from hy-
brid PN-EOB-NR waveforms by (i) subtracting the point-mass (BBH) and (ii) fitting
the differences in phase and amplitude. The use of NR data at high-frequencies poten-
tially improves the accuracy with respect to the “exact” (unknown) waveform, but also
implies a limitation in the parameter space coverage. For example, neither the NRTidal
model nor its improved version NRTidalv2 [168] incorporate mass-ratio induced cor-
rections, and take into account spin-quadrupole effects only in the phase difference
through the PN expression of [328]. Moreover, the use of different approximants in
the hybrid construction and in the subtraction step can result in inconsistencies and
systematic effects. The phenomenological representation of TEOBResumS does not have
these drawbacks, although it retains the uncertainties of TEOBResumS in the merger
description when compared to NR waveforms [130, 143, 429].
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4.3.1 Phase

The phase of the (2, 2) FD waveform is modeled as the sum of the contributions due to
pure orbital interactions (O), pure tidal effects (Λ), spin orbit and spin-spin effects (S),
and self-spin couplings, also known as monopole-quadrupole (MQ) terms. It formally
reads

Ψ(f) = ΨO +ΨΛ +ΨS +ΨMQ . (4.52)

Under the simplifying assumption that these contributions can, indeed, be clearly
separated, the contribution to the phasing due to tidal effects can be expressed as:

∆Ψ(f) = ΨBNS(f)−ΨBBH(f) ≈ ΨΛ +ΨMQ . (4.53)

The PN expression valid in the low-frequency, weak-field regime of ΨΛ at incomplete
7.5PN accuracy was originally obtained in [129], and is of the form

ΨΛ = cΛLOx
5/2(1 + cΛ1 x+ cΛ3/2x

3/2 + cΛ2 x
2 + cΛ5/2x

5/2) , (4.54)

while the self-spin contributions ΨMQ at 3.5PN accuracy is given by [328, 468, 469]

ΨMQ =
3

128ν
cMQ
LO x

−1/2(1 + cMQ
1 x+ cMQ

3/2 x
3/2) , (4.55)

The functional form of our representations is obtained by the Padé resummation of
the PN expression,

ΨΛ =cΛLOx
5/2

1 +
∑︁6

i=2 n
Λ
i/2x

i/2

1 +
∑︁4

i=2 d
Λ
i/2x

i/2
(4.56a)

ΨMQ =
3

128ν
cMQ
LO x

−1/2
1 +

∑︁3
i=2 n

MQ
i/2 x

i/2

1 +
∑︁4

i=2 d
MQ
i/2 x

i/2
. (4.56b)
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The PN limit requires the following constraints on the pure tidal and spin-quadrupole
coefficients:

nΛ
1 =cΛ1 + dΛ1 (4.57a)

nΛ
3/2 =(cΛ1 c

Λ
3/2 − cΛ5/2 − cΛ3/2d

Λ
1 + nΛ

5/2)/c
Λ
1 (4.57b)

nΛ
2 =cΛ2 + cΛ1 d

Λ
1 + dΛ2 (4.57c)

dΛ3/2 =− (cΛ5/2 + cΛ3/2d
Λ
1 − nΛ

5/2)/c
Λ
1 (4.57d)

nMQ
1 =cMQ

1 + dMQ
1 (4.57e)

nMQ
3/2 =cMQ

3/2 + dMQ
2 . (4.57f)

The remaining coefficients are fitted to TEOBResumSPA. To incorporate corrections due
to unequal-mass effects we parameterize the free coefficients as a ν = 1/4 contribution
plus a factor proportional to

√
1− 4ν. In particular, denoting a generic coefficient

nΛ
i , d

Λ
i or nMQ

i , dMQ
i as pΛi and pMQ

i , we have:

pΛi =p
(ν=1/4)
i +

κ1 − κ2
κ1 + κ2

p
(ν ̸=1/4)
i

√
1− 4ν (4.58a)

pMQ
i =p

(ν=1/4)
i +

(CQ1ã
2
1 − CQ2ã

2
2)

(CQ1ã21 + CQ2ã22)
p
(ν ̸=1/4)
i

√
1− 4ν . (4.58b)

These functional forms are inspired by the expressions of the coefficients known from
PN theory.

We then proceed as follows: (i) we compute the phase difference between a set of
ν = 1/4, non-spinning waveforms, and fit the values of (dΛ1 , dΛ2 , nΛ

5/2, n
Λ
3 )

(ν=1/4); (ii) we
consider a set of unequal mass, non-spinning waveforms and fit (dΛ1 , dΛ2 , nΛ

5/2, n
Λ
3 )

(ν ̸=1/4),
setting the ν = 1/4 coefficients to the values found in the previous point; (iii) we fit
equal mass, spinning waveforms, and find the values of (dMQ

1 , dMQ
2 , nMQ

4 , dMQ
3 )(ν=1/4)

using again the equal-mass coefficients of (i); (iv) we use all information found up to
now, and fit unequal mass, spinning waveforms to find (dMQ

1 , dMQ
2 , nMQ

4 , dMQ
3 )(ν ̸=1/4).

The values of all fitted coefficients, obtained from a dataset of ∼ 1000 waveforms, are
summarized in Table 4.4.
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4.3.2 Amplitude

We proceed analogously for the amplitude, whose FD tidal and self-spin terms are
modeled as

ÃΛ =

√︃
2ν

3
πx13/4cΛ5

1 +
cΛ6
cΛ5
x+ 22672

9
x2.89

1 + dΛ4 x
4

(4.59)

ÃMQ =−
√︃

3ν

2
πx1/4

(CQ1ã
2
1 + CQ2ã

2
2)

1 + e4x4
. (4.60)

The PN limit of the above expressions can be obtained via a simple SPA. Denoting
the TD amplitude of the 22 mode as A22, one has that

Ã22 =A22(tf )

√︃
π

ϕ̈(tf )
(4.61a)

ϕ̈(x) =− 3

2
x1/2

F(x)

E ′(x)
(4.61b)

Where E(x) and F(x) denote, respectively, the energy and its flux. We employ expres-
sions for A22, E(x) and F(x) which contain point-particle and spin-orbit corrections
known up to 3.5 PN [331, 413, 470], spin-quadrupole corrections up to relative 1PN
[311, 468], and pure tidal corrections up to relative 1PN [72, 129, 376]. Expanding Eq.
(4.61a), we find that the waveform amplitude is given by

Ã22(x) =

√︃
2ν

3
πx−7/4

i=X∑︂
i=0

ci/2x
i/2 (4.62)

The coefficients of the point mass and spinnning terms are given in e.g. [155]. Spin-
quadrupole and tidal effects enter the amplitude at relative 2 and 5 PN orders. While
the latter are known in the literature, the former are here computed for the first time,
and read:

cMQ
2 =− 3

2
(CQ1ã

2
1 + CQ2ã

2
2) (4.63a)

cMQ
5/2 =− CQ1ã

2
1

(︂12247
1344

− 2221

672

√
1− 4ν +

53

336
ν
)︂
− CQ2ã

2
2

(︂12247
1344

+
2221

672

√
1− 4ν +

53

336
ν
)︂

(4.63b)

In Eq. (4.60) we incorporate only LO PN information for the spin sector, as we
find that, while the addition of the NLO term slightly improves the low frequency
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behavior of our fits, it also negatively impacts the overall agreement in the high-
frequency regime. The unknown coefficients are fit by following the same procedure
of the previous paragraph. We find:

d
(ν=1/4)
4 =5009.8736694 (4.64a)

d
(ν ̸=1/4)
4 =− 4017.88863642, (4.64b)

e
(ν=1/4)
4 =5.98351934 (4.64c)

e
(ν ̸=1/4)
4 =20.04283392 (4.64d)

4.3.3 Validation

We compute the unfaithfulness between the BNS TEOBResumS model and the BBH
model augmented by the phenomenological description of tides. We consider 104 sys-
tems with masses uniformly distributed between [1, 2.5] M⊙, dimensionless spins uni-
formly distributed in [−0.35, 0.35] and tidal parameters in [10, 3000]. When restricting
the calculation to non-spinning binaries with Λ̃ < 1000 and m1,2 ∈ [1, 2.5]M⊙ we find a
maximum unfaithfulness of 2× 10−3. Widening the range of tidal parameters, we find
that the faithfulness degrades for tidal deformabilities larger than roughly ∼ 2000. The
worst matches (F̄ ∼ 2%) are obtained, as expected, for unequal mass configurations
with large Λ̃. When also considering spins, we find that the largest differences are
obtained with configurations having at least one rapidly spinning NS. In this scenario,
unfaithfulness values can increase above the nominal 1% threshold. When the spins
of the NS are moderate, instead, we find mismatch values around O(10−3) or lower.



Chapter 4. Matter effects in GWs: resonant tides and NR information 94

Figure 4.9: Comparison between the two tidal flavors of the TEOBResumS model,
GSF23(+)PN(−) (orange lines) and GSF23NR(+)PN(−) (blue lines), and the eight H4 un-
equal mass, spinning NR simulations summarized in Tab. 4.3 (black lines). In each subfigure,
the upper-left panel shows the TEOBResumS waveforms overlaid on top of the NR data during
the early inspiral of the system. The upper-right panel shows instead the merger and few
cycles preceding it. The middle and bottom panels, instead, show the frequency evolution
and EOB/NR phase difference ∆ϕEOBNR. The alignment region is delimited by two gray
vertical lines, while merger is indicated with a dashed black line. In the bottom panels, the

gray area denotes the NR error, estimated as described in the text.
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Figure 4.10: Same as Fig. 4.9, for the five converged MS1b simulations of Tab. 4.3.
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Conclusions

In this Thesis we improved the performance of TEOBResumS, a fast and accurate wave-
form model for generic compact binaries (BBHs and BNSs). We presented the first mul-
tipolar frequency domain model for precessing BNSs, obtained the first NR-informed
EOB model for BNS systems and discussed the importance of resonant tidal effects
for current and next generation detectors. Employing our model it within Bayesian
frameworks to link signals measured by the LIGO-Virgo-Kagra detectors to their astro-
physical sources, we suggested that GW190521 may have been caused by the dynamical
capture of two BHs. The development of faithful models is of paramount importance
to avoid the issue of waveform systematics, and make the most of the information
contained in the data of current and future interferometers.

Spin precession When compared to 121 SXS simulations, spanning a large portion
of the precessing BBHs parameter space, TEOBResumS was found to yield mismatches
below the 3% threshold for ι = 0 (ι = π/3) for 96% (99%) of the total simulations con-
sidered. The worsening of the unfaithfulness for increasing inclination is expected, as
for more edge-on binaries geometrical effects enhance the importance of higher modes
and precession. This result is comparable to the one obtained via the phenomenologi-
cal waveform approximant IMRPhenomXPHM, indicating that TEOBResumS represents an
efficient and faithful alternative to current state-of-the-art models. When applied to
the PE of real signals, we find results that are overall consistent with those obtained
by LVK. Marginal differences appear in the posterior distributions of χp and χeff for
GW190412. Critically, these studies demonstrate that TEOBResumS can be directly
applied to PE, even of computationally challenging BNS systems, without the need
for additional surrogates or reduced order models.

The degradation of the performance of the model at high masses seen in Fig. 2.3,
however, indicates the need for an improved merger-ringdown description of the pre-
cessing waveform. This could come from a combination of three different avenues: (i)
an improved description of the ringdown of spin-aligned (ℓ,m) ̸= (2, 2) modes; (ii) a
more accurate model for the evolution of the Euler angles α, β above merger; (iii) an
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improved (analytical) fit for the remnant spin χf (see Fig. 2.1). Regarding the first
point, in particular, we mention that the modelling of the (ℓ,m) = (2, 1) is a known
criticality of TEOBResumS, as the latter is known to misbehave at merger for large
misaligned spins. This known issue is potentially even more important for precessing
systems. That is because, clearly, the twisted modes are obtained as a superposition
of spin aligned multipoles. Hence, the (2, 1) mode directly affects also the (2, 2) and
(2, 0) multipolar waveforms. However, once an appropriate solution for the issue is
found for the spin-aligned case, this will immediately have a positive impact on the
precessing model. Similarly, any improvement of the spin-aligned model (addition
of analytical information, re-calibrations of the NR informed parameters, improved
merger-ringdown) will immediately be reflected on the precessing waveform, thanks to
the modular nature of our approximant. With respect to the second point, instead, we
observe that [243] recently proposed a phenomenological model to extend the Euler
angles above merger, directly fit on numerical relativity simulations. Applying such a
model to other approximants, such as the here employed IMRPhenomXPHM, brought very
relevant improvements when computing unfaithfulness against NR simulations. Since
the spin-evolution is independently evolved in our model, it is in principle straight-
forward to apply the prescription of [243] to our EOB waveform. Similarly, improved
modeling of the co-precessing frame modes which does not impose symmetry between
the ±m modes for fixed ℓ is expected to further improve agreement with NR.

Generic orbits The results obtained from the re-analysis of GW190521 – assum-
ing that it was caused by the dynamical capture of two BHs – are consistent with
the fact that burst-like waveforms from highly eccentric or head-on BBHcollision may
be confused with mildly precessing quasi-circular binaries [240] and vice-versa. Re-
garding other possible scenarios, a quantitative comparison is currently not possible
since they have not been analyzed with full Bayesian studies and/or complete wave-
form templates [238, 241, 399]. While our analysis selects a two-encounters merger
as best-fitting capture scenario (Fig. 3.9), the orbital dynamics of these encounters is
rather sensitive to changes in both the conservative and non-conservative part of the
dynamics [146], as also evident from Fig. 11 of [146]. Going beyond the conservative
assumptions behind our analysis, future work will explore the impact of spin and of
higher waveform multipoles, as well as consider systematic comparisons between our
(improved [148]) EOB model and a larger number of NR simulations. The inclusion
of additional, physically motivated, degrees of freedom (e.g., BH spins) is expected to
further shed light on the nature of GW190521.
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Resonant tides A critical assessment of the importance of resonant tidal effects,
performed via phasing and energetics comparisons to NR waveforms, highlighted that
while models based on f -mode excitations certainly represent a viable effective tidal
model for the later stages of the coalescence, caution should be applied when trying to
extract physical information from them via GW data analysis of real events. No clear
signature of the presence of f -mode resonances after the NS contact can be assessed
from NR simulations of quasi-circular binaries. For highly eccentric binaries, instead,
the effective f -mode model does not capture the oscillations in the NR data (small
oscillations in amplitude and frequency of the waveform centered around the proper
mode star frequency). This is not unexpected because (i) the f -mode model considered
in this Thesis was specifically computed for quasi-circular orbits, and (ii) the resonant
condition is not met during the close passages. Aside from the small oscillation feature,
we demonstrated that our TEOBResumS model for generic orbits quantitatively repro-
duces the NR waveform and frequency evolution with high-accuracy up to merger.
To our knowledge, this was the first EOB/NR comparison of highly eccentric BNS
mergers.

NR informed matter model While the inclusion of high order tidal effects in our
model (leading order magnetic tidal corrections to the B EOB potential, 2PN elec-
tric tidal terms in the (ℓ,m) = {(2, 2), (2, 1), (4, 2), (4, 4)} waveform multipoles, 5.5PN
spin-orbit terms in the gyro-gravitomagnetic coefficients entering the EOB Hamilto-
nian, electric tidal coefficients up to ℓ = 8) positively impacts the overall agreement
between TEOBResumS and NR, the need of incorporating some NR information in the
model appears unavoidable. By adding NQCs to the quadrupolar (2, 2) mode and
a new NR-informed parameter, α, we are able to improve on the previous model’s
performance in terms of both mismatches and time-domain phasing. This improve-
ment is also summarized in a new a frequency domain closed form representation of
TEOBResumS, This phenomenological representation faithfully approximates the base-
line model with F̄ < 0.001 over a considerable portion of the parameter space, with
the worst mismatches obtained for strongly asymmetric systems with large spins.

Outlook Thanks to the modular nature of our model, most of the effects stud-
ied in this Thesis can be combined in a straightforward manner. For instance, the
advancements presented in Chapter 4 regarding the tidal sector can be immediately
included when considering systems coalescing along generic orbits or quasi circular,
precessing BNS with higher modes (see Chapter 2). When considering spins precession
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and generic orbits, notably, such an extension is not as straightforward. Within our
framework, this is due to two main reasons: (i) the PN description of ω̇ employed
to evolve the spins cannot be immediately applied to obtain a good description of
generic orbits, and (ii) the PN equations themselves that we employ to compute the
evolution of the spins need to be extended to also account for non-circular effects.
Both points, however, are rather straightforward to address, and we plan to do so in
future publications. Beyond the simultaneous description of precession and eccentric-
ity, we are also working towards an improved plunge-to-ringdown model for highly
eccentric, aligned-spins BBHs. Preliminary studies highlighted that the quasi-circular
ringdown template employed in TEOBResumS appears sufficient for binaries which tend
to circularize before merger. On the other hand, for systems that merge head-on, or –
more generically – that are characterized by sufficiently low values of orbital angular
momentum, the merger amplitude predicted by the current template tends to under-
estimate the one found from NR simulations. We plan to develop a general NQCs
and ringdown model, informed by test mass and NR simulations, which reduces to
the current quasi-circular description in the correct limit. Moving to BNS systems,
other planned improvements regard the beyond-contact regime. Indeed, in spite of the
model’s performance being overall satisfactory (∆ϕEOBNR < NR error) for most of the
system we inspected in Chapter 4, our study highlighted how improvements are still
necessary in the last few cycles before merger. Comparisons between our model and
NR waveforms highlight that the frequency evolution of the NR waveforms close to
merger is steeper with respect to the one provided by the models. This will require
large amounts of sufficiently accurate NR data, spanning large portions of the BNS
parameter space. This will enable precise inference of the equation of state of cold,
dense matter with NG detectors such as Einstein Telescope (ET) [256] and Cosmic
Explorer (CE) [471]. Overall, although much work will be needed to make the most of
the rich landscape of future observations, the future of GW astronomy is bright and
the development of physically complete models at reach.
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Appendix A

Waveform Systematics for BNS
systems

NG detectors such as ET [253, 256] and CE [471] are expected to start taking data in
the late 2020s. Their increased sensitivity at high frequencies will significantly improve
the detection of tidal signatures in the inspiral, and even allow the detection of GWs
from the remnant. Typical SNRs expected for GW170817-like events detected by ET
are of the order of 1700. As a consequence, the importance of waveform systematics
is expected to further increase with respect to second generation detectors. In this
picture, the SNR ρ of a detected event impacts the measurement of the effective
tidal parameter Λ̃ mainly by determining the width of the distribution of Λ̃, σΛ̃ =

Λ̃95th%ile − Λ̃5th%ile.
To obtain a qualitative estimate of σΛ̃ for NG detectors, we perform an injection-

recovery study (see Fig. A.1) using aLIGO noise curve and employing two GW models,
PehnomPv2NRTidal and TaylorF2. We fit the width of the found Λ̃ distributions and
extrapolate them to higher SNRs, finding that a good approximation of the behavior
of σΛ̃ over the SNR range considered (ρ ∼ 70− 90) is obtained by assuming that

σΛ̃(ρ) =
c

ρ− ρ0
. (A.1)

This functional form is valid only for ρ > ρ0, in which case the denominator can be
expanded as a geometrical series, and incorporates the corrections to the leading order
1/ρ asymptotical behavior expected from the Fisher Matrix analysis. Fitting Eq.(A.1)
to the data, we find (c, ρ0) = (7497.97, 63.09) for TaylorF2 and (4372.21, 66.78) for
PhenomPv2NRTidal. To obtain a unique estimate of σΛ̃, we compute the average value
σ̄Λ̃ = (σPhenom

Λ̃
+ σTaylorF2

Λ̃
)/2.
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Figure A.1: Fractional deviation between the true “injected" values of Λ̃ and the recon-
structed posteriors for a set of 15 different simulated GW signals. Each signal is generated
with the EOB TEOBResumS model, and recovered with a phenomenological (blue) and a PN

approximant (green).

This expression of σ̄Λ̃ can then be used to compute the SNR at which two inde-
pendent measurements of Λ̃, whose difference we denote as ∆Λ̃, become statistically
inconsistent. Figure A.2 shows the quantity ∆Λ̃/σ̄Λ̃ as a function of the optimal SNR
ρ for values of ∆Λ̃ ∈ [−100, 100]. When ∆Λ̃/σ̄Λ̃ ≈ 1, statistical fluctuations are of
the same order of magnitude as systematical effects. For |∆Λ̃| ≈ 100, we see that
this condition is satisfied already at the threshold ρ ≈ 125. As |∆Λ̃| decreases, the
threshold SNR increases, reaching ρ ≈ 300 in correspondence of a ∆Λ̃ ≈ 20.

The above considerations are independent of the exact waveform models employed,
and do not tackle the issue of estimating the ∆Λ̃ associated with two specific chosen
approximants. While it is clear from Fig. A.1 that large ∆Λ̃ are to be expected when
employing TaylorF2 and NRTidal, we take a step further and qualitatively estimate
∆Λ̃ for two additional state-of-the-art approximants, PhenomPv2NRTidalv2 [168] and
SEOBNRv4Tsurrogate [136]. Given a baseline waveform d with fixed effective tidal
parameter Λ̃d and a template waveform h, we estimate the “best-fitting” Λ̃best

h by
maximizing the faithfulness between the two waveforms over a one-dimensional interval
of Λ̃h values. The difference ∆Λ̃ is then simply obtained as ∆Λ̃ = Λ̃d − Λ̃best

h .
We then compare PhenomPv2NRTidalv2, SEOBNRv4Tsurrogate and TEOBResumS

and report the differences with respect to two baselines (TEOBResumS and SEOBNRv4Tsurrogate).
We consider baseline values of Λ̃ equal to 400, 800 and 1000, and employ the ET
PSD [472]. We compute waveforms from 30 to 2048 Hz or 1024 Hz. Results are again
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Figure A.2: Ratio between systematic (∆Λ̃) and statistical (σΛ̃) errors on the effective tidal
parameter Λ̃ for BNSs detected with ET employing frequencies up to 1 kHz (left panel) or 2
kHz (right panel). For |∆Λ̃| ≈ 100, systematic errors are larger than statistical ones at SNRs

larger than ∼ 125.

displayed in Fig. A.2. We find that both SEOBNRv4Tsurrogate and PhenomPv2NRTidalv2

“underestimate” the values of Λ̃ of the TEOBResumS baseline (right panel), and that
the |∆Λ̃| found are always below ≈ 100. This indicates that tides are stronger
in the SEOBNRv4Tsurrogate and PhenomPv2NRTidalv2 models than in TEOBResumS.
When restricting below 1kHz the systematic bias in Λ̃ due to the differences between
IMRPhenomPv2NRTidalV2 and TEOBResumS is ≲2σ corresponding to ∆Λ̃ ± 50, while
it varies ∼2− 4σ when considering differences with respect to SEOBNRv4Tsurrogate.
This indicates that the differences between PhenomPv2NRTidalv2 and TEOBResumS are
mostly related to the modeling of tides at high-frequencies, while the tides in the EOB
models differ from each other already at lower frequencies. Some caution is needed
when interpreting the results obtained for the different waveform approximants: the
estimated ∆Λ̃ provides only a rough estimate of the expected difference in the models.
Nonetheless, we expect the behavior of the approximants (i.e., their being more/less
attractive) to be correctly captured. Overall, our findings indicate that above SNR
≈ 100−200, σΛ̃ will be small enough that the models will appear to be fully inconsistent
with each other. The estimated systematic biases reflect differences in the tidal model-
ing at frequencies corresponding to the very last orbits and thus accessible to NR. We
stress that at frequencies ω̂ ≳ 0.06 the NS are in contact and the waveform modeling
based on tidal interactions can only be considered an effective description, since the
dynamics are dominated by hydrodynamics [130]. We demonstrate below that current
NR simulations may not be sufficiently accurate to produce faithful waveforms. New,
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more precise NR simulations appear crucial to further develop tidal waveform models
for future detectors.

A.1 Faithfulness of Numerical Relativity waveforms

Numerical Relativity (NR) simulations are fundamental for understanding the the
merger physics and the waveform morphology in the high-frequencies regime. They
incorporate hydrodynamical effects, and can model not only the late-inspiral-merger
parts of the coalescence, but also the postmerger phase. While NR waveforms are often
regarded as exact with respect to the ones provided by waveform approximants in the
same regime, the complex 3D simulations can introduce significant uncertainties, e.g.
[130, 444, 465, 473, 474]. The latter are both due to systematics (finite radius extrac-
tion of the GWs, numerical dissipation, etc.) and to finite grid resolution. Systematics
are difficult to control, but finite resolution errors can be studied by simulating at
different resolutions and performing convergence tests.

In this appendix, we test the accuracy of a set of state-of-the-art NR waveforms
taken from the CoRe database [277], with the aim of guiding future efforts. In partic-
ular, we consider multi-orbit and eccentricity reduced simulations performed wih the
BAM code, and focus on late inspiral-merger where waveforms are shown to be con-
vergent. To the best of our knowledge, accuracy standard for BNS NR waveforms at
multiple grid resolutions have been computed only in [444] for data that are currently
superseded by the those produced with simulations employing high-order numerical
fluxes [465, 473] and higher resolutions than we consider here. We use here a sample
of CoRe waveforms computed at multiple resolution and produced in [167, 418, 428,
443, 475].

Table A.1 displays the faithfulness values computed for a set of BAM waveforms.
Each value is obtained by comparing the two highest-resolution simulations available
for each considered set of intrinsic parameters. For each resolution R, the simulations
compute the multipoles hℓm(t); the waveform polarizations hR+, hR× are reconstructed
from

hR+ − ihR× = D−1
L

∞∑︂
ℓ=2

ℓ∑︂
m=−ℓ

hℓm(t)−2Yℓm(ι, ψ) (A.2)

where−2Yℓm(ι, ψ) are the spin weighted spherical harmonics of spin s = −2 and DL is
the luminosity distance. Considering only the dominant multipole (ℓ, |m|) = (2, 2) and
assuming that the radiation is emitted along the z-axis, perpendicular to the orbital
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plane, one has that ι = ψ = 0 and −2Y2±2(0, 0) =
√︁

5/(64π)(1 ± 1)2. Matches are
computed over a frequency range f ∈ [flow, fmrg], where flow is defined as the frequency
at which the amplitude of the fourier transform FT[Re(h22)] is highest and fmrg is the
merger frequency, i.e. the instantaneous frequency corresponding to the peak of the
amplitude |h22(t)|. Such values are then contrasted to a “threshold faithfulness" Fthr

given by

Fthr =
ϵ2

2SNR2 . (A.3)

We choose ϵ2 to be equal to one, for a stricter requirement, or to the number of intrinsic
parameters of a BNS system (ϵ2 = 6). Note that while F < Fthr is a necessary
but not sufficient condition for biases to appear, F > Fthr is a sufficiently strong
requirement to ensure that two waveforms are faithful. While for low SNR signals
most of the waveforms considered are accurate enough, we find that – out of the
twelve simulations examined – none passes the accuracy test when (SNR 80, ϵ2 = 1),
and only one (BAM:0095) manages to pass it when (SNR 80, ϵ2 = 6) and (SNR 30,
ϵ2 = 1). Note the stars are resolved in this case with ≳200 grid points.

Our findings indicate that the largest portion of the NR simulations available to
date may not be yet sufficiently accurate for GW data-analysis purposes. High-order
methods for hydrodynamics and resolutions >200 grid points per star appear necessary
for GW modeling.
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Table A.1: Faithfulness values F computed considering frequencies from flow to fmrg be-
tween simulations with the same intrinsic parameters and two different resolutions, extracted
at r/M = 1000. The source is situated in the same sky location as GW170817, and the
waveform polarizations h+ and h× are computed and projected on the Livingston detector.
We employ the aLIGODesignSensitivityP1200087 [8] PSD from pycbc [476] to compute
the matches, and compare the values obtained to the thresholds Fthr calculated with Eq. A.3
with ϵ2 = 1 or ϵ2 = 6. A tick ✓ indicates that F > Fthr. Conversely, a cross ✗ indicates that

F < Fthr.

Sim n1 F SNR
14 30 80

6 1 6 1 6 1
BAM:0011 [96, 64] 0.991298 ✓ ✗ ✗ ✗ ✗ ✗

BAM:0017 [96, 64] 0.985917 ✓ ✗ ✗ ✗ ✗ ✗

BAM:0021 [96, 64] 0.957098 ✗ ✗ ✗ ✗ ✗ ✗

BAM:0037 [216, 144] 0.998790 ✓ ✓ ✓ ✗ ✗ ✗

BAM:0048 [108, 72] 0.983724 ✗ ✗ ✗ ✗ ✗ ✗

BAM:0058 [64, 64] 0.999127 ✓ ✓ ✓ ✗ ✗ ✗

BAM:0064 [240, 160] 0.997427 ✓ ✗ ✓ ✗ ✗ ✗

BAM:0091 [144, 108] 0.997810 ✓ ✓ ✓ ✗ ✗ ✗

BAM:0094 [144, 108] 0.996804 ✓ ✗ ✓ ✗ ✗ ✗

BAM:0095 [256, 192] 0.999550 ✓ ✓ ✓ ✓ ✓ ✗

BAM:0107 [128, 96] 0.995219 ✓ ✗ ✗ ✗ ✗ ✗

BAM:0127 [128, 96] 0.999011 ✓ ✓ ✓ ✗ ✗ ✗
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