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ABSTRACT

Testing a system for observability is of great practical relevance in technical applications. For linear
systems, this problem was solved decades ago. The observability of nonlinear systems can be formally
defined, but the actual verification is extremely difficult. For the subclass of poynomial systems, the
observability can be decided in a finite number of calculation steps. In this paper, we provide an
observability test for embedded polynomial systems. The observability test uses methods of algebraic
geometry.

Index Terms— Observability, polynomial systems, embedded systems, algebraic geometry

1. INTRODUCTION

The concept of observability characterizes the possibility of estimating or reconstructing certain system 
variables from the measurement of other variables. In a narrower sense, it is usually about state observabil-
ity, i. e., the question whether the state can be determined from the measurement of the output trajectory 
(and in the case of non-autonomous systems also from the measurement of the input trajectory). The 
question of observability plays a major role in both the monitoring and the control of technical processes.

In most practical applications the whole state of a dynamical system is not measured directly. Addi-
tionally, one wants to reduce the number of sensors required, while the systems state and possibly slowly 
changing parameters should still be reconstructable from the sensor outputs. If this should be achievable at 
all, the systems state must be observable. This observability property is important to answer the question 
of where sensors must be located, or which are redundant [1, 2].

While the observability of a linear time-invariant system can be easily decided by well–known 
observability criteria [3,4], this becomes more difficult for nonlinear systems. However, many systems are 
not linear. Thus, a method to decide the observability for nonlinear systems is required. In this contribution, 
we restrict the system class to those which can be described by polynomial equations. This applies to 
most mechanical systems, if the systems state is allowed to be embedded into a higher-dimensional space.

Our method allows deciding the observability properties as well as to identify those points where the 
local observability fails [5]. These points are intrinsic to the system and cannot be compensated by any 
observer. Furthermore, the algorithm computes the number of output derivatives required. This implies 
the minimum dimension of the observer state, which may be higher than the dimension of the systems 
state – a property that does not apply to linear systems.

The paper is structured as follows: In Section 2 we remind the reader of the concepts of local and 
global observability for nonlinear systems. In order to be able to treat polynomial systems, we provide 
some basics of algebraic geometry in Section 3. The observability test is described in Section 4. Our 
method is applied on a mechanical example system in Section 5. Some conclusions are provided in 
Section 6.
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2. NONLINEAR OBSERVABILITY

In this contribution nonlinear systems of the form

ẋ = f(x), x ∈ M ⊆ Rn (1a)

y = h(x) (1b)

with polynomial vector field f and polynomial scalar fields h = (h1, . . . , hp) are considered. The state
space M is described implicitly by a set of algebraic equations

M = {x ∈ Rn | g1(x) = 0, . . . , gs(x) = 0}, (2)

which are polynomials, too. Since polynomial functions are analytic, the differential equation (1a) has a
locally analytic solution x(t) for each initial value x0 ∈ M. Thus, the output trajectory is locally analytic
as well. This allows to (locally) expand the output trajectory in a Taylor series

y(t) =
∞∑
k=0

tk

k! L
k
fh(x(0)), (3)

where Lk
fh denotes the k-th Lie derivative of h along the vector field f . This is the Lie derivative of

a scalar field and computed component wise for the output map h and must not be confused with Lie
derivative of a vector field [6]. The Lie derivatives can be defined in a recursive way [7, 8]:

L0
fh(x) = h(x), L1

fh(x) = Lfh(x) =
∂h
∂x(x)f(x), Lk+1

f h(x) = LfL
k
fh(x).

In the nonlinear case the observability is based on the indistinguishability of system states. Two states
x1, x2 ∈ M of the system (1) are called indistinguishable on the interval [0, t∗], if the output trajecto-
ries t 7→ y(t) with initial conditions x(0) = x1 and x(0) = x2, respectively, are equal for all t ∈ [0, t∗],
see [9–11]. Due to the local analyticity of the output trajectories, indistinguishable states evaluate to
the same coefficients of the Lie series (3) for the output trajectory. This motivates the definition of the
observability map

q : M → Rp×∞, x 7→ q(x) =
(
h(x),Lfh(x),L

2
fh(x), . . .

)
,

which maps to the series coefficients. The observability map maps indistinguishable states x1, x2 ∈ M to
the same point: q(x1) = q(x2).

Using the notion of indistinguishability, observability is defined as follows [9, 10]: A system is called
globally observable, if the observability map is injective, i. e.,

∀x, x̄ ∈ M : q(x) = q(x̄) =⇒ x = x̄.

The system is locally observable at a point x0 ∈ M, if the observability map is injective in a neighbor-
hood Ux0 ⊂ M of x0, i. e.,

∀x, x̄ ∈ Ux0 : q(x) = q(x̄) =⇒ x = x̄.

Finally, the system is called locally observable, if it is locally observable at every point x0 ∈ M.
The injectivity of the observability map is difficult to verify, since its image is of infinite dimension.

However, in the case of polynomial systems this problem can be resolved. This, however, requires some
algebraic concepts that should be introduced in the following section.
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3. POLYNOMIAL IDEALS

The observability criteria are mainly a comparison of algebraic sets, i. e., real sets defined by polynomial
equations. Herein, polynomials in the ring R[x] = R[x1, . . . , xn] are considered. The polynomials, which
are equated to zero, can be summarized in a polynomial ideal. This is a special subset of the polynomial
ring that is closed under addition and multiplication with elements of the ring. Therefore, ideals contains
— let alone the trivial ideal that contains only 0 — an infinite number of elements. By Hilbert’s basis
theorem [12, pp. 76], however, there is finite number of generator or basis polynomial g1, . . . , gs for
every ideal I ⊆ R[x] such that

I = {a1g1 + · · ·+ asgs | a1, . . . , as ∈ R[s]} =: ⟨g1, . . . , gs⟩.

Such a basis is used to represent polynomial ideals and to carry out computations. There are special bases
called Gröbner bases. These are useful to decide the ideal membership problem and, thus, enable the
comparison of ideals [13].

The common real zero set of the generator polynomials and, therefore, of all polynomials in the ideal,
is called the real variety. In return, for each variety there is an ideal containing all polynomials that evaluate
to zero for each point in the variety. Such an ideal containing all vanishing polynomials is called real.
There is no bijection between ideals and varieties. However, there is a one-to-one correspondence between
real ideals and real varieties. The ideal that contains all polynomials that evaluate to zero at the variety of
an ideal I is called the real radical of I [14, p. 85] and denoted1 by

√
I .

Such a variety V ⊆ Rn can be decomposed into its irreducible components: V = V1 ∪ · · · ∪ Vs. These
are varieties, which cannot be written as a proper union of varieties. Alike, a real ideal can be decomposed
into its prime components: I = I1 ∩ · · · ∩ Is.

The union of ideals I and J is called the ideal sum and denoted by I + J . Apart from the different
notation the ideal sum is identical to the set theoretic union.

4. ALGEBRAIC OBSERVABILITY TEST

Using these algebraic concepts the observability can finally be tested. This reduced to the comparison of the
sets defined by x = x̄ and q(x) = q(x̄) with x, x̄ ∈ M for global observability and with x, x̄ ∈ Ux0 ⊂ M
for local observability at a point x0 ∈ M. The global case is described in [11]. We refer to [5] for a
detailed description of the local case. The general concept is briefly recapped.

Since M in (2) is variety by definition, so is the set

J =
{
(x, x̄) ∈ M2 |x = x̄

}
,

whose vanishing ideal will be denoted by J . To show that the set

I =
{
(x, x̄) ∈ M2 | q(x) = q(x̄)

}
of indistinguishable points is a variety is less obvious. Consider the defining polynomials, which include
Lie derivatives of the output map up to order k, i. e.,

Ik =
〈
g1(x), g1(x̄), . . . , gs(x), gs(x̄), h(x)− h(x̄),Lfh(x)− Lfh(x̄), . . . ,L

k
fh(x)− Lk

fh(x̄)
〉
.

The variety of this ideal is the set of all initial conditions of two copies of the system, which yield the
same output and output derivatives up to order k. Clearly, these ideals form an ascending chain

I0 ⊆ I1 ⊆ I2 ⊆ · · · ,
1This notation is usually used for a different radical ideal and the real radical is denoted by R√·. Since this is all about real

algebra, only the real radical is considered.
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which must stabilize after a finite number of ideals by the ascending chain condition [12, p. 80].
The variety of the stabilized ideal I∞ equals I. In order to detect if the chain has stabilized, the
fact Ik = Ik+1 =⇒ Ik = Ik+2 is used. Thus, if two consecutive ideals in the chain are equal, the chain
has stabilized. The equality can be detected by comparing the reduced Gröber bases of the ideal. Finally,
the system is globally observable, if I∞ = J .

Local observability is not tested point wise. Instead, the variety of all not locally observable points is
computed directly. Since the ideals J and I∞ corresponding to the sets of equal J and indistinguishable
points I , respectively, are known, the equality of their varieties have to be tested locally. The basic idea is
that if these varieties are not equal in the neighborhood of a point, the difference set I \ J is not empty in
this neighborhood, i. e., an irreducible component of I different from J is contained in the neighborhood.
Thus, the not locally observable points are those that are contained in both that variety J and in an
irreducible component of I different from J itself.

This can be translated to a corresponding criterion using the ideals: If√
I∞ = J ∩ P1 ∩ · · · ∩ Ps

is the prime decomposition of
√
I∞, the not locally observable points2 are the variety of

J + (P1 ∩ · · · ∩ Ps).

5. EXAMPLE

As a simple example consider the physical pendulum depicted in Figure 1. The equations of motion read

φ̇ = ω

ω̇ = −k sinφ,

where the mass m, inertia J and distance L from the center of mass to the bearing are combined in the
quantity k = mgL

J+mL2 . In this form the components of the vector field are not polynomials. However,
introducing (redundant) coordinates x1 = sinφ, x2 = − cosφ and x3 = ω the differential equations

ẋ1 = −x2x3

ẋ2 = x1x3

ẋ3 = −kx1

result. These redundant coordinates are subject to the algebraic constraint

0 = x21 − x22 − 1

defining a cylinder embedded in R3, see Figure 2.

g
φ

x1

x2

Fig. 1: A physical pendulum described by
Cartesian coordinates.

x3

x2

x1

M = S1 × R ↪→ R3

Fig. 2: State space M of the pendulum
embedded in R3.

2To be precise, this variety contains pairs of equal points.

4© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland.



The inertia parameters are assumed to be unknown, so the equation k̇ = 0 is added to the set of
differential equations. Thus, the combined parameter k should be estimated by the observer as well. The
motion of the pendulum is measured by an accelerometer attached to the pendulum at distance ℓ from the
bearing, which measures the cartesian components of the acceleration, i. e.,

y =

(
y1
y2

)
=

(
x2 −x1
x1 x2

)(
ℓẍ1

ℓẍ2 + g

)
=

(
ℓkx1 − gx1
gx2 − ℓω2

)
.

We discuss the case of an unknown distance ℓ first, i. e., the differential equation ℓ̇ = 0 is added to the
system. In order to slightly simplify the equations, physical units where g = 1 are used in the sequel.

For the observability test the state variables x = (x1, x2, ω, k, l) for the system
and x̄ =

(
x̄1, x̄2, ω̄, k̄, ℓ̄

)
for the copy are used. The combined state space M2 is described by

the implicit equations generated by the ideal

I−1 =
〈
x21 + x22 − 1, x̄21 + x̄22 − 1

〉
.

The equality of measurements for both system copies leads to the ideal

I0 =
〈
x21 + x22 − 1, x̄21 + x̄22 − 1, ℓω2 − ℓ̄ω̄2 − x2 + x̄2, ℓkx1 − ℓ̄k̄x̄1 − x1 + x̄1

〉
.

A reduced Gröbner basis with respect to a graded ordering contains additional polynomials:

I0 =
〈
x22kω̄

2ℓ̄+ x1ω
2x̄1k̄ℓ̄− x22ω

2 + x32k − x1ω
2x̄1 − x22kx̄2 − kω̄2ℓ̄+ ω2 − x2k + kx̄2,

x1kω̄
2ℓ̄− ω2x̄1k̄ℓ̄− x1ω

2 + x1x2k + ω2x̄1 − x1kx̄2,

x22kℓ+ x1x̄1k̄ℓ̄− x22 − kℓ− x1x̄1 + 1,

ω2ℓ− ω̄2ℓ̄− x2 + x̄2,

x1kℓ− x̄1k̄ℓ̄− x1 + x̄1,

x21 + x22 − 1,

x̄21 + x̄22 − 1
〉
.

In order to compute the stabilized ideal I∞, Lie derivatives of all these polynomials are added to the set of
generators. After one step, the reduced Gröbner basis of the ideal I1 contains already 106 polynomials
(although the ideal itself can be generated by six polynomials, namely the two copies of the algebraic
constraint, the difference of the output maps and their first Lie derivative). However, the Gröbner basis
is required in order to decide the ideal membership. After a second iteration the Gröber basis of I2
contains 751 polynomials. We continue the computation and finally arrive at ideals I6 = I7 = I∞. The
reduced Gröbner basis for I∞ has 151 generators. This ideal is not radical, and the radical

√
I∞ has a

much simpler representation. Note that we could have tried to compute radicals in between adding Lie
derivatives, but this usually get too expensive for the intermediate ideals [15].

The radical
√
I∞ can be written as an intersection

P0 ∩ P1 ∩ P2 ∩ P3 ∩ P4 ∩ P5

of six prime ideals. These components are analysed in order to discuss the system’s observability.
The first component is the ideal

P0 = J =
〈
x̄21 + x̄22 − 1, x1 − x̄1, x2 − x̄2, ω − ω̄, k − k̄, ℓ− ℓ̄

〉
,

which describes the set of equal points. This ideal contains all such constructed ideals I∞. If this was the
only component, the system would have been globally observable.
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The prime ideals

P1 = ⟨x1, x2 + 1, ω, x̄1, x̄2 + 1, ω̄⟩
P2 = ⟨x1, x2 − 1, ω, x̄1, x̄2 − 1, ω̄⟩

describes the equilibria of the pendulum. As can be seen, the parameters k and ℓ do not occur in these
polynomials, thus, these can be arbitrary. This implies, that an observer cannot estimate these quantities,
if the pendulum is in any of these equilibria.

The component
P3 =

〈
x̄21 + x̄22 − 1, x1 − x̄1, x2 − x̄2, ω, k, ω̄, k̄

〉
describes the case k = 0, where the pendulums center of mass coincides with the suspension point. If this
’pendulum’ is at rest (ω = 0), the position of the accelerometer, i. e., the distance ℓ, cannot be determined.
In the case of a known distance, i. e., ℓ = ℓ̄, this prime component would not occur explicitly in the
intersection, since then J ⊆ P3. Thus, the ideal P3 represents a special case, where the quantity ℓ cannot
be (locally) observed.

There is another special case due to

P4 =
〈
x̄21 + x̄22 − 1, k̄ℓ̄− 1, x1 + x̄1, x2 − x̄2, ω + ω̄, k − k̄, ℓ− ℓ̄

〉
.

The equation kℓ = 1 holds e. g. for a mathematical pendulum with the accelerometer placed at the center
of mass (ℓ = L). In general this is a ratio of these parameters, where the accelerometer does not notice an
acceleration in one direction, since y1 is identically zero. Then there is an ambiguity in the direction where
the pendulum swings, which can be seen from the mirrored solutions in the system copies exchanging the
sign of x1 and ω.

There is another prime component

P5 =
〈
x̄21 + x̄22 − 1, ω̄2 + 2x̄2k̄, k̄ℓ̄+

1
2 , x1 − x̄1, x2 + x̄2, ω + ω̄, k + k̄, ℓ+ ℓ̄

〉
,

which comes by a little surprise. Here, the accelerometer is placed at the opposite side with respect to the
center of mass such that kl = −1

2 . There are two different periodic orbits of the pendulum that yield the
same output trajectories, but only for special initial conditions. If, however, the sign of k or ℓ is known,
this ambiguity can be resolved.

The not locally observable points are computed by first computing the saturation of
√
I with respect

to J . This removed the component J = P0 from the prime decomposition. Computing the ideal sum
with J again, leads to the following observation: The equations in the prime component P5 and J are
incompatible such that P5 + J = ⟨1⟩. This means that P5 does not contribute the not locally observable
points. However, this can still be a concern to an observer.

The ideal P4 + J is a superset of (P1 ∩ P2) + J , since it has an additional generator kℓ− 1. Thus, the
ideal (P1 ∩ P2 ∩ P3) + J remains, which could be written as an intersection the same way. Eliminating
the variables x̄1, x̄2, ω̄, k̄, ℓ̄ for the second system copy finally yields

⟨x1, x2 + 1, ω⟩ ∩ ⟨x1, x2 − 1, ω⟩ ∩
〈
x21 + x22 − 1, ω, k

〉
,

which describes the set of not locally observable points. This is precisely the set of equilibria.

6. CONCLUSION

This example shows that there are quite some ambiguities albeit the simplicity of the considered system.
Furthermore, the intermediate expressions can become complicated and sophisticated algebraic methods
are required for more complex systems.

The observability map q can also be used to transform the system into its observability canonical
form. As could be observed in this example system, higher order derivatives of the output map may be
required, compared to the systems state dimension. This leads again to an embedding of the observer
state [16]. While this embedding may avoid problematic points for the transformed system, the not locally
observable ones are intrinsic.
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